Subcellular Location: IgM B cell receptor complex

Found 121 associated metabolites.

3 associated genes. CD79A, CD79B, IGHM

Thymidine

1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione

C10H14N2O5 (242.0903)


Deoxythymidine, also known as 2-deoxy-5-methyluridine or 5-methyl-2-deoxyuridine, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Deoxythymidine can be synthesized from thymine. Deoxythymidine is also a parent compound for other transformation products, including but not limited to, tritiated thymidine, alpha-tritiated thymidine, and 5,6-dihydrothymidine. Deoxythymidine can be found in a number of food items such as butternut squash, mammee apple, catjang pea, and climbing bean, which makes deoxythymidine a potential biomarker for the consumption of these food products. Deoxythymidine can be found primarily in most biofluids, including blood, amniotic fluid, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Deoxythymidine exists in all living species, ranging from bacteria to humans. In humans, deoxythymidine is involved in the pyrimidine metabolism. Deoxythymidine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, deoxythymidine is found to be associated with canavan disease and degenerative disc disease. Thymidine (deoxythymidine; other names deoxyribosylthymine, thymine deoxyriboside) is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in G1/early S phase . Thymidine, also known as deoxythymidine or deoxyribosylthymine or thymine deoxyriboside, is a pyrimidine deoxynucleoside. It consists of the nucleobase thymine attached to deoxyribose through a beta N- glycosidic bond. Thymidine also belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine (or thymidine) is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. Therefore, thymidine is essential to all life. Indeed, thymidine exists in all living species, ranging from bacteria to plants to humans. Within humans, thymidine participates in a number of enzymatic reactions. In particular, thymidine can be biosynthesized from 5-thymidylic acid through its interaction with the enzyme cytosolic purine 5-nucleotidase. In addition, thymidine can be converted into 5-thymidylic acid; which is catalyzed by the enzyme thymidine kinase. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP (deoxythymidine monophosphate), dTDP, or dTTP (for the di- and tri- phosphates, respectively). dTMP can be incorporated into DNA via DNA polymerases. In cell biology, thymidine can be used to synchronize the cells in S phase. Derivatives of thymidine are used in a number of drugs, including Azidothymidine (AZT), which is used in the treatment of HIV infection. AZT inhibits the process of reverse transcription in the human immunodeficiency virus. Thymidine is a pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a thymine. It is an enantiomer of a telbivudine. Thymidine is a pyrimidine deoxynucleoside. Thymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in S phase. Thymidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thymidine is a natural product found in Fritillaria thunbergii, Saussurea medusa, and other organisms with data available. Thymidine is a pyrimidine nucleoside that is composed of the pyrimidine base thymine attached to the sugar deoxyribose. As a constituent of DNA, thymidine pairs with adenine in the DNA double helix. (NCI04) Thymidine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside in which THYMINE is linked to DEOXYRIBOSE. A pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. KEIO_ID T014; [MS2] KO009272 KEIO_ID T014 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].

   

Sucrose

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-3,4-Dihydroxy-2,(2R,3R,4S,5S,6R)-2-{[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C12H22O11 (342.1162)


Sucrose is a nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane (Saccharum officinarum), sugar beet (Beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is derived by crushing and extracting sugarcane with water or by extracting sugar beet with water, evaporating, and purifying with lime, carbon, and various liquids. Sucrose is also obtainable from sorghum. Sucrose occurs in low percentages in honey and maple syrup. Sucrose is used as a sweetener in foods and soft drinks, in the manufacture of syrups, in invert sugar, confectionery, preserves and jams, demulcent, pharmaceutical products, and caramel. Sucrose is also a chemical intermediate for detergents, emulsifying agents, and other sucrose derivatives. Sucrose is widespread in the seeds, leaves, fruits, flowers, and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynthesis. The annual world production of sucrose is in excess of 90 million tons mainly from the juice of sugar cane (20\\\%) and sugar beet (17\\\%). In addition to its use as a sweetener, sucrose is used in food products as a preservative, antioxidant, moisture control agent, stabilizer, and thickening agent. BioTransformer predicts that sucrose is a product of 6-O-sinapoyl sucrose metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). Sucrose appears as white odorless crystalline or powdery solid. Denser than water. Sucrose is a glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. It has a role as an osmolyte, a sweetening agent, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. A nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane, sugar beet (beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Sucrose is a natural product found in Haplophyllum ramosissimum, Cyperus esculentus, and other organisms with data available. Sucrose is a metabolite found in or produced by Saccharomyces cerevisiae. A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. See also: Anise; ferrous disulfide; sucrose (component of); Phosphoric acid; sucrose (component of); Sucrose caramel (related) ... View More ... In chemistry, sugar loosely refers to a number of carbohydrates, such as monosaccharides, disaccharides, or oligosaccharides. In food, sugar refers to a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose characterized by a sweet flavor. Other sugars are used in industrial food preparation, but are usually known by more specific names - glucose, fructose or fruit sugar, high fructose corn syrup, etc. Sugars is found in many foods, some of which are ucuhuba, butternut squash, common walnut, and miso. A glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula C 12H 22O 11. For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet. Sugar is often an added ingredient in food production and recipes. About 185 million tonnes of sugar were produced worldwide in 2017.[6] Sucrose is particularly dangerous as a risk factor for tooth decay because Streptococcus mutans bacteria convert it into a sticky, extracellular, dextran-based polysaccharide that allows them to cohere, forming plaque. Sucrose is the only sugar that bacteria can use to form this sticky polysaccharide.[7] Sucrose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8030-20-4 (retrieved 2024-06-29) (CAS RN: 57-50-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Colchicine

N-{3,4,5,14-tetramethoxy-13-oxotricyclo[9.5.0.0²,⁷]hexadeca-1(16),2(7),3,5,11,14-hexaen-10-yl}acetamide

C22H25NO6 (399.1682)


Colchicine appears as odorless or nearly odorless pale yellow needles or powder that darkens on exposure to light. Used to treat gouty arthritis, pseudogout, sarcoidal arthritis and calcific tendinitis. (EPA, 1998) (S)-colchicine is a colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. It has a role as a mutagen, an anti-inflammatory agent and a gout suppressant. It is a colchicine and an alkaloid. It is an enantiomer of a (R)-colchicine. Colchicine is an Alkaloid. Colchicine is a plant alkaloid that is widely used for treatment of gout. Colchicine has not been associated with acute liver injury or liver test abnormalities except with serious overdoses. Colchicine is a natural product found in Colchicum arenarium, Colchicum bivonae, and other organisms with data available. Colchicine is an alkaloid isolated from Colchicum autumnale with anti-gout and anti-inflammatory activities. The exact mechanism of action by which colchicines exerts its effect has not been completely established. Colchicine binds to tubulin, thereby interfering with the polymerization of tubulin, interrupting microtubule dynamics, and disrupting mitosis. This leads to an inhibition of migration of leukocytes and other inflammatory cells, thereby reducing the inflammatory response to deposited urate crystals. Colchicine may also interrupt the cycle of monosodium urate crystal deposition in joint tissues, thereby also preventing the resultant inflammatory response. Overall, colchicine decreases leukocyte chemotaxis/migration and phagocytosis to inflamed areas, and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). See also: Colchicine; probenecid (component of). Colchicine is only found in individuals that have used or taken this drug. It is a major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (periodic disease). [PubChem]The precise mechanism of action has not been completely established. In patients with gout, colchicine apparently interrupts the cycle of monosodium urate crystal deposition in joint tissues and the resultant inflammatory response that initiates and sustains an acute attack. Colchicine decreases leukocyte chemotaxis and phagocytosis and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. Colchicine also inhibits urate crystal deposition, which is enhanced by a low pH in the tissues, probably by inhibiting oxidation of glucose and subsequent lactic acid production in leukocytes. Colchicine has no analgesic or antihyperuricemic activity. Colchicine inhibits microtubule assembly in various cells, including leukocytes, probably by binding to and interfering with polymerization of the microtubule subunit tubulin. Although some studies have found that this action probably does not contribute significantly to colchicines antigout action, a recent in vitro study has shown that it may be at least partially involved. CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7704; ORIGINAL_PRECURSOR_SCAN_NO 7702 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7690; ORIGINAL_PRECURSOR_SCAN_NO 7687 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7668; ORIGINAL_PRECURSOR_SCAN_NO 7666 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7693; ORIGINAL_PRECURSOR_SCAN_NO 7689 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7645; ORIGINAL_PRECURSOR_SCAN_NO 7643 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7687; ORIGINAL_PRECURSOR_SCAN_NO 7684 M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AC - Preparations with no effect on uric acid metabolism COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, Guide to PHARMACOLOGY C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D018501 - Antirheumatic Agents > D006074 - Gout Suppressants CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2258 INTERNAL_ID 2258; CONFIDENCE Reference Standard (Level 1) [Raw Data] CB194_Colchicine_pos_30eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_50eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_10eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_20eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_40eV_CB000068.txt CONFIDENCE standard compound; INTERNAL_ID 1171 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4]. Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4].

