Bisphenol AF (BioDeep_00000002253)

   

human metabolite blood metabolite Industrial Pollutants natural product


代谢物信息卡片


4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxyphenyl)propan-2-yl]phenol

化学式: C15H10F6O2 (336.0585)
中文名称: 双酚AF, 双酚 AF
谱图信息: 最多检出来源 Homo sapiens(blood) 67.02%

分子结构信息

SMILES: C1=CC(=CC=C1C(C2=CC=C(C=C2)O)(C(F)(F)F)C(F)(F)F)O
InChI: InChI=1S/C15H10F6O2/c16-14(17,18)13(15(19,20)21,9-1-5-11(22)6-2-9)10-3-7-12(23)8-4-10/h1-8,22-23H

描述信息

CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4798; ORIGINAL_PRECURSOR_SCAN_NO 4796
CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4887; ORIGINAL_PRECURSOR_SCAN_NO 4885
CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4799; ORIGINAL_PRECURSOR_SCAN_NO 4798
CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4824; ORIGINAL_PRECURSOR_SCAN_NO 4819
CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4812
CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4468; ORIGINAL_PRECURSOR_SCAN_NO 4466
D052244 - Endocrine Disruptors

同义名列表

12 个代谢物同义名

4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxyphenyl)propan-2-yl]phenol; Hexafluoroisopropylidenebis(4-hydroxybenzene); 2,2-Bis-(p-hydroxyphenyl)-hexafluoropropane; 2,2-Bis(4-hydroxyphenyl)hexafluoropropane; 2,2-Bis(4-hydroxyphenyl)perfluoropropane; 4,4-(Hexafluoroisopropylidene)diphenol; 4,4-Hexafluorisopropylidene diphenol; Hexafluorobisphenol A; BPAF compound; Bisphenol AF; BPAF; 2,2-Bis(4-hydroxyphenyl)hexafluoropropane



