Subcellular Location: myosin filament

Found 130 associated metabolites.

22 associated genes. ACTG2, MYBPC1, MYBPC2, MYBPC3, MYBPH, MYH1, MYH10, MYH11, MYH13, MYH14, MYH15, MYH2, MYH3, MYH4, MYH6, MYH7, MYH7B, MYH8, MYH9, MYO18A, MYO18B, MYOM2

Eldelin

[(1R,2S,3S,4S,5R,6S,8R,12S,16R,19S,20R,21S)-14-ethyl-2-hydroxy-4,6,19-trimethoxy-16-methyl-9,11-dioxa-14-azaheptacyclo[10.7.2.12,5.01,13.03,8.08,12.016,20]docosan-21-yl] acetate

C27H41NO8 (507.2832)


Deltaline is a diterpene alkaloid, a tertiary alcohol, a tertiary amino compound, an acetate ester, a cyclic acetal and an organic polycyclic compound. It derives from a hydride of an aconitane. Deltaline is a natural product found in Delphinium cheilanthum, Delphinium andersonii, and other organisms with data available. Deltaline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6836-11-9 (retrieved 2024-07-09) (CAS RN: 6836-11-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Deltaline is a diterpenoid alkaloid and isolated from plants of the genus Delphinium delavayi Franch. Deltaline itself has analgesic properties, and plants of the genus Delphinium delavayi Franch have also been therapeutically used to treat rheumaticpain, paralysis due to stroke, rheumatoid arthritis[1]. Deltaline is a diterpenoid alkaloid and isolated from plants of the genus Delphinium delavayi Franch. Deltaline itself has analgesic properties, and plants of the genus Delphinium delavayi Franch have also been therapeutically used to treat rheumaticpain, paralysis due to stroke, rheumatoid arthritis[1].

   

Plantamoside

[(2R,3R,4R,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O16 (640.2003)


Plantamajoside is a hydroxycinnamic acid. Plantamajoside is a natural product found in Primulina eburnea, Plantaginaceae, and other organisms with data available. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1]. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1].

   

Cinobufagin

[(1R,2S,4R,5R,6R,7R,10S,11S,14S,16R)-14-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.02,4.02,7.011,16]octadecan-5-yl] acetate

C26H34O6 (442.2355)


Cinobufagin is a steroid lactone. It is functionally related to a bufanolide. Cinobufagin is a natural product found in Bufo gargarizans, Phrynoidis asper, and other organisms with data available. Cinobufagin is a bufadienolide compound extracted from the dried venom secreted by the parotid glands of toads and one of the glycosides in the traditional Chinese medicine ChanSu, with potential antineoplastic activity. Although the mechanism of action of cinobufagin is still under investigation, it has been found to suppress cancer cell proliferation and cause apoptosis in cancer cells via a sequence of apoptotic modulators that include mitochondrial Bax and cytosolic chromosome c, and caspases 3, 8, and 9. Possible upstream mediators of cinobufagin-induced apoptosis include Fas and p53. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Annotation level-1 Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3]. Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3].

   

Aromadendrin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(4-hydroxyphenyl)-, (2R-trans)-

C15H12O6 (288.0634)


(+)-dihydrokaempferol is a tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. It has a role as a metabolite. It is a tetrahydroxyflavanone, a member of dihydroflavonols, a secondary alpha-hydroxy ketone and a member of 4-hydroxyflavanones. It is functionally related to a kaempferol. It is a conjugate acid of a (+)-dihydrokaempferol 7-oxoanion. Aromadendrin is a natural product found in Smilax corbularia, Ventilago leiocarpa, and other organisms with data available. See also: Acai fruit pulp (part of). Isolated from Citrus subspecies and many other plants. Aromadendrin is found in many foods, some of which are thistle, coriander, adzuki bean, and almond. Aromadendrin is found in citrus. Aromadendrin is isolated from Citrus species and many other plant A tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. Dihydrokaempferol is isolated from Bauhinia championii (Benth). Dihydrokaempferol induces apoptosis and inhibits Bcl-2 and Bcl-xL expression. Dihydrokaempferol is a good candidate for new antiarthritic agents[1]. Dihydrokaempferol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=480-20-6 (retrieved 2024-09-18) (CAS RN: 480-20-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

IsoRhy

SPIRO(3H-INDOLE-3,1(5H)-INDOLIZINE)-7-ACETIC ACID, 6-ETHYL-1,2,2,3,6,7,8,8A-OCTAHYDRO-.ALPHA.-(METHOXYMETHYLENE)-2-OXO-, METHYL ESTER, (.ALPHA.E,1S,6R,7S,8AS)-

C22H28N2O4 (384.2049)


Isorhynchophylline is a member of indolizines. It has a role as a metabolite. Isorhynchophylline is a natural product found in Uncaria tomentosa, Mitragyna inermis, and other organisms with data available. See also: Cats Claw (part of). A natural product found in Uncaria macrophylla. Isorhynchophylline is an alkaloid compound isolated from Uncaria. It can lower blood pressure, relax blood vessels, and protect nerves from damage caused by local ischemia. Isorhynchophylline is an alkaloid compound isolated from Uncaria. It can lower blood pressure, relax blood vessels, and protect nerves from damage caused by local ischemia.

   

1-Octacosanol

OCTACOSANOL (CONSTITUENT OF SAW PALMETTO) [DSC]

C28H58O (410.4487)


1-octacosanol is a white crystalline powder. (NTP, 1992) Octacosan-1-ol is an ultra-long-chain primary fatty alcohol that is octacosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group. It has a role as a plant metabolite. It is a fatty alcohol 28:0 and an ultra-long-chain primary fatty alcohol. It derives from a hydride of an octacosane. 1-octacosanol is a straight-chain aliphatic 28-carbon primary fatty alcohol that is used as a nutritional supplement. This high–molecular-weight organic compound is the main component of a natural product wax extracted from plants. 1-octacosanol is reported to possess cholesterol-lowering effects, antiaggregatory properties, cytoprotective use, and ergogenic properties. It has been studied as a potential therapeutic agent for the treatment of Parkinsons disease. 1-Octacosanol is a natural product found in Ophiopogon intermedius, Prosopis glandulosa, and other organisms with data available. See also: Saw Palmetto (part of). 1-Octacosanol (also known as n-octacosanol, octacosyl alcohol, cluytyl alcohol, montanyl alcohol) is a straight-chain aliphatic 28-carbon primary fatty alcohol that is common in the epicuticular waxes of plants, including the leaves of many species of Eucalyptus, of most forage and cereal grasses, of Acacia, Trifolium, Pisum and many other legume genera among many others, sometimes as the major wax constituent. Octacosanol also occurs in wheat germ. Octacosanol is insoluble in water but freely soluble in low molecular-weight alkanes and in chloroform (CHCl3). 1-Octacosanol is found in many foods, some of which are common beet, black elderberry, red beetroot, and opium poppy. 1-Octacosanol (also known as n-octacosanol, octacosyl alcohol, cluytyl alcohol, montanyl alcohol) is a straight-chain aliphatic 28-carbon primary fatty alcohol that is common in the epicuticular waxes of plants, including the leaves of many species of Eucalyptus, of most forage and cereal grasses, of Acacia, Trifolium, Pisum and many other legume genera among many others, sometimes as the major wax constituent. Octacosanol also occurs in wheat germ. Octacosanol is insoluble in water but freely soluble in low molecular-weight alkanes and in chloroform (CHCl3). 1-Octacosanol is found in apple. An ultra-long-chain primary fatty alcohol that is octacosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group.

   

Cirsilineol

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-

C18H16O7 (344.0896)


Cirsilineol, also known as 4,5-dihydroxy-3,6,7-trimethoxy-flavone or anisomelin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsilineol is considered to be a flavonoid lipid molecule. Cirsilineol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsilineol can be found in a number of food items such as common thyme, tarragon, common sage, and hyssop, which makes cirsilineol a potential biomarker for the consumption of these food products. Cirsilineol is a bioactive flavone isolated from Artemisia and from Teucrium gnaphalodes . Cirsilineol is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsilineol is a natural product found in Thymus herba-barona, Salvia tomentosa, and other organisms with data available. See also: Tangerine peel (part of).