   

Tacrolimus

15,19-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone, 5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycycl ohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-, (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-

C44H69NO12 (803.482)


Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription. It is used in foods as emulsifier, stabiliser, thickener, gelling agent, formulation aid and firming agent; ice-cream stabiliser, used to improve the yield of curds in soft cheese, to increase the yield of doughs and baked products, as a binder and lubricant in sausages, and as thickener or viscosity control agent in beverages, salad dressings and relishes D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D016559 - Tacrolimus D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors Tacrolimus (anhydrous) is a macrolide lactam containing a 23-membered lactone ring, originally isolated from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. It has a role as an immunosuppressive agent and a bacterial metabolite. Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex inhibits calcineurin which inhibits T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus anhydrous is a Calcineurin Inhibitor Immunosuppressant. The mechanism of action of tacrolimus anhydrous is as a Calcineurin Inhibitor. Tacrolimus is a calcineurin inhibitor and potent immunosuppressive agent used largely as a means of prophylaxis against cellular rejection after transplantation. Tacrolimus therapy can be associated with mild serum enzyme elevations, and it has been linked to rare instances of clinically apparent cholestatic liver injury. Tacrolimus is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and other organisms with data available. Tacrolimus is a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. Tacrolimus Anhydrous is anhydrous from of tacrolimus, a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. A macrolide isolated from the culture broth of a strain of Streptomyces tsukubaensis that has strong immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation in vitro. D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AD - Calcineurin inhibitors C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C146638 - Calcineurin Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Leucine

(2S)-2-amino-4-methylpentanoic acid

C6H13NO2 (131.0946)


Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

beta-Lactose

(2R,3R,4R,5S,6R)-6-(Hydroxymethyl)-5-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2,3,4-triol

C12H22O11 (342.1162)


Beta-lactose is the beta-anomer of lactose. beta-Lactose contains a Lactosylceramide motif and is often attached to a Cer aglycon. beta-Lactose is a natural product found in Hypericum perforatum with data available. A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry. Beta-Lactose is the beta-pyranose form of the compound lactose [CCD]. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Beta-pyranose form of the compound lactose [CCD] The beta-anomer of lactose. Lactose, a major sugar in the milk of most species, could regulate human’s intestinal microflora. Lactose, a major sugar in the milk of most species, could regulate human’s intestinal microflora. α-Lactose (α-D-Lactose) is the major sugar present in milk. Lactose exists in the form of two anomers, α and β. The α form normally crystallizes as a monohydrate[1][2]. α-Lactose (α-D-Lactose) is the major sugar present in milk. Lactose exists in the form of two anomers, α and β. The α form normally crystallizes as a monohydrate[1][2].

   

Citric acid

2-hydroxypropane-1,2,3-tricarboxylic acid

C6H8O7 (192.027)


Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

Vincristine

methyl (1R,9R,10S,11R,12R,19R)-11-(acetyloxy)-12-ethyl-4-[(13S,15S,17S)-17-ethyl-17-hydroxy-13-(methoxycarbonyl)-1,11-diazatetracyclo[13.3.1.0^{4,12}.0^{5,10}]nonadeca-4(12),5,7,9-tetraen-13-yl]-8-formyl-10-hydroxy-5-methoxy-8,16-diazapentacyclo[10.6.1.0^{1,9}.0^{2,7}.0^{16,19}]nonadeca-2(7),3,5,13-tetraene-10-carboxylate

C46H56N4O10 (824.3996)


Vincristine appears as a white crystalline solid. Melting point 218 °C. Used as an antineoplastic. Vincristine is a vinca alkaloid with formula C46H56N4O10 found in the Madagascar periwinkle, Catharanthus roseus. It is used (commonly as the corresponding sulfate salt)as a chemotherapy drug for the treatment of leukaemia, lymphoma, myeloma, breast cancer and head and neck cancer. It has a role as a tubulin modulator, a microtubule-destabilising agent, a plant metabolite, an antineoplastic agent and a drug. It is a methyl ester, an acetate ester, a tertiary alcohol, a member of formamides, an organic heteropentacyclic compound, an organic heterotetracyclic compound, a tertiary amino compound and a vinca alkaloid. It is a conjugate base of a vincristine(2+). It derives from a hydride of a vincaleukoblastine. Vincristine is a natural product found in Ophioparma ventosa, Cunila, and other organisms with data available. Vincristine is a natural alkaloid isolated from the plant Vinca rosea Linn. Vincristine binds irreversibly to microtubules and spindle proteins in S phase of the cell cycle and interferes with the formation of the mitotic spindle, thereby arresting tumor cells in metaphase. This agent also depolymerizes microtubules and may also interfere with amino acid, cyclic AMP, and glutathione metabolism; calmodulin-dependent Ca++ -transport ATPase activity; cellular respiration; and nucleic acid and lipid biosynthesis. (NCI04) Vincristine is only found in individuals that have used or taken this drug. It is an antitumor alkaloid isolated from Vinca Rosea. (Merck, 11th ed.) The antitumor activity of Vincristine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, Vincristine may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca2+-transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis. Vincristine is indicated for the treatment of acute leukaemia, malignant lymphoma, Hodgkins disease, acute erythraemia, and acute panmyelosis. Vincristine sulfate is often chosen as part of polychemotherapy because of lack of significant bone marrow suppression (at recommended doses) and of unique clinical toxicity (neuropathy). An antitumor alkaloid isolated from VINCA ROSEA. (Merck, 11th ed.) See also: Vincristine Sulfate (active moiety of). Vincristine is only found in individuals that have used or taken this drug. It is an antitumor alkaloid isolated from Vinca Rosea. (Merck, 11th ed.)The antitumor activity of Vincristine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, Vincristine may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca2+-transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis. A vinca alkaloid with formula C46H56N4O10 found in the Madagascar periwinkle, Catharanthus roseus. It is used (commonly as the corresponding sulfate salt)as a chemotherapy drug for the treatment of leukaemia, lymphoma, myeloma, breast cancer and head and neck cancer. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C932 - Vinca Alkaloid Compound C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids C1907 - Drug, Natural Product

   

Biotin

Biotin, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, >=99\\%

C10H16N2O3S (244.0882)


Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins.[1][2][3] It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids.[4] The name biotin, borrowed from the German Biotin, derives from the Ancient Greek word βίοτος (bíotos; 'life') and the suffix "-in" (a suffix used in chemistry usually to indicate 'forming').[5] Biotin appears as a white, needle-like crystalline solid.[6] Biotin is an organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. It has a role as a prosthetic group, a coenzyme, a nutraceutical, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a cofactor and a fundamental metabolite. It is a member of biotins and a vitamin B7. It is a conjugate acid of a biotinate. A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Biotin is a natural product found in Lysinibacillus sphaericus, Aspergillus nidulans, and other organisms with data available. Biotin is hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoic acid. Growth factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. The biotin content of cancerous tissue is higher than that of normal tissue. Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as vitamin H or B7 or coenzyme R. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Our biotin requirement is fulfilled in part through diet, through endogenous reutilization of biotin and perhaps through capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lys residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signaling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signaling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in ... Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as coenzyme R and vitamin H or B7. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Humans fulfill their biotin requirement through their diet through endogenous reutilization of biotin and perhaps through the capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss, and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC), and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signalling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signalling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in modulating these cell signals, greater than 2000 biotin-dependent genes have been identified in various human tissues. Many biotin-dependent gene products play roles in signal transduction and localize to the cell nucleus, consistent with a role for biotin in cell signalling. Posttranscriptional events related to ribosomal activity and protein folding may further contribute to the effects of biotin on gene expression. Finally, research has shown that biotinidase and holocarboxylase synthetase mediate covalent binding of biotin to histones (DNA-binding proteins), affecting chromatin structure; at least seven biotinylation sites have been identified in human histones. Biotinylation of histones appears to play a role in cell proliferation, gene silencing, and the cellular response to DNA repair. Roles for biotin in cell signalling and chromatin structure are consistent with the notion that biotin has a unique significance in cell biology (PMID: 15992684, 16011464). Present in many foods; particularly rich sources include yeast, eggs, liver, certain fish (e.g. mackerel, salmon, sardines), soybeans, cauliflower and cow peas. Dietary supplement. Isolated from various higher plant sources, e.g. sweet corn seedlings and radish leaves An organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. [Raw Data] CB004_Biotin_pos_50eV_CB000006.txt [Raw Data] CB004_Biotin_pos_30eV_CB000006.txt [Raw Data] CB004_Biotin_pos_40eV_CB000006.txt [Raw Data] CB004_Biotin_pos_20eV_CB000006.txt [Raw Data] CB004_Biotin_pos_10eV_CB000006.txt [Raw Data] CB004_Biotin_neg_10eV_000006.txt [Raw Data] CB004_Biotin_neg_20eV_000006.txt Biosynthesis Biotin, synthesized in plants, is essential to plant growth and development.[22] Bacteria also synthesize biotin,[23] and it is thought that bacteria resident in the large intestine may synthesize biotin that is absorbed and utilized by the host organism.[18] Biosynthesis starts from two precursors, alanine and pimeloyl-CoA. These form 7-keto-8-aminopelargonic acid (KAPA). KAPA is transported from plant peroxisomes to mitochondria where it is converted to 7,8-diaminopelargonic acid (DAPA) with the help of the enzyme, BioA. The enzyme dethiobiotin synthetase catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP, creating dethiobiotin with the help of the enzyme, BioD, which is then converted into biotin which is catalyzed by BioB.[24] The last step is catalyzed by biotin synthase, a radical SAM enzyme. The sulfur is donated by an unusual [2Fe-2S] ferredoxin.[25] Depending on the species of bacteria, Biotin can be synthesized via multiple pathways.[24] Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.3912)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

(S)-Reticuline

7-ISOQUINOLINOL, 1,2,3,4-TETRAHYDRO-1-((3-HYDROXY-4-METHOXYPHENYL)METHYL)-6-METHOXY-2-METHYL-, (1S)-

C19H23NO4 (329.1627)


(S)-Reticuline is an endogenous precursor of morphine (PMID: 15383669). (S)-Reticuline is a key intermediate in the synthesis of morphine, the major active metabolite of the opium poppy. "Endogenous morphine" has been long isolated and authenticated by mass spectrometry in trace amounts from animal- and human-specific tissue or fluids (PMID: 15874902). Human neuroblastoma cells (SH-SY5Y) were shown capable of synthesizing morphine as well. (S)-Reticuline undergoes a change of configuration at C-1 during its transformation into salutaridinol and thebaine. From thebaine, there is a bifurcate pathway leading to morphine proceeding via codeine or oripavine, in both plants and mammals (PMID 15937106). (S)-reticuline is the (S)-enantiomer of reticuline. It has a role as an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor. It is a conjugate base of a (S)-reticulinium(1+). It is an enantiomer of a (R)-reticuline. Reticuline is a natural product found in Fumaria capreolata, Berberis integerrima, and other organisms with data available. See also: Peumus boldus leaf (part of). Alkaloid from Papaver somniferum (opium poppy) and Annona reticulata (custard apple) The (S)-enantiomer of reticuline.

   

Castanospermine

1,6,7,8-Indolizinetetrol, octahydro-, (1S-(1alpha,6beta,7alpha,8beta,8abeta))-

C8H15NO4 (189.1001)


Castanospermine is a tetrahydroxyindolizidine alkaloid that consists of octahydroindolizine having four hydroxy substituents located at positions 1, 6, 7 and 8 (the 1S,6S,7R,8R,8aR-diastereomer). It has a role as a metabolite, an anti-HIV-1 agent, an anti-inflammatory agent and an EC 3.2.1.* (glycosidase) inhibitor. Castanospermine is a natural product found in Alexa grandiflora, Alexa wachenheimii, and other organisms with data available. A tetrahydroxyindolizidine alkaloid that consists of octahydroindolizine having four hydroxy substituents located at positions 1, 6, 7 and 8 (the 1S,6S,7R,8R,8aR-diastereomer). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors KEIO_ID C043 Castanospermine inhibits all forms of α- and β-glucosidases, especially glucosidase L.

   

Maltodextrin

(2S,3R,4R,5S,6R)-6-(Hydroxymethyl)-5-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2,3,4-triol

C12H22O11 (342.1162)


Alpha-maltose is a maltose that has alpha-configuration at the reducing end anomeric centre. alpha-Maltose is a natural product found in Cyperus esculentus, Phytelephas aequatorialis, and other organisms with data available. Maltodextrin is an oligosaccharide derived from starch that is used as a food additive and as a carbohydrate supplement. As a supplement, maltodextrin is used to provide and sustain energy levels during endurance-oriented workouts o sports, and to help build muscle mass and support weight gain. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.

   

Acridone

9,10-Dihydro-9-oxoacridine

C13H9NO (195.0684)


CONFIDENCE standard compound; INTERNAL_ID 2310 Acridone is an organic compound based on the acridine skeleton. Acridone has antibacterial, antimalarial, antiviral and anti neoplastic activities[1]. Acridone is an organic compound based on the acridine skeleton. Acridone has antibacterial, antimalarial, antiviral and anti neoplastic activities[1].

   

Argininosuccinic acid disodium

(2S)-2-[[N-[(4S)-4-amino-4-carboxybutyl]carbamimidoyl]amino]butanedioic acid

C10H18N4O6 (290.1226)


Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the argininosuccinate lyase enzyme can lead to argininosuccinate lyase deficiency, which is an inborn error of metabolism. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (argininosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the arginosuccinate lyase enzyme can lead to arginosuccinate lyase deficiency. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (arginosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. [HMDB] KEIO_ID A039; [MS2] KO008844 KEIO_ID A039

   

Bilirubin

3-(2-{[3-(2-carboxyethyl)-5-{[(2Z)-4-ethenyl-3-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-ylidene]methyl}-4-methyl-1H-pyrrol-2-yl]methyl}-5-{[(2Z)-3-ethenyl-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-ylidene]methyl}-4-methyl-1H-pyrrol-3-yl)propanoic acid

C33H36N4O6 (584.2635)