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 AKT1, AR, BCL2, CASP3, CAT, CYP1A1, EGFR, ESR1, GPER1, PIK3CA, PPARG, PTGS2, SRPX2
Peripheral membrane protein 3 CYP1A1, ESR1, PTGS2
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 7 BCL2, CYP17A1, CYP19A1, CYP1A1, EGFR, GPER1, PTGS2
Mitochondrion membrane 1 GPER1
Nucleus 11 AKT1, AR, BCL2, CASP3, EGFR, ESR1, ESR2, GPER1, PCNA, PPARG, THRA
cytosol 10 AKT1, AR, BCL2, CASP3, CAT, ESR1, GPER1, PIK3CA, PPARG, THRA
dendrite 1 GPER1
mitochondrial membrane 1 GPER1
nuclear body 1 PCNA
trans-Golgi network 1 GPER1
centrosome 1 PCNA
nucleoplasm 9 AKT1, AR, CASP3, ESR1, ESR2, GPER1, PCNA, PPARG, THRA
RNA polymerase II transcription regulator complex 2 PPARG, THRA
Cell membrane 4 AKT1, EGFR, ESR1, TNF
Cytoplasmic side 1 ESR1
lamellipodium 2 AKT1, PIK3CA
ruffle membrane 1 EGFR
Cell projection, axon 1 GPER1
Early endosome membrane 1 EGFR
Multi-pass membrane protein 2 CYP19A1, GPER1
Golgi apparatus membrane 1 GPER1
Synapse 1 SRPX2
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 3 EGFR, SRPX2, TNF
dendritic shaft 1 GPER1
glutamatergic synapse 4 AKT1, CASP3, EGFR, SRPX2
Golgi apparatus 2 ESR1, GPER1
Golgi membrane 2 EGFR, GPER1
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 3 CASP3, CYP17A1, TNF
postsynapse 1 AKT1
presynaptic membrane 1 GPER1
endosome 1 EGFR
plasma membrane 7 AKT1, AR, EGFR, ESR1, GPER1, PIK3CA, TNF
presynaptic active zone 1 GPER1
Membrane 8 AKT1, AR, BCL2, CAT, CYP19A1, EGFR, ESR1, GPER1
apical plasma membrane 1 EGFR
axon 2 CYP17A1, GPER1
basolateral plasma membrane 1 EGFR
caveola 1 PTGS2
extracellular exosome 2 CAT, PCNA
endoplasmic reticulum 5 BCL2, CYP17A1, CYP19A1, GPER1, PTGS2
extracellular space 4 CXCL8, EGFR, SRPX2, TNF
perinuclear region of cytoplasm 4 EGFR, GPER1, PIK3CA, PPARG
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CAT, CYP1A1, ESR2
protein-containing complex 7 AKT1, AR, BCL2, CAT, EGFR, ESR1, PTGS2
intracellular membrane-bounded organelle 5 CAT, CYP1A1, ESR2, GPER1, PPARG
Microsome membrane 4 CYP17A1, CYP19A1, CYP1A1, PTGS2
postsynaptic density 2 CASP3, GPER1
Single-pass type I membrane protein 1 EGFR
Secreted 2 CXCL8, SRPX2
extracellular region 3 CAT, CXCL8, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
excitatory synapse 1 SRPX2
hippocampal mossy fiber to CA3 synapse 1 GPER1
mitochondrial matrix 1 CAT
transcription regulator complex 1 ESR1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, EGFR
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
nucleolus 1 GPER1
Early endosome 1 GPER1
cell-cell junction 1 AKT1
recycling endosome 2 GPER1, TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 2 EGFR, TNF
pore complex 1 BCL2
focal adhesion 2 CAT, EGFR
spindle 1 AKT1
Peroxisome 1 CAT
intracellular vesicle 1 EGFR
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 SRPX2
nuclear speck 1 AR
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 2 EGFR, PPARG
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 6 AR, ESR1, ESR2, PCNA, PPARG, THRA
phagocytic cup 1 TNF
nuclear replication fork 1 PCNA
chromosome, telomeric region 1 PCNA
nuclear envelope 1 GPER1
Cytoplasmic vesicle membrane 1 GPER1
Cell projection, dendrite 1 GPER1
euchromatin 1 ESR1
replication fork 1 PCNA
myelin sheath 1 BCL2
basal plasma membrane 1 EGFR
synaptic membrane 2 EGFR, SRPX2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 1 PTGS2
male germ cell nucleus 1 PCNA
axon terminus 1 GPER1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
nuclear lamina 1 PCNA
clathrin-coated endocytic vesicle membrane 1 EGFR
[Isoform 1]: Nucleus 1 ESR1
death-inducing signaling complex 1 CASP3
keratin filament 1 GPER1
dendritic spine head 1 GPER1
Cell projection, dendritic spine membrane 1 GPER1
dendritic spine membrane 1 GPER1