   

beta-Phellandrene

3-methylidene-6-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1252)


beta-Phellandrene is found in allspice. beta-Phellandrene is widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus species). beta-Phellandrene is a flavour ingredient.Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia Beta-phellandrene is one of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). It has a role as a plant metabolite. beta-Phellandrene is a natural product found in Xylopia aromatica, Dacrydium nausoriense, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). One of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). Widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus subspecies). Flavour ingredient β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].

   

24,25-Dihydrolanosterol

(3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H52O (428.4018)


24,25-dihydrolanosterol is a 3beta-sterol formed from lanosterol by reduction across the C-24-C-25 double bond. It has a role as a human metabolite and a mouse metabolite. It is a 3beta-sterol and a tetracyclic triterpenoid. It is functionally related to a lanosterol. 24,25-Dihydrolanosterol is a natural product found in Euphorbia sapinii, Heterobasidion annosum, and other organisms with data available. 24,25-dihydrolanosterol is a metabolite found in or produced by Saccharomyces cerevisiae. 24,25-Dihydrolanosterol is involved in the biosynthesis of steriods. 24,25-Dihydrolanosterol is reversibly converted to lanosterol by delta24-sterol reductase [EC:1.3.1.72]. A 3beta-sterol formed from lanosterol by reduction across the C-24-C-25 double bond. 24,25-Dihydrolanosterol (Lanostenol) is a component of the seeds of red pepper (Capsicum annuum)[1].

   

Paraxanthine

3,7-Dihydro-1,7-dimethyl-1H-purine-2,6-dione

C7H8N4O2 (180.0647)


Paraxanthine, also known as p-xanthine, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Paraxanthine exists in all living organisms, ranging from bacteria to humans. Within humans, paraxanthine participates in a number of enzymatic reactions. In particular, paraxanthine and formaldehyde can be biosynthesized from caffeine; which is catalyzed by the enzyme cytochrome P450 1A2. In addition, paraxanthine and acetyl-CoA can be converted into 5-acetylamino-6-formylamino-3-methyluracil through its interaction with the enzyme arylamine N-acetyltransferase 2. In humans, paraxanthine is involved in caffeine metabolism. 1,7-dimethylxanthine (paraxanthine) is the preferential path of caffeine metabolism in humans. Acquisition and generation of the data is financially supported in part by CREST/JST. Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.

   

Fenpropimorph

(2R,6S)-4-[(2S)-3-[4-(1,1-Dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethylmorpholine

C20H33NO (303.2562)


Fenpropimorph (CAS: 67564-91-4) belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. Fenpropimorph is possibly neutral. Fenpropimorph is an agricultural fungicide used against powdery mildews on sugar beets, beans, and leek. Agricultural fungicide used against powdery mildews on sugar beet, beans and leeks CONFIDENCE standard compound; INTERNAL_ID 8406 CONFIDENCE standard compound; INTERNAL_ID 2573 D016573 - Agrochemicals D010575 - Pesticides

   

Flusilazole

bis(4-fluorophenyl)-methyl-(1,2,4-triazol-1-ylmethyl)silane

C16H15F2N3Si (315.1003)


Flusilazole is an organosilicon compound that is dimethylsilane in which the hydrogens attached to the silicon are replaced by p-fluorophenyl groups and a hydrogen attached to one of the methyl groups is replaced by a 1H-1,2,4-triazol-1-yl group. It is a broad-sepctrum fungicide used to protect a variety of crops. It has a role as a xenobiotic, an environmental contaminant, an EC 1.14.13.70 (sterol 14alpha-demethylase) inhibitor and an antifungal agrochemical. It is a member of monofluorobenzenes, a member of triazoles, an organosilicon compound, a conazole fungicide and a triazole fungicide. CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9550; ORIGINAL_PRECURSOR_SCAN_NO 9549 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9630; ORIGINAL_PRECURSOR_SCAN_NO 9627 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9444; ORIGINAL_PRECURSOR_SCAN_NO 9441 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9499; ORIGINAL_PRECURSOR_SCAN_NO 9497 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9537; ORIGINAL_PRECURSOR_SCAN_NO 9535 Highly potent broad-spectrum fungicide. Controls broad spectrum of diseases on economically important crops. Flusilazole is found in cereals and cereal products. Flusilazole is found in cereals and cereal products. Highly potent broad-spectrum fungicide. Controls broad spectrum of diseases on economically important crops. CONFIDENCE standard compound; INTERNAL_ID 4011 CONFIDENCE standard compound; INTERNAL_ID 2564 CONFIDENCE standard compound; INTERNAL_ID 8385 D016573 - Agrochemicals D010575 - Pesticides

   

Linuron

N-(3,4-dichlorophenyl)-N-methoxy-N-methyl urea

C9H10Cl2N2O2 (248.0119)


CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4724; ORIGINAL_PRECURSOR_SCAN_NO 4722 CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4711; ORIGINAL_PRECURSOR_SCAN_NO 4707 CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4718; ORIGINAL_PRECURSOR_SCAN_NO 4717 CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4709; ORIGINAL_PRECURSOR_SCAN_NO 4707 CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4732; ORIGINAL_PRECURSOR_SCAN_NO 4729 CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4811; ORIGINAL_PRECURSOR_SCAN_NO 4807 CONFIDENCE standard compound; EAWAG_UCHEM_ID 160 CONFIDENCE standard compound; INTERNAL_ID 8412 CONFIDENCE standard compound; INTERNAL_ID 4031 CONFIDENCE standard compound; INTERNAL_ID 2323 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

(±)-Metalaxyl

methyl 2-[N-(2,6-dimethylphenyl)-2-methoxyacetamido]propanoate

C15H21NO4 (279.1471)


CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8605; ORIGINAL_PRECURSOR_SCAN_NO 8603 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8560 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8595; ORIGINAL_PRECURSOR_SCAN_NO 8594 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8508; ORIGINAL_PRECURSOR_SCAN_NO 8507 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8544; ORIGINAL_PRECURSOR_SCAN_NO 8543 CONFIDENCE standard compound; INTERNAL_ID 643; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8588; ORIGINAL_PRECURSOR_SCAN_NO 8583 CONFIDENCE standard compound; EAWAG_UCHEM_ID 135 CONFIDENCE standard compound; INTERNAL_ID 8391 CONFIDENCE standard compound; INTERNAL_ID 2567 Systemic agricultural fungicid

   

Pyrimethanil

4,6-Dimethyl-N-phenylpyrimidin-2-amine

C12H13N3 (199.1109)


CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8499; ORIGINAL_PRECURSOR_SCAN_NO 8497 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8493; ORIGINAL_PRECURSOR_SCAN_NO 8491 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8504; ORIGINAL_PRECURSOR_SCAN_NO 8502 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8481; ORIGINAL_PRECURSOR_SCAN_NO 8479 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8459; ORIGINAL_PRECURSOR_SCAN_NO 8457 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8532; ORIGINAL_PRECURSOR_SCAN_NO 8531 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2712 Pyrimethanil is a fungicide used on grape vines. COVID info from PDB, Protein Data Bank Fungicide used on grape vines. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Spiroxamine

8-(1,1-Dimethylethyl)-N-ethyl-N-propyl-1,4-dioxaspiro(4.5)decane-2-methanamine

C18H35NO2 (297.2668)


CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1800 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2789 CONFIDENCE standard compound; INTERNAL_ID 8403 CONFIDENCE standard compound; INTERNAL_ID 2571 CONFIDENCE standard compound; INTERNAL_ID 4019 D016573 - Agrochemicals D010575 - Pesticides

   

Acetyl-N-formyl-5-methoxykynurenamine

N-[3-[2-(formylamino)-5-methoxyphenyl]-3-oxypropyl]-acetamide

C13H16N2O4 (264.111)


Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration, with AFMK found in some patients exceeding the concentration of melatonin normally found in serum. (PMID: 16150112) [HMDB] Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration. AFMK was also found in some patients to exceed the concentration of melatonin normally found in serum (PMID: 16150112).