Bilirubin is a yellow bile pigment that is a degradation product of heme. It occurs in the normal catabolic pathway that breaks down heme in vertebrates. This catabolism is a necessary process in the bodys clearance of waste products that arise from the destruction of aged or abnormal red blood cells. Bilirubin has been found in all vertebrates and in certain plants including Strelitzia nicolai (PMID: 28573242). Bilirubin levels in humans are elevated in certain diseases such as jaundice and liver disease and it is responsible for the yellow color of bruises and the yellow discoloration in jaundice. Bilirubin breakdown products, such as stercobilin, cause the brown color of feces. A different breakdown product, urobilin, is the main component of the straw-yellow color in urine. Bilirubin consists of an open chain of four pyrroles (tetrapyrrole). It is formed by oxidative cleavage of a porphyrin in heme, which leads to biliverdin, a green tetrapyrrolic bile pigment that is also a product of heme catabolism. Biliverdin is then reduced to bilirubin via biliverdin reductase. After conjugation with glucuronic acid, bilirubin can be excreted in the urine. Bilirubin is structurally similar to the pigment phycobilin used by certain algae to capture light energy, and to the pigment phytochrome used by plants to sense light. Elevated bilirubin levels in humans are associated with Crigler-Najjar syndrome type I, which is an inborn error of metabolism. Crigler-Najjar syndrome is a rare genetic disorder characterized by an inability to properly convert and clear bilirubin from the body. Affected individuals cannot convert unconjugated bilirubin to the conjugated form because they lack a specific liver enzyme required to break down (metabolize) bilirubin. Since they cannot convert bilirubin, they develop abnormally high levels of unconjugated bilirubin in the blood (hyperbilirubinemia). Crigler-Najjar syndrome is caused by mutations in the UGT1A1 gene. The hallmark finding of Crigler-Najjar syndrome is a persistent yellowing of the skin, mucous membranes and whites of the eyes (jaundice). Elevation of both alanine aminotransferase and bilirubin levels in serum or plasma can be indicative of serious liver injury. High levels of bilirubin are indicative of jaundice, which is easily recognizable due to a yellowing of the skin and eyes. Bilirubin is also an antioxidant. Bilirubins antioxidant activity may be particularly important in the brain, where it prevents excitotoxicity and neuronal death by scavenging superoxide during N-methyl-D-aspartic acid neurotransmission (PMID: 31353321). Bilirubin is a bile pigment that is a degradation product of heme. In particular, bilirubin is a yellow breakdown product of normal heme catabolism. Its levels are elevated in certain diseases and it is responsible for the yellow color of bruises. Bilirubin is an excretion product, and the body does not control levels. Bilirubin levels reflect the balance between production and excretion. Thus, there is no "normal" level of bilirubin. Bilirubin consists of an open chain of four pyrroles (tetrapyrrole); by contrast, the heme molecule is a closed ring of four pyrroles, called porphyrin. -- Wikipedia [HMDB]. Bilirubin is found in many foods, some of which are barley, mustard spinach, other bread, and sesbania flower. Bilirubin (BR) (from the Latin for "red bile") is a red-orange compound that occurs in the normal catabolic pathway that breaks down heme in vertebrates. This catabolism is a necessary process in the body's clearance of waste products that arise from the destruction of aged or abnormal red blood cells.[3] In the first step of bilirubin synthesis, the heme molecule is stripped from the hemoglobin molecule. Heme then passes through various processes of porphyrin catabolism, which varies according to the region of the body in which the breakdown occurs. For example, the molecules excreted in the urine differ from those in the feces.[4] The production of biliverdin from heme is the first major step in the catabolic pathway, after which the enzyme biliverdin reductase performs the second step, producing bilirubin from biliverdin.[5][6] Ultimately, bilirubin is broken down within the body, and its metabolites excreted through bile and urine; elevated levels may indicate certain diseases.[7] It is responsible for the yellow color of healing bruises and the yellow discoloration in jaundice. The bacterial enzyme bilirubin reductase is responsible for the breakdown of bilirubin in the gut.[8] One breakdown product, urobilin, is the main component of the straw-yellow color in urine.[9] Another breakdown product, stercobilin, causes the brown color of feces. Although bilirubin is usually found in animals rather than plants, at least one plant species, Strelitzia nicolai, is known to contain the pigment.[10] Bilirubin is created by the activity of biliverdin reductase on biliverdin, a green tetrapyrrolic bile pigment that is also a product of heme catabolism. Bilirubin, when oxidized, reverts to become biliverdin once again. This cycle, in addition to the demonstration of the potent antioxidant activity of bilirubin,[14] has led to the hypothesis that bilirubin's main physiologic role is as a cellular antioxidant.[15][16] Consistent with this, animal studies suggest that eliminating bilirubin results in endogenous oxidative stress.[17] Bilirubin's antioxidant activity may be particularly important in the brain, where it prevents excitotoxicity and neuronal death by scavenging superoxide during N-methyl-D-aspartic acid neurotransmission.[18] Bilirubin in plasma is mostly produced by the destruction of erythrocytes. Heme is metabolized into biliverdin (via heme oxygenase) and then into bilirubin (via biliverdin reductase) inside the macrophages. [11] Bilirubin is then released into the plasma and transported to the liver bound by albumin, since it is insoluble in water in this state. In this state, bilirubin is called unconjugated (despite being bound by albumin). [11] In the liver, unconjugated bilirubin is up-taken by the hepatocytes and subsequently conjugated with glucuronic acid (via the enzyme uridine diphosphate–glucuronyl transferase). In this state, bilirubin is soluble in water and it is called conjugated bilirubin. [11] Conjugated bilirubin is excreted into the bile ducts and enters the duodenum. During its transport to the colon, it is converted into urobilinogen by the bacterial enzyme bilirubin reductase.[8] Most of the urobilinogen is further reduced into stercobilinogen and is excreted through feces (air oxidizes stercobilinogen to stercobilin, which gives feces their characteristic brown color). [11] A lesser amount of urobilinogen is re-absorbed into portal circulation and transferred to the liver. For the most part, this urobilinogen is recycled to conjugated bilirubin and this process closes the enterohepatic circle. There is also an amount of urobilinogen which is not recycled, but rather enters the systemic circulation and subsequently the kidneys, where it is excreted. Air oxidizes urobilinogen into urobilin, which gives urine its characteristic color.[11][19] In parallel, a small amount of conjugated billirubin can also enter the systemic circulation and get excreted through urine. This is exaggerated in various pathological situations.[19]

   

Carnosine

(2S)-2-(3-aminopropanoylamino)-3-(1H-imidazol-5-yl)propanoic acid

C9H14N4O3 (226.1066)


Carnosine, which is also known as beta-alanyl-L-histidine) is a dipeptide consisting of the amino acids beta-alanine and histidine. It is found exclusively in animal tissues and is naturally produced in the body by the liver. Carnosine has a pKa value of 6.83, making it a good buffer for the pH range of animal muscles. Since beta-alanine is a non-proteogenic amino acid and is not incorporated into proteins, carnosine can be stored at relatively high concentrations (millimolar) in muscles, with concentrations as high as 17–25 mmol/kg (dry muscle). Carnosine is also highly concentrated in brain tissues. Carnosine has been shown to scavenge reactive oxygen species (ROS) as well as alpha-beta unsaturated aldehydes formed from peroxidation of fatty acids during oxidative stress. The antioxidant mechanism of carnosine is attributed to its chelating effect against divalent metal ions, superoxide dismutase (SOD)-like activity, as well as its ROS and free radicals scavenging ability (PMID: 16406688). Carnosine also buffers muscle cells, and acts as a neurotransmitter in the brain. Carnosine has the potential to suppress many of the biochemical changes that accompany ageing (e.g. protein oxidation, glycation, AGE formation, and cross-linking) and associated pathologies (PMID: 16804013). Some autistic patients take carnosine as a dietary supplement and attribute an improvement in their condition to it. Supplemental carnosine may increase corticosterone levels. This may explain the "hyperactivity" seen in autistic subjects at higher doses. A positive association between muscle tissue carnosine concentration and exercise performance has been found. β-Alanine supplementation is thought increase exercise performance by promoting carnosine production in muscle. Exercise has conversely been found to increase muscle carnosine concentrations, and muscle carnosine content is higher in athletes engaging in anaerobic exercise. Carnosine is also a biomarker for the consumption of meat. Elevated levels of urinary and plasma carnosine are associated with carnosinuria (also known as carnosinemia), which is an inborn error of metabolism. caused by a deficiency of the enzyme carnosinase. Carnosinas cleaves carnosine into its constituent amino acids: β-Alanine and histidine. Carnonsinemia results in an excess of carnosine in the urine, cerebrospinal fluid, blood, and nervous tissue. A variety of neurological symptoms have been associated with carnosinemia. They include: hypotonia, developmental delay, mental retardation, degeneration of axons, sensory neuropathy, tremors, demyelinization, gray matter anomalies, myoclonic seizures, and loss of purkinje fibers. [Spectral] Carnosine (exact mass = 226.10659) and L-Lysine (exact mass = 146.10553) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Carnosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=305-84-0 (retrieved 2024-07-02) (CAS RN: 305-84-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging. L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging. L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging.