cyclin-dependent protein kinase holoenzyme complex 1 PCNA
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
BAD-BCL-2 complex 1 BCL2
[Isoform Alpha-2]: Cytoplasm 1 THRA
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Xindong Yang, Qinghua Zhou, Qianwen Wang, Juan Wu, Haofeng Zhu, Anping Zhang, Jianqiang Sun. Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model. Environmental pollution (Barking, Essex : 1987). 2023 Sep; 337(?):122552. doi: 10.1016/j.envpol.2023.122552. [PMID: 37714399]
  • Kaiqi Lai, Libin Zhang, Jialei Xu. Metabolic and oxidative stress response of sea cucumber Apostichopus japonicus exposed to acute high concentration of bisphenol AF. Aquatic toxicology (Amsterdam, Netherlands). 2023 Aug; 262(?):106654. doi: 10.1016/j.aquatox.2023.106654. [PMID: 37579560]
  • Xindong Yang, Juan Wu, Qinghua Zhou, Haofeng Zhu, Anping Zhang, Jianqiang Sun, Jay Gan. Congener-Specific Uptake and Metabolism of Bisphenols in Carrot Cells: Dissipation Kinetics, Biotransformation, and Enzyme Responses. Journal of agricultural and food chemistry. 2023 Feb; 71(4):1896-1906. doi: 10.1021/acs.jafc.2c08197. [PMID: 36649116]
  • Yuebi Chen, Xiaotian Chen, Xueyou Li, Yue Liu, Yusong Guo, Zhongduo Wang, Zhongdian Dong. Effects of bisphenol AF on growth, behavior, histology and gene expression in marine medaka (Oryzias melastigma). Chemosphere. 2022 Dec; 308(Pt 3):136424. doi: 10.1016/j.chemosphere.2022.136424. [PMID: 36116629]
  • Chao Zhang, Li Zhou, Xiao-Chang Wu, Tian-Yue Guan, Xuan-Min Zou, Chen Chen, Meng-Yuan Yuan, Yong-Han Li, Sheng Wang, Fang-Biao Tao, Jia-Hu Hao, Pu-Yu Su. Association of serum bisphenol AF concentration with depressive symptoms in adolescents: A nested case-control study in China. Ecotoxicology and environmental safety. 2022 Aug; 241(?):113734. doi: 10.1016/j.ecoenv.2022.113734. [PMID: 35679728]
  • Xiyan Mu, Suzhen Qi, Hui Wang, Lilai Yuan, Chengju Wang, Yingren Li, Jing Qiu. Bisphenol analogues induced metabolic effects through eliciting intestinal cell heterogeneous response. Environment international. 2022 07; 165(?):107287. doi: 10.1016/j.envint.2022.107287. [PMID: 35598417]
  • Tasnia Sharin, Doug Crump, Jason M O'Brien. Toxicity screening of bisphenol A replacement compounds: cytotoxicity and mRNA expression in LMH 3D spheroids. Environmental science and pollution research international. 2022 Jun; 29(29):44769-44778. doi: 10.1007/s11356-022-18812-z. [PMID: 35138540]
  • Miao Gong, Han Song, Yan Dong, Ziqing Huai, Yaling Fu, Panpan Yu, Boya Huang, Rui Yang, Yi Guo, Qian Meng, Yuan Gao, Li Song, Qingjun Guo, Qiang Gao, Xi Yin, Sheng Wang, Yun Shi, Haishui Shi. Sex-dependent and long-lasting effects of bisphenol AF exposure on emotional behaviors in mice. Physiology & behavior. 2022 05; 249(?):113747. doi: 10.1016/j.physbeh.2022.113747. [PMID: 35183564]
  • Yige Yu, Xiu Xin, Feifei Ma, Xiaoheng Li, Yiyan Wang, Qiqi Zhu, Haiqiong Chen, Huitao Li, Ren-Shan Ge. Bisphenol AF blocks Leydig cell regeneration from stem cells in male rats. Environmental pollution (Barking, Essex : 1987). 2022 Apr; 298(?):118825. doi: 10.1016/j.envpol.2022.118825. [PMID: 35026324]
  • Penghao Wei, Guobin Jiang, Hongfang Wang, Shaoguo Ru, Fei Zhao. Bisphenol AF exposure causes fasting hyperglycemia in zebrafish (Danio rerio) by interfering with glycometabolic networks. Aquatic toxicology (Amsterdam, Netherlands). 2021 Dec; 241(?):106000. doi: 10.1016/j.aquatox.2021.106000. [PMID: 34715482]
  • Alexandra Schaffert, Laura Krieg, Juliane Weiner, Rita Schlichting, Elke Ueberham, Isabel Karkossa, Mario Bauer, Kathrin Landgraf, Kristin M Junge, Martin Wabitsch, Jörg Lehmann, Beate I Escher, Ana C Zenclussen, Antje Körner, Matthias Blüher, John T Heiker, Martin von Bergen, Kristin Schubert. Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environment international. 2021 11; 156(?):106730. doi: 10.1016/j.envint.2021.106730. [PMID: 34186270]