   

Guanidinoacetate

2-[[Amino(imino)methyl]amino]acetic acid

C3H7N3O2 (117.0538)


Guanidoacetic acid (GAA), also known as guanidinoacetate or glycocyamine, belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. Guanidinoacetic acid was first prepared in 1861 by Adolph Strecker by reaction of cyanamide with glycine in aqueous solution. Manufactured guanidinoacetic acid is primarily used a feed additive approved by EFSA in poultry farming (for fattening), and pigs for fattening. Guanidoacetic acid exists naturally in all vertebrates. It is formed primarily in the kidneys by transferring the guanidine group of L-arginine to the amino acid glycine via the enzyme known as L-Arg:Gly-amidinotransferase (AGAT). In a further step, guanidinoacetate is methylated to generate creatine using S-adenosyl methionine (as the methyl donor) via the enzyme known as guanidinoacetate N-methyltransferase (GAMT). The resulting creatine is released into the bloodstream. Elevated levels of guanidoacetic acid are a characteristic of an inborn metabolic disorder known as Guanidinoacetate Methyltransferase (GAMT) Deficiency. GAMT converts guanidinoacetate to creatine and deficiency of this enzyme results in creatine depletion and accumulation of guanidinoacetate The disorder is transmitted in an autosomal recessive fashion and is localized to mutations on chromosome 19p13.3. GAMT deficiency is characterized by developmental arrest, medication-resistant epilepsy (myoclonic, generalized tonic-clonic, partial complex, atonic), severe speech impairment, progressive dystonia, dyskinesias, hypotonia, ataxia, and autistic-like behavior. Guanidino acetic acid, also known as guanidinoacetate or glycocyamine, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. Guanidino acetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Guanidino acetic acid can be found in apple and loquat, which makes guanidino acetic acid a potential biomarker for the consumption of these food products. Guanidino acetic acid can be found primarily in most biofluids, including cellular cytoplasm, feces, urine, and cerebrospinal fluid (CSF), as well as in human brain, kidney and liver tissues. In humans, guanidino acetic acid is involved in a couple of metabolic pathways, which include arginine and proline metabolism and glycine and serine metabolism. Guanidino acetic acid is also involved in several metabolic disorders, some of which include dihydropyrimidine dehydrogenase deficiency (DHPD), hyperprolinemia type II, prolinemia type II, and hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome]. Moreover, guanidino acetic acid is found to be associated with chronic renal failure and schizophrenia. Guanidino acetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronic Exposure: Kidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Tridemorph

2,6-Dimethyl-N-tridecyl-morpholine

C19H39NO (297.3031)


Systemic eradicant cereal fungicide Tridemorph is a fungicide. It was developed in the 1960s by the German multinational BASF who sell tridemorph under the trade name Calixin. It is used to control the fungus Erysiphe graminis in cereals, Mycosphaerella species in bananas, and Caticum solmonicolor in tea. Tridemorph is applied onto many crops across the world, but very little data on usage and production is in the public domain. In high doses it has been shown to have teratogenic effects. These effect are manifested in edemas, hemorrhages, hematomas, abnormal development of the brain (hydrocephalia), visceral cranium (micrognathia, cleft palate) and genitourinary system (hydronephrosis), in decreased size of pelvic bones, shoulder girdle, front and hind limbs, etc. (PMID 7324433

   

N-Acetyltryptophan

(2S)-2-[(1-hydroxyethylidene)amino]-3-(1H-indol-3-yl)propanoic acid

C13H14N2O3 (246.1004)


N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\\% of all human proteins and 68\\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyltryptophan has also been used as a protein stabilizer. It prevents protein molecules from oxidative degradation by scavenging oxygen dissolved in protein solutions (PMID: 21903216 ). N-Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 28916042). N-Acetyltryptophan is an inhibitor of cytochrome c release and an antagonist of the neurokinin 1 receptor (NK-1R). These inhibitory effects are thought have a useful role in neuroprotection. For instance, in mouse models of amyotrophic lateral sclerosis (ALS) the administration of N-Acetyltryptophan has been shown delay disease onset, extend survival, and ameliorate deterioration in motor performance ALS transgenic mice (PMID: 25986728). N-acetyltryptophan has been shown to significantly reduce blood-brain barrier permeability and improve functional outcome in rat models of traumatic brain injury (PMID: 29256408). N-Acetyltryptophan has also been shown to have a role in preventing hepatic ischemia-reperfusion injury. This is thought to occur through de-activation of the RIP2/caspase/IL-1beta signaling pathway (PMID: 31184936). D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite. N-Acetyl-L-tryptophan is an endogenous metabolite.

   

Pimelic acid

1,5-Pentanedicarboxylic acid

C7H12O4 (160.0736)


Pimelic acid, also known as heptanedioic acid is a dicarboxylic acid. Derivatives of pimelic acid are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is one methylene longer than a related dicarboxylic acid, adipic acid, a precursor to many polyesters and polyamides. Pimelic acid is essential for the synthesis of biotin (also called vitamin B7). Biotin is a heterocyclic, S-containing monocarboxylic acid that is made from two precursors, alanine and pimeloyl-CoA. Biotin is important in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis. Biotin is found in a wide range of foods. Likewise, intestinal bacteria synthesize biotin, which is then absorbed by the host animal. Pimelic acid (which is the precursor for pimeloyl-CoA) is synthesized in many bacteria via a head-to-tail incorporation of acetate units through a modified fatty acid synthetic pathway using O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway (PMID:21435937). Some bacteria and yeast synthesize pimelic acid not by biosynthesis, but via cleavage of longer chain fatty acids (such as linolenic acid) via a cytochrome P450-like enzyme (PMID:28196402, 21435937, 3236079). Pimelic acid is excreted in elevated amounts in the urine of individuals with mitochondrial beta-oxidation disorders and peroxisomal beta oxidation disorders (PMID:1527989) A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4. KEIO_ID P063 Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

Deoxyribose 5-phosphate

{[(2R,3S,5R)-3,5-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C5H11O7P (214.0242)


Deoxyribose 5-phosphate is a a metabolite in the pentose phosphate pathway. It can be generated from D-glyceraldehdye-3 phosphate via the enzyme 2-Deoxyribose 5-phosphate aldolase (DERA). Alternately Deoxyribose 5-phosphate can be converted to D-glyceraldehyde-3 phosphate that can then feed into the pentose phosphate pathway. Deoxyribose 5-phosphate can also be generated from 2-Deoxy-D-ribose via the enzyme Ribokinase (EC 2.7.1.15). It has been shown in a number of organisms that deoxynucleosides or deoxyriboses cause the induction of aldolases (such as DERA) involved in their catabolism, leading to the utilisation of the pentose moiety as carbon and energy source. [HMDB] Deoxyribose 5-phosphate is a a metabolite in the pentose phosphate pathway. It can be generated from D-glyceraldehdye-3 phosphate via the enzyme 2-Deoxyribose 5-phosphate aldolase (DERA). Alternately Deoxyribose 5-phosphate can be converted to D-glyceraldehyde-3 phosphate that can then feed into the pentose phosphate pathway. Deoxyribose 5-phosphate can also be generated from 2-Deoxy-D-ribose via the enzyme Ribokinase (EC 2.7.1.15). It has been shown in a number of organisms that deoxynucleosides or deoxyriboses cause the induction of aldolases (such as DERA) involved in their catabolism, leading to the utilisation of the pentose moiety as carbon and energy source. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID D026

   

Pyroglutamic acid

(S)-(-)-gamma-Butyrolactam-gamma-carboxylic acid

C5H7NO3 (129.0426)


Pyroglutamic acid (5-oxoproline) is a cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. It is formed nonenzymatically from glutamate, glutamine, and gamma-glutamylated peptides, but it can also be produced by the action of gamma-glutamylcyclotransferase on an L-amino acid. Elevated blood levels may be associated with problems of glutamine or glutathione metabolism. This compound is found in substantial amounts in brain tissue and other tissues in bound form, especially skin. It is also present in plant tissues. It is sold, over the counter, as a "smart drug" for improving blood circulation in the brain. Pyroglutamate in the urine is a biomarker for the consumption of cheese. When present in sufficiently high levels, pyroglutamic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyroglutamic acid are associated with at least five inborn errors of metabolism including 5-oxoprolinuria, 5-oxoprolinase deficiency, glutathione synthetase deficiency, hawkinsinuria, and propionic acidemia. Pyroglutamic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. It has been shown that pyroglutamic acid releases GABA from the cerebral cortex and displays anti-anxiety effects in a simple approach-avoidance conflict situation in the rat. In clinical pharmacology experiments, pyroglutamic acid significantly shortens the plasma half-life of ethanol during acute intoxication. Found in vegetables, fruits and molasses. A cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. Pyroglutamate in the urine is a biomarker for the consumption of cheese C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent

   

Fenpropidin

1-(2-Methyl-3-(4-(2-methyl-2-propanyl)phenyl)propyl)piperidine

C19H31N (273.2456)


CONFIDENCE standard compound; INTERNAL_ID 8461 CONFIDENCE standard compound; INTERNAL_ID 2589 D016573 - Agrochemicals D010575 - Pesticides

   

Hexadecanedioic acid

N-Tetradecane-omega,omega-dicarboxylic acid

C16H30O4 (286.2144)


Hexadecanedioic acid, also known as thapsic acid, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Hexadecanedioic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Hexadecanedioic acid is activated by mitochondrial and microsomal fractions in the liver (PMID: 4372285). It has antitumor activity (PMID: 14987827). Hexadecanedioic acid is activated by mitochondrial and microsomal fractions in liver (PMID 4372285). It has an antitumor activity (PMID 14987827). Hexadecanedioic acid is found in sweet cherry and potato. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

Diethylstilbestrol

4-[4-(4-hydroxyphenyl)hex-3-en-3-yl]phenol

C18H20O2 (268.1463)


Diethylstilbestrol is a synthetic estrogen that was developed to supplement a womans natural estrogen production. In 1971, the Food and Drug Administration (FDA) issued a Drug Bulletin advising physicians to stop prescribing DES to pregnant women because it was linked to a rare vaginal cancer in female offspring. Diethylstilbesterol is found in gram bean. Diethylstilbestrol is a synthetic nonsteroidal estrogen used in the treatment of menopausal and postmenopausal disorders. It was also used formerly as a growth promoter in animals. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), diethylstilbestrol has been listed as a known carcinogen. (Merck, 11th ed). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AA - Estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D009676 - Noxae > D002273 - Carcinogens

   

Bisphenol AF

4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxyphenyl)propan-2-yl]phenol

C15H10F6O2 (336.0585)


CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4798; ORIGINAL_PRECURSOR_SCAN_NO 4796 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4887; ORIGINAL_PRECURSOR_SCAN_NO 4885 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4799; ORIGINAL_PRECURSOR_SCAN_NO 4798 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4824; ORIGINAL_PRECURSOR_SCAN_NO 4819 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4812 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4468; ORIGINAL_PRECURSOR_SCAN_NO 4466 D052244 - Endocrine Disruptors

   

Procymidone

3-(3,5-dichlorophenyl)-1,5-dimethyl-3-azabicyclo[3.1.0]hexane-2,4-dione

C13H11Cl2NO2 (283.0167)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3102 CONFIDENCE standard compound; INTERNAL_ID 8485 D016573 - Agrochemicals D010575 - Pesticides

   

Pyrodone

4-(2-ethylhexyl)-4-azatricyclo[5.2.1.0²,⁶]dec-8-ene-3,5-dione

C17H25NO2 (275.1885)


   

Ronilan

3-(3,5-dichlorophenyl)-5-ethenyl-5-methyl-1,3-oxazolidine-2,4-dione

C12H9Cl2NO3 (284.9959)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists CONFIDENCE standard compound; EAWAG_UCHEM_ID 3119 D016573 - Agrochemicals D010575 - Pesticides

   

Asiaticoside

6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C48H78O19 (958.5137)


Constituent of Centella asiatica (Asiatic pennywort). Asiaticoside is found in herbs and spices and green vegetables. Asiaticoside is found in green vegetables. Asiaticoside is a constituent of Centella asiatica (Asiatic pennywort) D000890 - Anti-Infective Agents Same as: D07576 Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties. Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties.

   

Glucosamine 6-phosphate

Phosphoric acid mono-((2R,3S,4R,5R)-5-amino-2,3,4-trihydroxy-6-oxo-hexyl) ester

C6H14NO8P (259.0457)


Glucosamine 6-phosphate (CAS: 3616-42-0) is normally produced in endothelial cells via de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. Glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals.It is a member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus (PMID:11270676, 11842094). Glucosamine 6-phosphate is normally produced in endothelial cells via the de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals. A member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus. (PMID 11270676, 11842094) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G021; [MS2] KO008968 KEIO_ID G021

   

2,2-Bis[4-(2,3-epoxypropoxy)phenyl]propane

2-(4-{2-[4-(oxiran-2-ylmethoxy)phenyl]propan-2-yl}phenoxymethyl)oxirane

C21H24O4 (340.1675)


Potential food contaminant arising from its use in epoxy resin coatings for cans, concrete vats and tanks, etc. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 5810 D009676 - Noxae > D002273 - Carcinogens

   

Dimethylglycine

N-Methylsarcosine N,N-dimethyl-glycine

C4H9NO2 (103.0633)


Dimethylglycine (DMG) is an amino acid derivative found in the cells of all plants and animals and can be obtained in the diet in small amounts from grains and meat. The human body produces DMG when metabolizing choline into glycine. Dimethylglycine that is not metabolized in the liver is transported by the circulatory system to body tissue. Dimethylglycine was popular with Russian athletes and cosmonauts owing to its reputed ability to increase endurance and reduce fatigue. DMG is also a byproduct of homocysteine metabolism. Homocysteine and betaine are converted to methionine and N,N-dimethylglycine by betaine-homocysteine methyltransferase. DMG in the urine is a biomarker for the consumption of legumes. It is also a microbial metabolite (PMID: 25901889). Dimethylglycine (DMG) is an amino acid derivative found in the cells of all plants and animals and can be obtained in the diet in small amounts from grains and meat. The human body produces DMG when metabolizing choline into Glycine. Dimethylglycine that is not metabolized in the liver is transported by the circulatory system to body tissue. Dimethylglycine was popular with Russian athletes and cosmonauts owing to its reputed ability to increase endurance and reduce fatigue. DMG is also a byproduct of homocysteine metabolism. Homocysteine and betaine are converted to methionine and N, N-dimethylglycine by betaine-homocysteine methyltransferase. [HMDB]. Dimethylglycine in the urine is a biomarker for the consumption of legumes. N,N-Dimethylglycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1118-68-9 (retrieved 2024-07-16) (CAS RN: 1118-68-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). N-Methylsarcosine is an amino acid building block for protein, found in a small amount in the body.

   

Liothyronine

(2S)-2-amino-3-[4-(4-hydroxy-3-iodophenoxy)-3,5-diiodophenyl]propanoic acid

C15H12I3NO4 (650.7901)


Liothyronine is a T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5 position of the outer ring of the iodothyronine nucleus. The hormone that is finally delivered and used by the tissues is mainly T3. Liothyronine is mildly toxic by ingestion and is an experimental teratogen. When heated to decomposition it emits toxic fumes of NOx, I(-), and Cl(-) (Saxs Dangerous Properties of Industrial Materials). CONFIDENCE standard compound; INTERNAL_ID 700; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4253; ORIGINAL_PRECURSOR_SCAN_NO 4249 CONFIDENCE standard compound; INTERNAL_ID 700; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4223; ORIGINAL_PRECURSOR_SCAN_NO 4222 CONFIDENCE standard compound; INTERNAL_ID 700; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4256; ORIGINAL_PRECURSOR_SCAN_NO 4251 CONFIDENCE standard compound; INTERNAL_ID 700; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4242; ORIGINAL_PRECURSOR_SCAN_NO 4239 CONFIDENCE standard compound; INTERNAL_ID 700; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4266; ORIGINAL_PRECURSOR_SCAN_NO 4262 CONFIDENCE standard compound; INTERNAL_ID 700; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4237; ORIGINAL_PRECURSOR_SCAN_NO 4235 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1553 - Thyroid Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials KEIO_ID T040 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Liothyronine is an active form of thyroid hormone. Liothyronine is a potent thyroid hormone receptors TRα and TRβ agonist with Kis of 2.33 nM for hTRα and hTRβ, respectively[1][2][3].