   

L-Glutamine

(2S)-2,5-diamino-5-oxopentanoic acid

C5H10N2O3 (146.0691)


Glutamine (Gln), also known as L-glutamine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Structurally, glutamine is similar to the amino acid glutamic acid. However, instead of having a terminal carboxylic acid, it has an amide. Glutamine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, polar amino acid. In humans glutamine is considered a non-essential amino acid. Enzymatically, glutamine is formed by replacing a side-chain hydroxyl of glutamic acid with an amine functional group. More specifically, glutamine is synthesized by the enzyme glutamine synthetase from glutamate and ammonia. The most relevant glutamine-producing tissue are skeletal muscles, accounting for about 90\\\\\\% of all glutamine synthesized. Glutamine is also released, in small amounts, by the lungs and brain. In human blood, glutamine is the most abundant free amino acid. Dietary sources of glutamine include protein-rich foods such as beef, chicken, fish, dairy products, eggs, beans, beets, cabbage, spinach, carrots, parsley, vegetable juices, wheat, papaya, Brussels sprouts, celery and kale. Glutamine is one of the few amino acids that can directly cross the blood–brain barrier. Glutamine is often used as a supplement in weightlifting, bodybuilding, endurance and other sports, as well as by those who suffer from muscular cramps or pain, particularly elderly people. In 2017, the U.S. Food and Drug Administration (FDA) approved L-glutamine oral powder, marketed as Endari, to reduce severe complications of sickle cell disease in people aged five years and older with the disorder. Subjects who were treated with L-glutamine oral powder experienced fewer hospital visits for pain treated with a parenterally administered narcotic or ketorolac. The main use of glutamine within the diet of either group is as a means of replenishing the bodys stores of amino acids that have been used during exercise or everyday activities. Studies which have looked into problems with excessive consumption of glutamine thus far have proved inconclusive. However, normal supplementation is healthy mainly because glutamine is supposed to be supplemented after prolonged periods of exercise (for example, a workout or exercise in which amino acids are required for use) and replenishes amino acid stores. This is one of the main reasons glutamine is recommended during fasting or for people who suffer from physical trauma, immune deficiencies, or cancer. There is a significant body of evidence that links glutamine-enriched diets with positive intestinal effects. These include maintenance of gut barrier function, aiding intestinal cell proliferation and differentiation, as well as generally reducing septic morbidity and the symptoms of Irritable Bowel Syndrome (IBS). The reason for such "cleansing" properties is thought to stem from the fact that the intestinal extraction rate of glutamine is higher than that for other amino acids, and is therefore thought to be the most viable option when attempting to alleviate conditions relating to the gastrointestinal tract. These conditions were discovered after comparing plasma concentration within the gut between glutamine-enriched and non glutamine-enriched diets. However, even though glutamine is thought to have "cleansing" properties and effects, it is unknown to what extent glutamine has clinical benefits, due to the varied concentrations of glutamine in varieties of food. It is also known that glutamine has positive effects in reducing healing time after operations. Hospital waiting times after abdominal s... L-glutamine, also known as L-2-aminoglutaramic acid or levoglutamide, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamine is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamine can be found in a number of food items such as acorn, yautia, ohelo berry, and oregon yampah, which makes L-glutamine a potential biomarker for the consumption of these food products. L-glutamine can be found primarily in most biofluids, including blood, sweat, breast milk, and cerebrospinal fluid (CSF), as well as throughout most human tissues. L-glutamine exists in all living species, ranging from bacteria to humans. In humans, L-glutamine is involved in several metabolic pathways, some of which include amino sugar metabolism, the oncogenic action of 2-hydroxyglutarate, mercaptopurine metabolism pathway, and transcription/Translation. L-glutamine is also involved in several metabolic disorders, some of which include the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, tay-sachs disease, xanthinuria type I, and adenosine deaminase deficiency. Moreover, L-glutamine is found to be associated with carbamoyl Phosphate Synthetase Deficiency, epilepsy, schizophrenia, and alzheimers disease. L-glutamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. L-glutamine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].

   

Ochratoxin A

(2S)-2-{[(3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-3,4-dihydro-1H-2-benzopyran-7-carbonyl]amino}-3-phenylpropanoic acid

C20H18ClNO6 (403.0823)


Ochratoxin A is found in barley. Mycotoxin. Ochratoxin A is produced by Aspergillus melleus, Aspergillus sulphureus and Penicillium viridicatum.Potential contaminant of foodstuffs, especially cereals. Ochratoxin A is found in stored grain products in UK (1997).Ochratoxin A, a toxin produced by Aspergillus ochraceus and Penicillium verrucosum, is one of the most abundant food-contaminating mycotoxins in the world. Human exposure occurs mainly through consumption of improperly stored food products, particularly contaminated grain and pork products, as well as coffee, wine grapes and dried grapes. The toxin has been found in the tissues and organs of animals, including human blood and breast milk. Ochratoxin A toxicity has large species- and sex-specific differences Mycotoxin. Production by Aspergillus melleus, Aspergillus sulphureus and Penicillium viridicatum.Potential contaminant of foodstuffs, especially cereals. Found in stored grain products in UK (1997) D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D009676 - Noxae > D011042 - Poisons > D009793 - Ochratoxins D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D000077264 - Calcium-Regulating Hormones and Agents D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators

   

Prednisone

(1S,2R,10S,11S,14R,15S)-14-hydroxy-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-3,6-diene-5,17-dione

C21H26O5 (358.178)


Prednisone is only found in individuals that have used or taken this drug. It is a synthetic anti-inflammatory glucocorticoid derived from cortisone. It is biologically inert and converted to prednisolone in the liver. [PubChem]Prednisone is a glucocorticoid receptor agonist. It is first metabolized in the liver to its active form, prednisolone. Prednisolone crosses cell membranes and binds with high affinity to specific cytoplasmic receptors. The result includes inhibition of leukocyte infiltration at the site of inflammation, interference in the function of mediators of inflammatory response, suppression of humoral immune responses, and reduction in edema or scar tissue. The antiinflammatory actions of corticosteroids are thought to involve phospholipase A2 inhibitory proteins, lipocortins, which control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes. CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3926; ORIGINAL_PRECURSOR_SCAN_NO 3924 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8093; ORIGINAL_PRECURSOR_SCAN_NO 8092 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3954; ORIGINAL_PRECURSOR_SCAN_NO 3949 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8001; ORIGINAL_PRECURSOR_SCAN_NO 7998 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3955; ORIGINAL_PRECURSOR_SCAN_NO 3954 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8041; ORIGINAL_PRECURSOR_SCAN_NO 8039 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3945; ORIGINAL_PRECURSOR_SCAN_NO 3943 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8089; ORIGINAL_PRECURSOR_SCAN_NO 8086 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8045; ORIGINAL_PRECURSOR_SCAN_NO 8040 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3963; ORIGINAL_PRECURSOR_SCAN_NO 3961 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8093; ORIGINAL_PRECURSOR_SCAN_NO 8091 CONFIDENCE standard compound; INTERNAL_ID 573; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3943; ORIGINAL_PRECURSOR_SCAN_NO 3941 A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 3243 CONFIDENCE standard compound; INTERNAL_ID 2196 CONFIDENCE standard compound; INTERNAL_ID 2401 D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Edetic Acid

2-({2-[bis(carboxymethyl)amino]ethyl}(carboxymethyl)amino)acetic acid

C10H16N2O8 (292.0907)


Edetic Acid is only found in individuals that have used or taken this drug. It is a chelating agent (chelating agents) that sequesters a variety of polyvalent cations. It is used in pharmaceutical manufacturing and as a food additive. [PubChem]The pharmacologic effects of edetate calcium disodium are due to the formation of chelates with divalent and trivalent metals. A stable chelate will form with any metal that has the ability to displace calcium from the molecule, a feature shared by lead, zinc, cadmium, manganese, iron and mercury. The amounts of manganese and iron metabolized are not significant. Copper is not mobilized and mercury is unavailable for chelation because it is too tightly bound to body ligands or it is stored in inaccessible body compartments. The excretion of calcium by the body is not increased following intravenous administration of edetate calcium disodium, but the excretion of zinc is considerably increased. D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D000074385 - Food Ingredients > D005503 - Food Additives D006401 - Hematologic Agents > D000925 - Anticoagulants

   

Lidocaine

2-(Diethylamino)-N-(2,6-dimethylphenyl)acetamide

C14H22N2O (234.1732)


Lidocaine is only found in individuals that have used or taken this drug. It is a local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of procaine but its duration of action is shorter than that of bupivacaine or prilocaine. [PubChem]Lidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action. Lidocaine alters signal conduction in neurons by blocking the fast voltage gated sodium (Na+) channels in the neuronal cell membrane that are responsible for signal propagation. With sufficient blockage the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anaesthetic effect by not merely preventing pain signals from propagating to the brain but by aborting their birth in the first place. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 2572 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker KEIO_ID L034; [MS2] KO009034 KEIO_ID L034 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Lidocaine (Lignocaine) inhibits sodium channels involving complex voltage and using dependence[1]. Lidocaine decreases growth, migration and invasion of gastric carcinoma cells via up-regulating miR-145 expression and further inactivation of MEK/ERK and NF-κB signaling pathways. Lidocaine is an amide derivative and has potential for the research of ventricular arrhythmia[2].