  • Tasnia Sharin, Helina Gyasi, Kim L Williams, Doug Crump, Jason M O'Brien. Effects of two Bisphenol A replacement compounds, 1,7-bis (4-hydroxyphenylthio)-3,5-dioxaheptane and Bisphenol AF, on development and mRNA expression in chicken embryos. Ecotoxicology and environmental safety. 2021 Jun; 215(?):112140. doi: 10.1016/j.ecoenv.2021.112140. [PMID: 33730607]
  • Isabel C Cohen, Emry R Cohenour, Kristen G Harnett, Sonya M Schuh. BPA, BPAF and TMBPF Alter Adipogenesis and Fat Accumulation in Human Mesenchymal Stem Cells, with Implications for Obesity. International journal of molecular sciences. 2021 May; 22(10):. doi: 10.3390/ijms22105363. [PMID: 34069744]
  • Laura Escrivá, Johanna Zilliacus, Ellen Hessel, Anna Beronius. Assessment of the endocrine disrupting properties of bisphenol AF: a case study applying the European regulatory criteria and guidance. Environmental health : a global access science source. 2021 04; 20(1):48. doi: 10.1186/s12940-021-00731-0. [PMID: 33894771]
  • Suramya Waidyanatha, Sherry R Black, Claire R Croutch, Bradley J Collins, Melanie A R Silinski, Season Kerns, Vicki Sutherland, Veronica G Robinson, Kristin Aillon, Reshan A Fernando, Esra Mutlu, Timothy R Fennell. Comparative toxicokinetics of bisphenol S and bisphenol AF in male rats and mice following repeated exposure via feed. Xenobiotica; the fate of foreign compounds in biological systems. 2021 Feb; 51(2):210-221. doi: 10.1080/00498254.2020.1829171. [PMID: 32985913]
  • Suramya Waidyanatha, Bradley J Collins, Helen Cunny, Kristin Aillon, Felicia Riordan, Katie Turner, Sandra McBride, Laura Betz, Vicki Sutherland. An investigation of systemic exposure to bisphenol AF during critical periods of development in the rat. Toxicology and applied pharmacology. 2021 01; 411(?):115369. doi: 10.1016/j.taap.2020.115369. [PMID: 33338515]
  • Rongzhen Li, Shuai Liu, Wenhui Qiu, Feng Yang, Yi Zheng, Ying Xiong, Guanrong Li, Chunmiao Zheng. Transcriptomic analysis of bisphenol AF on early growth and development of zebrafish (Danio rerio) larvae. Environmental science and ecotechnology. 2020 Oct; 4(?):100054. doi: 10.1016/j.ese.2020.100054. [PMID: 36157705]
  • Qian Liu, Wentao Shao, Zhenkun Weng, Xin Zhang, Guipeng Ding, Cheng Xu, Jin Xu, Zhaoyan Jiang, Aihua Gu. In vitro evaluation of the hepatic lipid accumulation of bisphenol analogs: A high-content screening assay. Toxicology in vitro : an international journal published in association with BIBRA. 2020 Oct; 68(?):104959. doi: 10.1016/j.tiv.2020.104959. [PMID: 32763284]
  • Jie Gu, Hongye Wang, Linjun Zhou, Deling Fan, Lili Shi, Guixiang Ji, Aihua Gu. Oxidative stress in bisphenol AF-induced cardiotoxicity in zebrafish and the protective role of N-acetyl N-cysteine. The Science of the total environment. 2020 Aug; 731(?):139190. doi: 10.1016/j.scitotenv.2020.139190. [PMID: 32408210]
  • Hua Zhang, Qiang Quan, Mingyue Zhang, Nan Zhang, Wu Zhang, Meixiao Zhan, Weiguo Xu, Ligong Lu, Jun Fan, Qian Wang. Occurrence of bisphenol A and its alternatives in paired urine and indoor dust from Chinese university students: Implications for human exposure. Chemosphere. 2020 May; 247(?):125987. doi: 10.1016/j.chemosphere.2020.125987. [PMID: 32069736]
  • Natasha Chernis, Peter Masschelin, Aaron R Cox, Sean M Hartig. Bisphenol AF promotes inflammation in human white adipocytes. American journal of physiology. Cell physiology. 2020 01; 318(1):C63-C72. doi: 10.1152/ajpcell.00175.2019. [PMID: 31596606]