   

Meta-Tyrosine

(2S)-2-Azaniumyl-3-(3-hydroxyphenyl)propanoate

C9H11NO3 (181.0739)


Meta-Tyrosine, or M-Tyrosine for short, is a natural weed suppressant found in certain Fine fescue grass. M-tyrosine exudes out of the grass plants roots and is then absorbed by neighbouring weed seedlings. The weed plants will either die or be stunted from the toxic acid. DL-m-Tyrosine shows effects on Arabidopsis root growth. Carbidopa combination with DL-m-tyrosine shows a potent hypotensive effect[1][2].

   

Ribothymidine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H14N2O6 (258.0852)


Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID: 3506820, 17044778, 17264127, 16799933) [HMDB] Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID:3506820, 17044778, 17264127, 16799933). 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

Dofetilide

N-[4-(2-{[2-(4-methanesulfonamidophenyl)ethyl](methyl)amino}ethoxy)phenyl]methanesulfonamide

C19H27N3O5S2 (441.1392)


Dofetilide is a class III antiarrhythmic agent that is approved by the Food and Drug Administration (FDA) for the maintenance of sinus rhythm in individuals prone to the formation of atrial fibrillation and flutter, and for the chemical cardioversion to sinus rhythm from atrial fibrillation and flutter. [Wikipedia] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Compactin

2S-methyl-(1S,2,3,7S,8S,8aR)-hexahydro-7-methyl-8-[2-[(2R,4R)-tetrahydro-4-hydroxy-6-oxo-2-H-pyran-2-yl]ethyl]-1-naphthalenyl ester-butanoic acid

C23H34O5 (390.2406)


A carboxylic ester that is pravastatin that is lacking the allylic hydroxy group. A hydroxymethylglutaryl-CoA reductase inhibitor (statin) isolated from Penicillium citrinum and from Penicillium brevicompactum, its clinical use as a lipid-regulating drug ceased following reports of toxicity in animals. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment[1][2][3]. Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment[1][2][3].

   

Oxymetholone

17-Hydroxy-2-(hydroxymethylene)-17-methylandrostan-3-one, (2E,5alpha,17beta)-

C21H32O3 (332.2351)


A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Beta-Aminopropionitrile

β-Aminopropionitrile

C3H6N2 (70.0531)


beta-Aminopropionitrile is a toxic amino-acid derivative. On an unusual case of the Cantrell-sequence in a premature infant with associated dysmelia, aplasia of the right kidney, cerebellar hypoplasia and circumscribed aplasia of the cutis, maternal history suggested an occupational exposure to aminopropionitriles prior to pregnancy. The characteristic features of the Cantrell-sequence--anterior thoraco-abdominal wall defect with ectopia cordis and diaphragm, sternum, pericardium, and heart defects--have been observed in animals following maternal administration of beta-aminopropionitrile. Some species of lathyrus (chickling pea, Lathyrus sativus- related), notably Lathyrus odoratus, are unable to induce human lathyrism but contain beta-aminopropionitrile, that induces pathological changes in bone ("osteolathyrism") and blood vessels ("angiolathyrism") of experimental animals without damaging the nervous system. The administration of beta-aminopropionitrile has been proposed for pharmacological control of unwanted scar tissue in human beings. beta-Aminopropionitrile is a reagent used as an intermediate in the manufacture of beta-alanine and pantothenic acid. (PMID:367235, 6422318, 9394169, Am J Perinatol. 1997 Oct;14(9):567-71.). Constituent of chickling pea (Lathyrus sativus) C471 - Enzyme Inhibitor KEIO_ID A044 β-Aminopropionitrile (BAPN) is a specific, irreversible and orally active lysyl oxidase (LOX) inhibitor. β-Aminopropionitrile targets the active site of LOX or LOXL isoenzymes[1][2].

   

Decanoylcarnitine (C10)

(3R)-3-(decanoyloxy)-4-(trimethylazaniumyl)butanoate

C17H33NO4 (315.2409)


Decanoylcarnitine is a member of the class of compounds known as acylcarnitines. More specifically, it is a decanoic acid ester of carnitine. Acylcarnitines were first discovered in the 1940s (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Decanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine decanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494 ). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular decanoylcarnitine is elevated in the blood or plasma of individuals with obesity in adolescence (PMID: 26910390 ). It is also decreased in the blood or plasma of individuals with adolescent idiopathic scoliosis (PMID: 26928931 ). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. Acylcarnitine useful in the diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency deficiencyoxidation disorders.(PMID: 12385891) [HMDB]

   

3,3'-Dimethoxybenzidine

4-(4-amino-3-methoxyphenyl)-2-methoxyaniline

C14H16N2O2 (244.1212)


CONFIDENCE standard compound; INTERNAL_ID 558; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4566; ORIGINAL_PRECURSOR_SCAN_NO 4562 CONFIDENCE standard compound; INTERNAL_ID 558; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4500; ORIGINAL_PRECURSOR_SCAN_NO 4496 CONFIDENCE standard compound; INTERNAL_ID 558; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4452; ORIGINAL_PRECURSOR_SCAN_NO 4448 CONFIDENCE standard compound; INTERNAL_ID 558; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4493; ORIGINAL_PRECURSOR_SCAN_NO 4488 CONFIDENCE standard compound; INTERNAL_ID 558; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4505; ORIGINAL_PRECURSOR_SCAN_NO 4500 CONFIDENCE standard compound; INTERNAL_ID 558; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4496; ORIGINAL_PRECURSOR_SCAN_NO 4493 CONFIDENCE standard compound; INTERNAL_ID 4140 CONFIDENCE standard compound; INTERNAL_ID 2427

   

Homocitrulline

(2S)-2-amino-6-(carbamoylamino)hexanoic acid

C7H15N3O3 (189.1113)


Homocitrulline is a metabolite that can be detected in larger amounts in the urine of individuals with urea cycle disorders (OMIM 238970). The accumulation of carbamylphosphate due to depleted supply of ornithine for the urea cycle may be responsible for the enhanced synthesis of homocitrulline and homoarginine in some cases (PMID 2474087). Homocitrulline has been identified in the human placenta (PMID: 32033212). Homocitrulline is a metabolite that can be detected in larger amounts in the urine of individuals with urea cycle disorders (OMIM 238970). The accumulation of carbamylphosphate due to depleted supply of ornithine for the urea cycle may be responsible for the enhanced synthesis of homocitrulline and homoarginine in some cases (PMID 2474087). [HMDB] L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI). L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI).

   

Tamarixetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)-

C16H12O7 (316.0583)


Tamarixetin is a monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. It has a role as a metabolite and an antioxidant. It is a 7-hydroxyflavonol, a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. Tamarixetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Trifolium pratense flower (part of). A monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2]. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2].

   

Echimidine

7-Angelyl-9-echimidinylretronecine

C20H31NO7 (397.21)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2304 INTERNAL_ID 2304; CONFIDENCE Reference Standard (Level 1)

   

Camphene

3,3-Dimethyl-2-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1252)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .

   

1-Nonanol

pelargonic alcohol

C9H20O (144.1514)


1-Nonanol is found in citrus. 1-Nonanol is widespread in nature. 1-Nonanol occurs in oils of orange, citronella and lemon. Also found in cheese, prickly pears and bread. 1-Nonanol is a straight chain fatty alcohol with nine carbon atoms and the molecular formula CH3(CH2)8OH. It is a colorless to slightly yellow liquid with a citrus odor similar to citronella oil Widespread in nature. Occurs in oils of orange, citronella and lemonand is also found in cheese, prickly pears and bread. Flavouring agent

   

Palmitaldehyde

Palmitoyl aldehyde

C16H32O (240.2453)


Palmitaldehyde, also known as 1-hexadecanal, is a member of the class of compounds known as fatty aldehydes. Fatty aldehydes are long chain aldehydes with a chain of at least 12 carbon atoms. Thus, palmitaldehyde is considered to be a fatty aldehyde lipid molecule. Palmitaldehyde is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Palmitaldehyde can be found in a number of food items such as rose hip, lambsquarters, pak choy, and swede, which makes palmitaldehyde a potential biomarker for the consumption of these food products. Palmitaldehyde exists in all eukaryotes, ranging from yeast to humans. In humans, palmitaldehyde is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Palmitaldehyde is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Palmitaldehyde is an intermediate in the metabolism of Glycosphingolipid. It is a substrate for Sphingosine-1-phosphate lyase 1. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].