   

Sulfamethoxazole

4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide

C10H11N3O3S (253.0521)


Sulfamethoxazole is only found in individuals that have used or taken this drug. It is a bacteriostatic antibacterial agent that interferes with folic acid synthesis in susceptible bacteria. Its broad spectrum of activity has been limited by the development of resistance. (From Martindale, The Extra Pharmacopoeia, 30th ed, p208)Sulfonamides inhibit the enzymatic conversion of pteridine and p-aminobenzoic acid (PABA) to dihydropteroic acid by competing with PABA for binding to dihydrofolate synthetase, an intermediate of tetrahydrofolic acid (THF) synthesis. THF is required for the synthesis of purines and dTMP and inhibition of its synthesis inhibits bacterial growth. Pyrimethamine and trimethoprim inhibit dihydrofolate reductase, another step in THF synthesis, and therefore act synergistically with the sulfonamides. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EC - Intermediate-acting sulfonamides COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; EAWAG_UCHEM_ID 298 CONFIDENCE standard compound; INTERNAL_ID 1018 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Warfarin

4-hydroxy-3-[(1R)-3-oxo-1-phenylbutyl]-2H-1-benzopyran-2-one

C19H16O4 (308.1049)


Warfarin is an anticoagulant that acts by inhibiting the synthesis of vitamin K-dependent coagulation factors. Warfarin is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, pulmonary embolism, and atrial fibrillation with embolization. It is also used as an adjunct in the prophylaxis of systemic embolism after myocardial infarction. Warfarin is also used as a rodenticide. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent > C173064 - Vitamin K Antagonist D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins D010575 - Pesticides > D012378 - Rodenticides D016573 - Agrochemicals

   

Mycophenolic acid

(4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoic acid

C17H20O6 (320.126)


Mycophenolic acid is an an immunosuppresant drug and potent anti-proliferative, and can be used in place of the older anti-proliferative azathioprine. It is usually used as part of triple therapy including a calcineurin inhibitor (ciclosporin or tacrolimus) and prednisolone. It is also useful in research for the selection of animal cells that express the E. coli gene coding for XGPRT (xanthine guanine phosphoribosyltransferase). L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C471 - Enzyme Inhibitor > C2087 - Inosine Monophosphate Dehydrogenase Inhibitor C308 - Immunotherapeutic Agent > C574 - Immunosuppressant CONFIDENCE standard compound; INTERNAL_ID 8577 CONFIDENCE standard compound; INTERNAL_ID 2698 CONFIDENCE standard compound; INTERNAL_ID 4128 COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Mycophenolic acid is a potent uncompetitive inosine monophosphate dehydrogenase (IMPDH) inhibitor with an EC50 of 0.24 μM.?Mycophenolic acid demonstrates antiviral effects against a wide range of RNA viruses including influenza. Mycophenolic acid is an immunosuppressive agent. Antiangiogenic and antitumor effects[1][2].

   

Oxytetracycline

(4S,4aR,5S,5aR,6S,12aS)-4-(dimethylamino)-3,5,6,10,11,12a-hexahydroxy-6-methyl-1,12-dioxo-1,4,4a,5,5a,6,12,12a-octahydrotetracene-2-carboxamide

C22H24N2O9 (460.1482)


Oxytetracycline is a tetracycline analog isolated from the actinomycete streptomyces rimosus and used in a wide variety of clinical conditions. [PubChem]Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane. Oxytetracycline is a clinically used broad-spectrum antibacterial antibiotic. It is approved by FDA for use in fish and animal feeds. Oxytetracycline is known as a broad-spectrum antibiotic due to its activity against such a wide range of infections. It was the second of the tetracyclines to be discovered. Oxytetracycline, like other tetracyclines, is used to treat many infections common and rare. Its better absorption profile makes it preferable to tetracycline for moderately severe acne, but alternatives sould be sought if no improvement occurs by 3 months G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use > D06AA - Tetracycline and derivatives J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines Clinically used broad-spectrum antibacterial antibiotic. Approved by FDA for use in fish and animal feeds S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Oxytetracycline is an antibiotic belonging to the tetracycline class. Oxytetracycline potent inhibits Gram-negative and Gram-positive bacteria. Oxytetracycline is a protein synthesis inhibitor and prevents the binding from aminoacil-tRNA to the complex m-ribosomal RNA. Oxytetracycline also possesses anti-HSV-1 activity[1][2][3].

   

Thiopental

5-Ethyl-5-(1-methyl-butyl)-2-thioxo-dihydro-pyrimidine-4,6-dione

C11H18N2O2S (242.1089)


A barbiturate that is administered intravenously for the induction of general anesthesia or for the production of complete anesthesia of short duration. It is also used for hypnosis and for the control of convulsive states. It has been used in neurosurgical patients to reduce increased intracranial pressure. It does not produce any excitation but has poor analgesic and muscle relaxant properties. Small doses have been shown to be anti-analgesic and lower the pain threshold. (From Martindale, The Extra Pharmacopoeia, 30th ed, p920) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent EAWAG_UCHEM_ID 2742; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2742

   

Amoxicillin

(2S,5R,6R)-6-{[(2R)-2-amino-2-(4-hydroxyphenyl)acetyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C16H19N3O5S (365.1045)


Amoxicillin (International Nonproprietary Name), or amoxycillin (British Approved Name), is a moderate-spectrum, bacteriolytic, -lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. It is a broad-spectrum semisynthetic antibiotic similar to ampicillin except that its resistance to gastric acid permits higher serum levels with oral administration (PubChem). Amoxicillin is active against a wide range of Gram-positive and a limited range of Gram-negative organisms. It is susceptible to degradation by beta-lactamase-producing bacteria, and so may be given with clavulanic acid to increase its susceptibility. The incidence of beta-lactamase-producing resistant organisms, including E. coli, appears to be increasing. Amoxicillin binds to penicillin-binding protein 1A (PBP-1A) located inside the bacterial cell wall. Penicillins acylate the penicillin-sensitive transpeptidase C-terminal domain by opening the lactam ring. This inactivation of the enzyme prevents the formation of a cross-link of two linear peptidoglycan strands, inhibiting the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that amoxicillin interferes with an autolysin inhibitor. Amoxicillin is usually the drug of choice within the class because it is better absorbed, following oral administration, than other -lactam antibiotics. Amoxicillin in trihydrate form is available as capsules, chewable and dispersible tablets, syrup and pediatric suspension for oral use, and as the sodium salt for intravenous administration. It is one of the most common antibiotics prescribed for children, and the liquid forms are helpful in cases where the patient might find it difficult to take tablets or capsules. It has three ionizable groups. Amoxicillin as a once-daily dosing form (Moxatag) was approved by the American FDA in January 2008. Amoxicillin is one of the semi-synthetic penicillins discovered by Beecham scientists. The patent for amoxicillin has expired, thus amoxicillin is marketed under many trade names, including Actimoxi, Alphamox, AMK, Amoksibos, Amoxiclav Sandoz, Amoxidal, Amoxil, Amoxin, Amoksiklav, Amoxibiotic, Amoxicilina, Apo-Amoxi, Augmentin, Bactox, Betalaktam, Cilamox, Curam, Dedoxil, Dispermox, Duomox, E-Mox (250mg and 500 mg), Enhancin, Gimalxina, Geramox, Hiconcil, Isimoxin, Klavox, Lamoxy, Moxatag, Moxilen, Moxypen, Moxyvit, Nobactam, Novamoxin, Ospamox, Panklav, Pamoxicillin, Panamox, Polymox, Samthongcillin, Clamoxyl, Senox, Sinacilin, Trimox, Tolodina, Wymox, Yucla, Zerrsox, and Zimox. Amoxicillin is found in milk and milk products. It is a potential contaminant in cows milk arising from its veterinary use. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Methotrexate