  • Yanhua Liu, Zhengyu Yan, Qin Zhang, Ninghui Song, Jie Cheng, Oscar Lopez Torres, Jianqiu Chen, Shenghu Zhang, Ruixin Guo. Urinary levels, composition profile and cumulative risk of bisphenols in preschool-aged children from Nanjing suburb, China. Ecotoxicology and environmental safety. 2019 May; 172(?):444-450. doi: 10.1016/j.ecoenv.2019.02.002. [PMID: 30735977]
  • Zhiyuan Meng, Sinuo Tian, Jin Yan, Ming Jia, Sen Yan, Ruisheng Li, Renke Zhang, Wentao Zhu, Zhiqiang Zhou. Effects of perinatal exposure to BPA, BPF and BPAF on liver function in male mouse offspring involving in oxidative damage and metabolic disorder. Environmental pollution (Barking, Essex : 1987). 2019 Apr; 247(?):935-943. doi: 10.1016/j.envpol.2019.01.116. [PMID: 30823348]
  • Shiming Song, Yishuang Duan, Tao Zhang, Bo Zhang, Zhen Zhao, Xueyuan Bai, Lei Xie, Yuan He, Ji-Ping Ouyang, Xiongfei Huang, Hongwen Sun. Serum concentrations of bisphenol A and its alternatives in elderly population living around e-waste recycling facilities in China: Associations with fasting blood glucose. Ecotoxicology and environmental safety. 2019 Mar; 169(?):822-828. doi: 10.1016/j.ecoenv.2018.11.101. [PMID: 30597781]
  • Zhiyuan Meng, Wentao Zhu, Dezhen Wang, Ruisheng Li, Ming Jia, Sen Yan, Jin Yan, Zhiqiang Zhou. 1H NMR-based serum metabolomics analysis of the age-related metabolic effects of perinatal exposure to BPA, BPS, BPF, and BPAF in female mice offspring. Environmental science and pollution research international. 2019 Feb; 26(6):5804-5813. doi: 10.1007/s11356-018-4004-9. [PMID: 30613871]
  • Darja Gramec Skledar, Adriana Carino, Jurij Trontelj, Johanna Troberg, Eleonora Distrutti, Silvia Marchianò, Tihomir Tomašič, Anamarija Zega, Moshe Finel, Stefano Fiorucci, Lucija Peterlin Mašič. Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite. Chemosphere. 2019 Jan; 215(?):870-880. doi: 10.1016/j.chemosphere.2018.10.129. [PMID: 30408883]
  • Zhiyuan Meng, Dezhen Wang, Sen Yan, Ruisheng Li, Jin Yan, Miaomiao Teng, Zhiqiang Zhou, Wentao Zhu. Effects of perinatal exposure to BPA and its alternatives (BPS, BPF and BPAF) on hepatic lipid and glucose homeostasis in female mice adolescent offspring. Chemosphere. 2018 Dec; 212(?):297-306. doi: 10.1016/j.chemosphere.2018.08.076. [PMID: 30145421]
  • Yishuang Duan, Yiming Yao, Bin Wang, Liping Han, Lei Wang, Hongwen Sun, Liming Chen. Association of urinary concentrations of bisphenols with type 2 diabetes mellitus: A case-control study. Environmental pollution (Barking, Essex : 1987). 2018 Dec; 243(Pt B):1719-1726. doi: 10.1016/j.envpol.2018.09.093. [PMID: 30408859]
  • Shikha Sharma, Shahzad Ahmad, Mohemmed Faraz Khan, Suhel Parvez, Sheikh Raisuddin. In silico molecular interaction of bisphenol analogues with human nuclear receptors reveals their stronger affinity vs. classical bisphenol A. Toxicology mechanisms and methods. 2018 Nov; 28(9):660-669. doi: 10.1080/15376516.2018.1491663. [PMID: 29925285]
  • Deirdre K Tucker, Schantel Hayes Bouknight, Sukhdev S Brar, Grace E Kissling, Suzanne E Fenton. Evaluation of Prenatal Exposure to Bisphenol Analogues on Development and Long-Term Health of the Mammary Gland in Female Mice. Environmental health perspectives. 2018 08; 126(8):087003. doi: 10.1289/ehp3189. [PMID: 30102602]
  • Lei Chen, Yanting He, Zhixian Lei, Chenling Gao, Qing Xie, Ping Tong, Zian Lin. Preparation of core-shell structured magnetic covalent organic framework nanocomposites for magnetic solid-phase extraction of bisphenols from human serum sample. Talanta. 2018 May; 181(?):296-304. doi: 10.1016/j.talanta.2018.01.036. [PMID: 29426515]
  • Aneta Maćczak, Monika Cyrkler, Bożena Bukowska, Jaromir Michałowicz. Bisphenol A, bisphenol S, bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells (in vitro study). Toxicology in vitro : an international journal published in association with BIBRA. 2017 Jun; 41(?):143-149. doi: 10.1016/j.tiv.2017.02.018. [PMID: 28259788]