   

Potassium

Liver regeneration factor 1

K+ (38.9637)


Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry. Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).

   

N-Carbamoylsarcosine

[Carbamoyl(methyl)amino]acetic acid

C4H8N2O3 (132.0535)


N-Carbamoylsarcosine is an intermediate in arginine and proline metabolism. It is also involved in a metabolic pathway for the degradation of creatinine. In this pathway, creatinine is not hydrolyzed back to creatine. Instead, it is deaminated to N-methylhydantoin, releasing an amonia molecule, by the action of creatinine deaminase (also known as creatinine iminohydrolase). N-methylhydantoin is then hydrolyzed to N-carbamoylsarcosine, by the action of N-methylhydantoin amidohydrolase, at the expense of one ATP molecule. N-carbamoylsarcosine is deaminated further to sarcosine by N-carbamoylsarcosine amidohydrolase, releasing a second ammonia molecule. In the last step of this pathway, sarcosine is hydrolyzed to glycine and formaldehyde, by either sarcosine dehydrogenase or sarcosine oxidase. [HMDB] N-Carbamoylsarcosine is an intermediate in arginine and proline metabolism. It is also involved in a metabolic pathway for the degradation of creatinine. In this pathway, creatinine is not hydrolyzed back to creatine. Instead, it is deaminated to N-methylhydantoin, releasing an amonia molecule, by the action of creatinine deaminase (also known as creatinine iminohydrolase). N-methylhydantoin is then hydrolyzed to N-carbamoylsarcosine, by the action of N-methylhydantoin amidohydrolase, at the expense of one ATP molecule. N-carbamoylsarcosine is deaminated further to sarcosine by N-carbamoylsarcosine amidohydrolase, releasing a second ammonia molecule. In the last step of this pathway, sarcosine is hydrolyzed to glycine and formaldehyde, by either sarcosine dehydrogenase or sarcosine oxidase.

   

18-Hydroxycorticosterone

(1S,2R,10S,11S,14S,15R,17S)-17-hydroxy-14-(2-hydroxyacetyl)-15-(hydroxymethyl)-2-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O5 (362.2093)


18-Hydroxycorticosterone is a corticosteroid and a derivative of corticosterone. If it is present in sufficiently high concentrations, it can lead to serious electrolyte imbalances (an electrolyte toxin). 18-Hydroxycorticosterone serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. Chronically high levels of 18-hydroxycorticosterone are associated with at least three inborn errors of metabolism including adrenal hyperplasia type V, corticosterone methyl oxidase I deficiency, and corticosterone methyl oxidase II deficiency. Each of these conditions is characterized by excessive amounts of sodium being released in the urine (salt wasting), along with insufficient release of potassium in the urine, usually beginning in the first few weeks of life. This imbalance leads to low levels of sodium and high levels of potassium in the blood (hyponatremia and hyperkalemia, respectively). Individuals with corticosterone methyloxidase deficiency can also have high levels of acid in the blood (metabolic acidosis). Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). The hyponatremia, hyperkalemia, and metabolic acidosis associated with corticosterone methyloxidase deficiency can cause nausea, vomiting, dehydration, low blood pressure, extreme tiredness (fatigue), and muscle weakness. 11 beta,18,21-Trihydroxypregn-4-ene-3,20-dione. 18-Hydroxycorticosterone is a derivative of corticosterone. It serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

epsilon-Caprolactone

epsilon-Captolactamium hydrogen sulfate

C6H10O2 (114.0681)


ε-Caprolactone, also known simply as caprolactone, is a compound belonging to the family of compounds known as lactones. Lactones are cyclic esters of hydroxyl carboxylic acids, wherein the functional group has become part of a ring structure with carbon atoms. Caprolactone consists of a seven membered ring derived from the cyclization of caproic acid. As a monomer it used in the production of highly specialized plastics and polymers. Caprolactone is produced by the Baeyer-Villiger oxidation of cyclohexanone with peracetic acid, and was used previously (until economically inviable) as a precursor in the production of caprolactam. Several other caprolactone isomers are known. These isomers include α-, β-, γ-, and δ-caprolactones. All are chiral. (R)-γ-caprolactone is a component of floral scents and of the aromas of some fruits and vegetables (Journal of Agricultural and Food Chemistry. 37: 413–418), while δ-caprolactone is found in heated milk fat (Journal of Dairy Science. 48 (5): 615–616).

   

5alpha-Cholest-8-en-3beta-ol

(2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C27H46O (386.3548)


5a-Cholest-8-en-3b-ol is a normal human metabolite and an intermediate of cholesterol synthesis. The concentrations of zymostenol are higher, both in serum and bile of patients with cerebrotendinous xanthomatosis, compared to controls or in patients with cerebrotendinous xanthomatosis treated with chenodeoxycholic acid. Kidney transplant recipients had lower serum zymostenol when compared to controls. During consumption of plant stanol ester spread by hypercholesterolemic children, plant sterols in the plasma decrease and cholesterol precursor sterols such as zymostenol increase. (PMID: 15736111, 16709621, 16477216, 12756385) [HMDB]. 5a-Cholest-8-en-3b-ol is found in many foods, some of which are chinese water chestnut, garden tomato, calabash, and cassava. 5alpha-Cholest-8-en-3beta-ol, also known as zymostenol, is a normal human metabolite and an intermediate of cholesterol synthesis. The concentrations of zymostenol are higher, both in the serum and bile of patients with cerebrotendinous xanthomatosis, compared to controls or in patients with cerebrotendinous xanthomatosis treated with chenodeoxycholic acid. Kidney transplant recipients had lower serum zymostenol when compared to controls. During consumption of plant stanol ester spread by hypercholesterolemic children, plant sterols in the plasma decreased and cholesterol precursor sterols such as zymostenol increased (PMID: 15736111, 16709621, 16477216, 12756385).

   

5-Aminoimidazole

1H-imidazol-5-amine

C3H5N3 (83.0483)


Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054) [HMDB] Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054).

   

Desmopressin

(2S)-2-({[(2S)-1-[(4R,7S,10S,13S,16S)-13-benzyl-6,9,12,15,18-pentahydroxy-10-[2-(C-hydroxycarbonimidoyl)ethyl]-7-[(C-hydroxycarbonimidoyl)methyl]-16-[(4-hydroxyphenyl)methyl]-1,2-dithia-5,8,11,14,17-pentaazacycloicosa-5,8,11,14,17-pentaene-4-carbonyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-5-carbamimidamido-N-[(C-hydroxycarbonimidoyl)methyl]pentanimidate

C46H64N14O12S2 (1068.4269)


Desmopressin is a chemical that is similar to Antidiuretic Hormone (ADH) which is found naturally in the body. It increases urine concentration and decreases urine production. Desmopressin is used to prevent and control excessive thirst, urination, and dehydration caused by injury, surgery, and certain medical conditions, allowing you to sleep through the night without awakening to urinate. It is also used to treat specific types of diabetes insipidus and conditions after head injury or pituitary surgery. H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BA - Vasopressin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C80212 - Antidiuretic Hormone Analogue D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents

   

Apiole

4,7-dimethoxy-5-(prop-2-en-1-yl)-2H-1,3-benzodioxole

C12H14O4 (222.0892)


Apiole is found in dill. Apiole occurs in Sassafras albidum (sassafras) and Anethum graveolens (dill) Apiol is an organic chemical compound, also known as parsley apiol, apiole or parsley camphor. It is found in celery, parsley seeds, and the essential oil of parsley. Heinrich Christoph Link, an apothecary in Leipzig, discovered the substance in 1715 as greenish crystals reduced by steam from oil of parsley. In 1855 Joret and Homolle discovered that apiol was an effective treatment of amenorrea or lack of menstruation. In medicine it has been used, as essential oil or in purified form, for the treatment of menstrual disorders. It is an irritant and in high doses it is toxic and can cause liver and kidney damage. Occurs in Sassafras albidum (sassafras) and Anethum graveolens (dill)

   

piceol

InChI=1\C8H8O2\c1-6(9)7-2-4-8(10)5-3-7\h2-5,10H,1H

C8H8O2 (136.0524)


INTERNAL_ID 214; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3087; ORIGINAL_PRECURSOR_SCAN_NO 3084 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3098; ORIGINAL_PRECURSOR_SCAN_NO 3095 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3092; ORIGINAL_PRECURSOR_SCAN_NO 3090 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3095; ORIGINAL_PRECURSOR_SCAN_NO 3093 INTERNAL_ID 214; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3092; ORIGINAL_PRECURSOR_SCAN_NO 3090 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3160; ORIGINAL_PRECURSOR_SCAN_NO 3158 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1]. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1].