(2S)-2-[(4-{[(2,4-diaminopteridin-6-yl)methyl](methyl)amino}phenyl)formamido]pentanedioic acid

C20H22N8O5 (454.1713)


Methotrexate is only found in individuals that have used or taken this drug. It is an antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of tetrahydrofolate dehydrogenase and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA. [PubChem]Methotrexate anti-tumor activity is a result of the inhibition of folic acid reductase, leading to inhibition of DNA synthesis and inhibition of cellular replication. The mechanism involved in its activity against rheumatoid arthritis is not known. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BA - Folic acid analogues L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists CONFIDENCE standard compound; INTERNAL_ID 2730 D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Corona-virus KEIO_ID M048 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Piroxicam

4-hydroxy-2-methyl-1,1-dioxo-N-(pyridin-2-yl)-2H-1λ⁶,2-benzothiazine-3-carboxamide

C15H13N3O4S (331.0627)


Piroxicam is only found in individuals that have used or taken this drug. It is a cyclooxygenase inhibiting, non-steroidal anti-inflammatory agent (NSAID) that is well established in treating rheumatoid arthritis and osteoarthritis and used for musculoskeletal disorders, dysmenorrhea, and postoperative pain. Its long half-life enables it to be administered once daily. [PubChem]The antiinflammatory effect of Piroxicam may result from the reversible inhibition of cyclooxygenase, causing the peripheral inhibition of prostaglandin synthesis. The prostaglandins are produced by an enzyme called Cox-1. Piroxicam blocks the Cox-1 enzyme, resulting into the disruption of production of prostaglandins. Piroxicam also inhibits the migration of leukocytes into sites of inflammation and prevents the formation of thromboxane A2, an aggregating agent, by the platelets. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AC - Oxicams S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents KEIO_ID P068; [MS2] KO009199 D004791 - Enzyme Inhibitors KEIO_ID P068

   

1-Naphthol

1-Naphthol, 1-(14)C-labeled

C10H8O (144.0575)


1-Naphthol, or ?-naphthol, is a colorless crystalline solid with the formula C10H7OH. It is an isomer of 2-naphthol differing by the location of the hydroxyl group on naphthalene. The naphthols are naphthalene homologues of phenol, with the hydroxyl group being more reactive than in the phenols. Both isomers are soluble in simple alcohols, ethers, and chloroform. They can be used in the production of dyes and in organic synthesis.; 1-naphthol (1N) is a metabolite of carbaryl and naphthalene that is an intermediate in Metabolism of xenobiotics by cytochrome P450. It is generated by spontaneous reaction from (1R,2S)-Naphthalene epoxide then is it converted to 1,4-Dihydroxynaphthalene. Although 1-Naphthol is not persistent in the body, a single urine sample may adequately predict exposure over several months to chlorpyrifos, which is a broad-spectrum organophosphate insecticide. In adult men, TCPY and 1N were associated with reduced testosterone levels (PMID: 16357596, 15579421). Naphthalen-1-ol is found in black walnut. 1-naphthol (1N) is a metabolite of carbaryl and naphthalene that is an intermediate in Metabolism of xenobiotics by cytochrome P450. It is generated by spontaneous reaction from (1R,2S)-Naphthalene epoxide then is it converted to 1,4-Dihydroxynaphthalene. Although 1-Naphthol is not persistent in the body, a single urine sample may adequately predict exposure over several months to chlorpyrifos, which is a broad-spectrum organophosphate insecticide. In adult men, TCPY and 1N were associated with reduced testosterone levels (PMID:16357596, 15579421). CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8253; ORIGINAL_PRECURSOR_SCAN_NO 8251 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9487; ORIGINAL_PRECURSOR_SCAN_NO 9486 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8287; ORIGINAL_PRECURSOR_SCAN_NO 8285 ORIGINAL_PRECURSOR_SCAN_NO 9486; CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9487 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4807; ORIGINAL_PRECURSOR_SCAN_NO 4806 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4732; ORIGINAL_PRECURSOR_SCAN_NO 4731 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9506; ORIGINAL_PRECURSOR_SCAN_NO 9505 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4804; ORIGINAL_PRECURSOR_SCAN_NO 4799 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4717; ORIGINAL_PRECURSOR_SCAN_NO 4715 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8261; ORIGINAL_PRECURSOR_SCAN_NO 8259 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4771; ORIGINAL_PRECURSOR_SCAN_NO 4767 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8267; ORIGINAL_PRECURSOR_SCAN_NO 8265 CONFIDENCE standard compound; INTERNAL_ID 1136; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4779; ORIGINAL_PRECURSOR_SCAN_NO 4777 CONFIDENCE standard compound; INTERNAL_ID 46 1-naphthol is an excited state proton transfer (ESPT) fluorescent molecular probe. 1-naphthol is an excited state proton transfer (ESPT) fluorescent molecular probe.

   

Cyclophosphamide

(+,-)-2-(Bis(2-chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-oxide monohydrate

C7H15Cl2N2O2P (260.0248)


Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the liver to form the active aldophosphamide. It has been used in the treatment of lymphoma and leukemia. Its side effect, alopecia, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AA - Nitrogen mustard analogues D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant CONFIDENCE standard compound; INTERNAL_ID 4119 CONFIDENCE standard compound; INTERNAL_ID 2727 D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens D018501 - Antirheumatic Agents

   

Cyclosporine

Cyclosporine (Neoral)

C62H111N11O12 (1201.8413)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D003524 - Cyclosporins D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Cyclosporin A (Cyclosporine A) is an immunosuppressant which binds to the cyclophilin and inhibits phosphatase activity of protein phosphatase 2B (PP2B/calcineurin) with an IC50 of 5 nM[3]. Cyclosporin A also inhibits CD11a/CD18 adhesion[8].

   

Prednisolone

(1S,2R,10S,11S,14R,15S,17S)-14,17-dihydroxy-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-3,6-dien-5-one

C21H28O5 (360.1937)


Prednisolone is only found in individuals that have used or taken this drug. It is a glucocorticoid with the general properties of the corticosteroids. It is the drug of choice for all conditions in which routine systemic corticosteroid therapy is indicated, except adrenal deficiency states. [PubChem]Glucocorticoids such as Prednisolone can inhibit leukocyte infiltration at the site of inflammation, interfere with mediators of inflammatory response, and suppress humoral immune responses. The antiinflammatory actions of glucocorticoids are thought to involve phospholipase A2 inhibitory proteins, lipocortins, which control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes. Prednisolone reduces inflammatory reaction by limiting the capillary dilatation and permeability of the vascular structures. These compounds restrict the accumulation of polymorphonuclear leukocytes and macrophages and reduce the release of vasoactive kinins. Recent research suggests that corticosteroids may inhibit the release of arachidonic acid from phospholipids, thereby reducing the formation of prostaglandins. Prednisolone is a glucocorticoid receptor agonist. On binding, the corticoreceptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing an increase or decrease in expression of specific target genes, including suppression of IL2 (interleukin 2) expression. CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10371; ORIGINAL_PRECURSOR_SCAN_NO 10370 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10290; ORIGINAL_PRECURSOR_SCAN_NO 10289 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10345; ORIGINAL_PRECURSOR_SCAN_NO 10344 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10328; ORIGINAL_PRECURSOR_SCAN_NO 10327 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10352; ORIGINAL_PRECURSOR_SCAN_NO 10350 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3958; ORIGINAL_PRECURSOR_SCAN_NO 3956 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3963; ORIGINAL_PRECURSOR_SCAN_NO 3958 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3968; ORIGINAL_PRECURSOR_SCAN_NO 3965 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3987; ORIGINAL_PRECURSOR_SCAN_NO 3983 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3980; ORIGINAL_PRECURSOR_SCAN_NO 3979 CONFIDENCE standard compound; INTERNAL_ID 1034; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3991; ORIGINAL_PRECURSOR_SCAN_NO 3989 A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01C - Antiinflammatory agents and antiinfectives in combination > S01CB - Corticosteroids/antiinfectives/mydriatics in combination D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XA - Corticosteroids, weak, other combinations A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AC - Corticosteroids for local oral treatment C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AA - Corticosteroids, weak (group i) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids S - Sensory organs > S03 - Ophthalmological and otological preparations > S03B - Corticosteroids > S03BA - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid S - Sensory organs > S02 - Otologicals > S02B - Corticosteroids > S02BA - Corticosteroids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 2783 CONFIDENCE standard compound; INTERNAL_ID 2398 D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Prednisolone is a potent, orally active corticosteroid and a glucocorticoid. Prednisolone possesses about four times the anti-inflammatory activity of hydrocortisone while causing less salt and water retention. Prednisolone can be used for ocular, anti-inflammatory research[1][2].