  • Jiachen Shi, Yunjia Yang, Jing Zhang, Yixing Feng, Bing Shao. Uptake, depuration and bioconcentration of bisphenol AF (BPAF) in whole-body and tissues of zebrafish (Danio rerio). Ecotoxicology and environmental safety. 2016 Oct; 132(?):339-44. doi: 10.1016/j.ecoenv.2016.05.025. [PMID: 27362491]
  • Tianle Tang, Yang Yang, Yawen Chen, Wenhao Tang, Fuqiang Wang, Xiaoping Diao. Thyroid Disruption in Zebrafish Larvae by Short-Term Exposure to Bisphenol AF. International journal of environmental research and public health. 2015 Oct; 12(10):13069-84. doi: 10.3390/ijerph121013069. [PMID: 26501309]
  • Xiaoyun Ye, Lee-Yang Wong, Josh Kramer, Xiaoliu Zhou, Tao Jia, Antonia M Calafat. Urinary Concentrations of Bisphenol A and Three Other Bisphenols in Convenience Samples of U.S. Adults during 2000-2014. Environmental science & technology. 2015 Oct; 49(19):11834-9. doi: 10.1021/acs.est.5b02135. [PMID: 26360019]
  • Jaromir Michałowicz, Katarzyna Mokra, Agata Bąk. Bisphenol A and its analogs induce morphological and biochemical alterations in human peripheral blood mononuclear cells (in vitro study). Toxicology in vitro : an international journal published in association with BIBRA. 2015 Oct; 29(7):1464-72. doi: 10.1016/j.tiv.2015.05.012. [PMID: 26028149]
  • Lijun Yang, Junna Lv, Xin Wang, Jing Zhang, Qi Li, Tingting Zhang, Zhenzhen Zhang, Lei Zhang. Direct interactions in the recognition between the environmental estrogen bisphenol AF and human serum albumin. Journal of molecular recognition : JMR. 2015 Aug; 28(8):459-66. doi: 10.1002/jmr.2463. [PMID: 25694370]
  • Jiachen Shi, Zhihao Jiao, Sai Zheng, Ming Li, Jing Zhang, Yixing Feng, Jie Yin, Bing Shao. Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring. Chemosphere. 2015 Jun; 128(?):252-7. doi: 10.1016/j.chemosphere.2015.01.060. [PMID: 25723718]
  • Suramya Waidyanatha, James M Mathews, Purvi R Patel, Sherry R Black, Rodney W Snyder, Timothy R Fennell. Disposition of bisphenol AF, a bisphenol A analogue, in hepatocytes in vitro and in male and female Harlan Sprague-Dawley rats and B6C3F1/N mice following oral and intravenous administration. Xenobiotica; the fate of foreign compounds in biological systems. 2015; 45(9):811-9. doi: 10.3109/00498254.2015.1021732. [PMID: 25923777]
  • Xin Wang, Jichun Yang, Yuejiao Wang, Yanhui Li, Fang Wang, Lei Zhang. Studies on electrochemical oxidation of estrogenic disrupting compound bisphenol AF and its interaction with human serum albumin. Journal of hazardous materials. 2014 Jul; 276(?):105-11. doi: 10.1016/j.jhazmat.2014.05.028. [PMID: 24866560]
  • Christina Teng, Bonnie Goodwin, Keith Shockley, Menghang Xia, Ruili Huang, John Norris, B Alex Merrick, Anton M Jetten, Christopher P Austin, Raymond R Tice. Bisphenol A affects androgen receptor function via multiple mechanisms. Chemico-biological interactions. 2013 May; 203(3):556-64. doi: 10.1016/j.cbi.2013.03.013. [PMID: 23562765]
  • Ming Li, Yunjia Yang, Yi Yang, Jie Yin, Jing Zhang, Yixing Feng, Bing Shao. Biotransformation of bisphenol AF to its major glucuronide metabolite reduces estrogenic activity. PloS one. 2013; 8(12):e83170. doi: 10.1371/journal.pone.0083170. [PMID: 24349450]
  • Yixing Feng, Jie Yin, Zhihao Jiao, Jiachen Shi, Ming Li, Bing Shao. Bisphenol AF may cause testosterone reduction by directly affecting testis function in adult male rats. Toxicology letters. 2012 Jun; 211(2):201-9. doi: 10.1016/j.toxlet.2012.03.802. [PMID: 22504055]
  • Takaaki Umano, Ryota Tanaka, Kanji Yamasaki. Endocrine-mediated effects of 4,4'-(hexafluoroisopropylidene)diphenol in SD rats, based on a subacute oral toxicity study. Archives of toxicology. 2012 Jan; 86(1):151-7. doi: 10.1007/s00204-011-0731-0. [PMID: 21713527]