   

Benfuracarb

ethyl 3-{[({[(2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl)oxy]carbonyl}(methyl)amino)sulfanyl](propan-2-yl)amino}propanoate

C20H30N2O5S (410.1875)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

dTDP 1-ester with 2,6-dideoxy-L-erythro-hexopyranos-3-ulose

dTDP-2,6-dideoxy-L-erythro-hexos-3-ulose; dTDP 1-ester with 2,6-dideoxy-L-erythro-hexopyranos-3-ulose

C16H24N2O14P2 (530.0703)


   

5-Nitro-2-(3-phenylpropylamino)benzoic acid

5-NITRO-2-PHENYLPROPYLAMINOBENZOIC ACID [NPPB]

C16H16N2O4 (300.111)


D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors

   

Cinobufotalin

(1R,2R,2aR,3aS,3bR,5aS,7S,9aR,9bS,11aR)-5a,7-dihydroxy-9a,11a-dimethyl-1-(2-oxo-2H-pyran-5-yl)hexadecahydronaphtho[1,2:6,7]indeno[1,7a-b]oxiren-2-yl acetate

C26H34O7 (458.2304)


Cinobufotalin is a natural product found in Bufo and Bufo bufo with data available. Cinobufotalin is a bufadienolide isolated from toad venom and utilized in traditional Chinese medicine (TCM) for its cardiotonic, diuretic and hemostatic effects, with potential cytotoxic and antineoplastic activities. Upon administration and although the exact mechanism of action(s) (MoAs) through which this agent exerts its effects have yet to be fully discovered, cinobufotalin causes DNA fragmentation, decreases mitochondrial membrane potential (MMP), increases intracellular calcium (Ca2+) ion concentrations and reactive oxygen species (ROS) production, upregulates Fas protein and activates cytochrome C, various caspases, Bid and Bax. This causes cell cycle arrest, induces apoptosis and inhibits tumor cell growth and survival. In addition, cinobufotalin inhibits the activity of sphingosine kinase 1 (SphK1) and induces pro-apoptotic ceramide production, which further promotes tumor cell apoptosis. Cinobufotalin also induces mitochondrial protein cyclophilin D (Cyp-D)-dependent opening of the mitochondrial permeability transition pore (mPTP), which may contribute to cinobufotalin-induced non-apoptotic death of certain tumor cells. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].

   

Decanoyl acetaldehyde

Decanoyl acetaldehyde

C12H22O2 (198.162)


   

4-Hydroxy-2-butenoic acid gamma-lactone

2-Butenoic acid, 4-hydroxy-, laquo gammaraquo -lactone

C4H4O2 (84.0211)


4-Hydroxy-2-butenoic acid gamma-lactone is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants 2(5H)-Furanone is an endogenous metabolite.

   

METALAXYL

Pesticide4_Metalaxyl_C15H21NO4_N-(2,6-Dimethylphenyl)-N-(methoxyacetyl)-DL-alanine methyl ester

C15H21NO4 (279.1471)


D016573 - Agrochemicals D010575 - Pesticides

   

Estrogen

4-[(3E)-4-(4-hydroxyphenyl)hex-3-en-3-yl]phenol

C18H20O2 (268.1463)


A steroid hormone that stimulates or controls the development and maintenance of female sex characteristics in mammals by binding to oestrogen receptors. The oestrogens are named for their importance in the oestrous cycle. (ChEBI). Estrogen is found in date and apricot. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AA - Estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D009676 - Noxae > D002273 - Carcinogens

   

3-Aminopropanenitrile

3-Aminopropanenitrile

C3H6N2 (70.0531)


C471 - Enzyme Inhibitor β-Aminopropionitrile (BAPN) is a specific, irreversible and orally active lysyl oxidase (LOX) inhibitor. β-Aminopropionitrile targets the active site of LOX or LOXL isoenzymes[1][2].

   

Piceol

4-Hydroxyacetophenone (Acetaminophen Impurity E), Pharmaceutical Secondary Standards; Certified Reference Material

C8H8O2 (136.0524)


4-hydroxyacetophenone is a monohydroxyacetophenone carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, a fungal metabolite and a mouse metabolite. 4-Hydroxyacetophenone is a natural product found in Ficus erecta var. beecheyana, Artemisia ordosica, and other organisms with data available. A monohydroxyacetophenone carrying a hydroxy substituent at position 4. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1]. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1].

   

Flusilazole

Pesticide6_Flusilazole_C16H15F2N3Si_1-[(Bis(4-fluorophenyl)methylsilyl)methyl]-1H-1,2,4-triazole

C16H15F2N3Si (315.1003)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 97

   

Fenpropimorph

Pesticide7_Fenpropimorph_C20H33NO_Morpholine, 4-[3-[4-(1,1-dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethyl-, (2R,6S)-

C20H33NO (303.2562)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 4023 CONFIDENCE standard compound; EAWAG_UCHEM_ID 146

   

Fenpropidin

Fenpropidin

C19H31N (273.2456)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 2958

   

Diethylstilbestrol

Diethylstilbestrol (Stilbestrol)

C18H20O2 (268.1463)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AA - Estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D009676 - Noxae > D002273 - Carcinogens CONFIDENCE standard compound; INTERNAL_ID 4237 CONFIDENCE standard compound; INTERNAL_ID 4161

   

Dofetilide

Dofetilide (Tikosyn)

C19H27N3O5S2 (441.1392)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Mevastatin

[(1S,7S,8S,8aR)-8-[2-[(2R,4R)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] (2S)-2-methylbutanoate

C23H34O5 (390.2406)


Mevastatin is a carboxylic ester that is pravastatin that is lacking the allylic hydroxy group. A hydroxymethylglutaryl-CoA reductase inhibitor (statin) isolated from Penicillium citrinum and from Penicillium brevicompactum, its clinical use as a lipid-regulating drug ceased following reports of toxicity in animals. It has a role as a fungal metabolite, an EC 3.4.24.83 (anthrax lethal factor endopeptidase) inhibitor, an antifungal agent, a Penicillium metabolite and an apoptosis inducer. It is a carboxylic ester, a statin (naturally occurring), a member of hexahydronaphthalenes, a member of 2-pyranones and a polyketide. Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment. Mevastatin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73573-88-3 (retrieved 2024-10-09) (CAS RN: 73573-88-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

paraxanthine

1,7-Dimethylxanthine

C7H8N4O2 (180.0647)


A dimethylxanthine having the two methyl groups located at positions 1 and 7. It is a metabolite of caffeine and theobromine in animals. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QUNWUDVFRNGTCO-UHFFFAOYSA-N_STSL_0243_Paraxanthine_1000fmol_190413_S2_LC02MS02_060; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.

   

N,N-dimethylglycine

N,N-Dimethylglycine hydrochloride

C4H9NO2 (103.0633)


An N-methylglycine that is glycine carrying two N-methyl substituents. N-Methylsarcosine is an amino acid building block for protein, found in a small amount in the body.

   

glycocyamine

2-Guanidinoacetic acid

C3H7N3O2 (117.0538)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; BPMFZUMJYQTVII-UHFFFAOYSA-N_STSL_0241_Glycocyamine_1000fmol_190403_S2_LC02MS02_057; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

L-Homocitrulline

L-Homocitrulline

C7H15N3O3 (189.1113)


A L-lysine derivative that is L-lysine having a carbamoyl group at the N(6)-position. It is found in individuals with urea cycle disorders. L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI). L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI).

   

LINURON

Pesticide3_Linuron_C9H10Cl2N2O2_Urea, N-(3,4-dichlorophenyl)-N-methoxy-N-methyl-

C9H10Cl2N2O2 (248.0119)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

HEXADECANEDIOIC ACID

HEXADECANEDIOIC ACID

C16H30O4 (286.2144)


An alpha,omega-dicarboxylic acid that is the 1,14-dicarboxy derivative of tetradecane. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

pimelic acid

6-Carboxyhexanoate

C7H12O4 (160.0736)


An alpha,omega-dicarboxylic acid that is pentane with two carboxylic acid groups at positions C-1 and C-5. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.

   

Ribothymidine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H14N2O6 (258.0852)


A methyluridine having a single methyl substituent at the 5-position on the uracil ring. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

Glucosamine 6-phosphate

Glucosamine 6-phosphate

C6H14NO8P (259.0457)


   

5-Methyluridine

5-Methyluridine

C10H14N2O6 (258.0852)


CONFIDENCE standard compound; INTERNAL_ID 320 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

Tridemorph

2,6-Dimethyl-4-tridecylmorpholine

C19H39NO (297.3031)


   

N-Acetyl-D-tryptophan

(R)-2-Acetamido-3-(1H-indol-3-yl)propanoic acid

C13H14N2O3 (246.1004)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Apiole

Apiole (parsley)

C12H14O4 (222.0892)


A natural product found in Petroselinum sativum.

   

N-Acetyl-DL-tryptophan

N-Acetyl-DL-tryptophan

C13H14N2O3 (246.1004)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite.

   

β-Phellandrene

3-methylidene-6-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1252)


β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].

   

Thaspic acid

HEXADECANEDIOIC ACID

C16H30O4 (286.2144)


Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

FAL 16:0

2-methylpentadecanal

C16H32O (240.2453)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].

   

CAR 10:0

3-(decanoyloxy)-4-(trimethylazaniumyl)butanoate

C17H33NO4 (315.2409)


   

Zymostenol

5alpha-cholest-8(9)-en-3beta-ol

C27H46O (386.3548)


   

ST 21:3;O5

11beta,21-dihydroxy-3,20-dioxo-5beta-pregnan-18-al

C21H30O5 (362.2093)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

DL-Pyroglutamic acid

5-Oxopyrrolidine-2-carboxylic acid

C5H7NO3 (129.0426)


DL-Pyroglutamic acid (CAE) as an inactivator of hepatitis B surface, inactivates vaccinia virus, herpes simplex virus, and influenza virus except poliovirus. DL-Pyroglutamic acid is also a possible inhibitor of GABA transaminase, increases GABA amount with antiepileptic action[1][2]. DL-Pyroglutamic acid (CAE) as an inactivator of hepatitis B surface, inactivates vaccinia virus, herpes simplex virus, and influenza virus except poliovirus. DL-Pyroglutamic acid is also a possible inhibitor of GABA transaminase, increases GABA amount with antiepileptic action[1][2].

   

1-Nonanol

nonan-1-ol

C9H20O (144.1514)


   

octacosanol

Octacosyl alcohol

C28H58O (410.4487)


   

Nonanol

InChI=1\C9H20O\c1-2-3-4-5-6-7-8-9-10\h10H,2-9H2,1H

C9H20O (144.1514)


   

Houttuynin

4-01-00-03730 (Beilstein Handbook Reference)

C12H22O2 (198.162)


   

palmitoyl

Palmitaldehyde, 16-Hexadecanal

C16H32O (240.2453)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].

   

Apiol

Benzene, 1-allyl-2,5-dimethoxy-3,4-(methylenedioxy)-

C12H14O4 (222.0892)


   

Thapsic acid

n-Tetradecane-.omega.,.omega.-dicarboxylic acid

C16H30O4 (286.2144)


Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

CHEBI:28113

(3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,5,6,7,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H52O (428.4018)


   

Placcel M

5-17-09-00034 (Beilstein Handbook Reference)

C6H10O2 (114.0681)


   

Cirsilineol

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-

C18H16O7 (344.0896)


Cirsilineol is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsilineol is a natural product found in Thymus herba-barona, Salvia tomentosa, and other organisms with data available. See also: Tangerine peel (part of). A trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively.

   

2(5H)-Furanone

2(5H)-Furanone

C4H4O2 (84.0211)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants 2(5H)-Furanone is an endogenous metabolite.

   

(+)-Camphene

(+)-Camphene

C10H16 (136.1252)


A monoterpene with a bicyclic skeleton that is bicyclo[2.2.1]heptane substituted by geminal methyl groups at position 2 and a methylidene group at position 3. It is a widespread natural product found in many essential oils.

   

MGK-264

N-(2-Ethylhexyl)-5-norbornene-2,3-dicarboximide

C17H25NO2 (275.1885)


   

3,3-DIMETHOXYBENZIDINE

3,3-Dimethoxybiphenyl-4,4-diamine

C14H16N2O2 (244.1212)


   

hexadecanal

1-hexadecanal

C16H32O (240.2453)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].

   

Caprolactone

6-Hexanolactone

C6H10O2 (114.0681)


   

18-Hydroxycorticosterone

18-Hydroxycorticosterone

C21H30O5 (362.2093)


A 18-hydroxy steroid that is corticosterone substituted by a hydroxy group at position 18. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Potassium cation

Potassium cation

K+ (38.9637)


   

AFMK

N-Acetyl-N-formyl-5-methoxykynurenamine

C13H16N2O4 (264.111)


   

L-m-Tyrosine

L-m-Tyrosine

C9H11NO3 (181.0739)


A hydroxyphenylalanine that is L-phenylalanine with a substituent hydroxy group at position 3.

   

2-Fluorobenzamide

N-Carbamoylsarcosine

C4H8N2O3 (132.0535)


   

4-aminoimidazole

4-aminoimidazole

C3H5N3 (83.0483)


   

2-Deoxy-D-ribofuranose 5-phosphate

2-Deoxy-D-ribofuranose 5-phosphate

C5H11O7P (214.0242)


The furanose form of 2-deoxy-D-ribose 5-phosphate.

   

nonalol

pelargonic alcohol

C9H20O (144.1514)


A nonanol that is nonane substituted by a hydroxy group at position 1. It has been isolated as a component of volatile oils from plants like Hordeum vulgare.

   

BISPHENOL A DIGLYCIDYL ETHER

2,2-Bis(4-glycidyloxyphenyl)propane

C21H24O4 (340.1675)


D009676 - Noxae > D002273 - Carcinogens

   

DESMOPRESSIN

(Deamino-Cys1,D-Arg8)-Vasopressin acetate salt

C46H64N14O12S2 (1068.4269)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BA - Vasopressin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C80212 - Antidiuretic Hormone Analogue D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents

   

Bisphenol AF

Hexafluorobisphenol A

C15H10F6O2 (336.0585)


An organofluorine compound that is bisphenol A with its methyl hydrogens replaced by fluorines. D052244 - Endocrine Disruptors

   

Acetyl-L-tryptophan

N-Acetyl-L-tryptophan

C13H14N2O3 (246.1004)


A N-acetyl-L-amino acid that is the N-acetyl derivative of L-tryptophan. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors N-Acetyl-L-tryptophan is an endogenous metabolite.

   

Pyrimethanil

Pyrimethanil

C12H13N3 (199.1109)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Vinclozoline

Vinclozoline

C12H9Cl2NO3 (284.9959)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists D016573 - Agrochemicals D010575 - Pesticides

   

Benfuracarb

Aminofuracarb

C20H30N2O5S (410.1875)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Spiroxamine

UNII:OUT5YHB7BO

C18H35NO2 (297.2668)


D016573 - Agrochemicals D010575 - Pesticides

   

NPPB

5-Nitro-2-(3-phenylpropylamino)benzoic acid

C16H16N2O4 (300.111)


D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors

   

Rathyronine

Rathyronine

C15H12I3NO4 (650.7901)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1553 - Thyroid Agent

   

Deoxyribose 5-phosphate

Deoxyribose 5-phosphate

C5H11O7P (214.0242)