   

Lamivudine

4-amino-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2-dihydropyrimidin-2-one

C8H11N3O3S (229.0521)


Lamivudine is only found in individuals that have used or taken this drug. It is a reverse transcriptase inhibitor and zalcitabine analog in which a sulfur atom replaces the 3' carbon of the pentose ring. It is used to treat Human Immunodeficiency Virus Type 1 (HIV-1) and hepatitis B (HBV).Lamivudine is a synthetic nucleoside analogue and is phosphorylated intracellularly to its active 5-triphosphate metabolite, lamivudine triphosphate (L-TP). This nucleoside analogue is incorporated into viral DNA by HIV reverse transcriptase and HBV polymerase, resulting in DNA chain termination. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent Lamivudine (BCH-189) is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Lamivudine can inhibit HIV reverse transcriptase 1/2 and also the reverse transcriptase of hepatitis B virus. Lamivudine salicylate can penetrate the CNS[1][2].

   

Sulfasalazine

2-hydroxy-5-[(E)-2-{4-[(pyridin-2-yl)sulfamoyl]phenyl}diazen-1-yl]benzoic acid

C18H14N4O5S (398.0685)


Sulfasalazine is only found in individuals that have used or taken this drug. It is a drug that is used in the management of inflammatory bowel diseases. Its activity is generally considered to lie in its metabolic breakdown product, 5-aminosalicylic acid (see mesalamine) released in the colon. (From Martindale, The Extra Pharmacopoeia, 30th ed, p907)The mode of action of Sulfasalazine or its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), is still under investigation, but may be related to the anti-inflammatory and/or immunomodulatory properties that have been observed in animal and in vitro models, to its affinity for connective tissue, and/or to the relatively high concentration it reaches in serous fluids, the liver and intestinal walls, as demonstrated in autoradiographic studies in animals. In ulcerative colitis, clinical studies utilizing rectal administration of Sulfasalazine, SP and 5-ASA have indicated that the major therapeutic action may reside in the 5-ASA moiety. The relative contribution of the parent drug and the major metabolites in rheumatoid arthritis is unknown. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D005765 - Gastrointestinal Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents

   

Urea

Carbonyl diamide

CH4N2O (60.0324)


Urea is a highly soluble organic compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids. Urea is formed in a cyclic pathway known simply as the urea cycle. In this cycle, amino groups donated by ammonia and L-aspartate are converted to urea. Urea is essentially a waste product; it has no physiological function. It is dissolved in blood (in humans in a concentration of 2.5 - 7.5 mmol/liter) and excreted by the kidney in the urine. In addition, a small amount of urea is excreted (along with sodium chloride and water) in human sweat. Urea is found to be associated with primary hypomagnesemia, which is an inborn error of metabolism. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis Formulation aid. Cattle feed supplement. Urea is found in many foods, some of which are globe artichoke, hickory nut, hard wheat, and cherry tomato. D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.

   

Procarbazine

4-[(2-methylhydrazin-1-yl)methyl]-N-(propan-2-yl)benzamide

C12H19N3O (221.1528)


Procarbazine is only found in individuals that have used or taken this drug. It is an antineoplastic agent used primarily in combination with mechlorethamine, vincristine, and prednisone (the MOPP protocol) in the treatment of Hodgkins disease. [PubChem]The precise mode of cytotoxic action of procarbazine has not been clearly defined. There is evidence that the drug may act by inhibition of protein, RNA and DNA synthesis. Studies have suggested that procarbazine may inhibit transmethylation of methyl groups of methionine into t-RNA. The absence of functional t-RNA could cause the cessation of protein synthesis and consequently DNA and RNA synthesis. In addition, procarbazine may directly damage DNA. Hydrogen peroxide, formed during the auto-oxidation of the drug, may attack protein sulfhydryl groups contained in residual protein which is tightly bound to DNA. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XB - Methylhydrazines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents

   

Prenol

3-Methyl-2-butenyl alcohol

C5H10O (86.0732)


Prenol is found in blackcurrant. Prenol is a constituent of ylang-ylang and hop oils. Prenol is found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Prenol is a flavouring ingredient Constituent of ylang-ylang and hop oils. Found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Flavouring ingredient. 3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

3-Methyl-2-butenal

β,β-Dimethylacrylic aldehyde

C5H8O (84.0575)


3-Methyl-2-butenal, also known as senecialdehyde or 3,3-dimethylacrolein, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. 3-methyl-2-butenal has been detected, but not quantified, in several different foods, such as common oregano, beechnuts, oval-leaf huckleberries, tea leaf willows, and red rice. This could make 3-methyl-2-butenal a potential biomarker for the consumption of these foods. 3-Methyl-2-butenal is a derivative of acrolein that is an alpha, beta-unsaturated carbonyl metabolite. It can be formed endogenously during lipid peroxidation or after oxidative stress, and is considered to play an important role in human carcinogenesis. The endogenously formed acroleins are a constant source of DNA damage, can lead to mutation, and can also induce tumours in humans (PMID:8319634). 3-Methyl-2-butenal, which is an unsaturated aldehyde bearing substitution at the alkene terminus, is a poor inactivator of the enzymes protein tyrosine phosphatases (PTPs). The inactivation of PTPs can yield profound biological consequences arising from the disruption of cellular signalling pathways (PMID:17655273). Present in blackberry, grape brandy, cocoa, currants, baked potato, tea, costmary and white bread. Flavouring ingredient

   

Iron

Iron

Fe (55.9349)


D001697 - Biomedical and Dental Materials

   

Formaldehyde

Methylene glycol

CH2O (30.0106)


Formaldehyde is a highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717) -- Pubchem; The chemical compound formaldehyde (also known as methanal), is a gas with a pungent smell. It is the simplest aldehyde. Its chemical formula is H2CO. Formaldehyde was first synthesized by the Russian chemist Aleksandr Butlerov in 1859 but was conclusively identified by August Wilhelm van Hofmann in 1867. Although formaldehyde is a gas at room temperature, it is readily soluble in water, and it is most commonly sold as a 37\\% solution in water called by trade names such as formalin or formol. In water, formaldehyde polymerizes, and formalin actually contains very little formaldehyde in the form of H2CO monomer. Usually, these solutions contain a few percent methanol to limit the extent of polymerization. Formaldehyde exhibits most of the general chemical properties of the aldehydes, except that is generally more reactive than other aldehydes. Formaldehyde is a potent electrophile. It can participate in electrophilic aromatic substitution reactions with aromatic compounds and can undergo electrophilic addition reactions with alkenes. In the presence of basic catalysts, formaldehyde undergoes a Cannizaro reaction to produce formic acid and methanol. Because formaldehyde resins are used in many construction materials, including plywood, carpet, and spray-on insulating foams, and because these resins slowly give off formaldehyde over time, formaldehyde is one of the more common indoor air pollutants. At concentrations above 0.1 mg/kg in air, inhaled formaldehyde can irritate the eyes and mucous membranes, resulting in watery eyes, headache, a burning sensation in the throat, and difficulty breathing. -- Wikipedia. A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. Formaldehyde is found in many foods, some of which are ginseng, lentils, coriander, and allspice. D000890 - Anti-Infective Agents D004202 - Disinfectants D005404 - Fixatives

   
   

beta-Mercaptoethanol

2-sulfanylethan-1-ol

C2H6OS (78.0139)


   

Mercury

mercury(II) cation

Hg (201.9706)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AK - Mercurial products Mercury is a metal that is a liquid at room temperature. Mercury has a long and interesting history deriving from its use in medicine and industry, with the resultant toxicity produced. In high enough doses, all forms of mercury can produce toxicity. The most devastating tragedies related to mercury toxicity in recent history include Minamata Bay and Niagata, Japan in the 1950s, and Iraq in the 1970s. More recent mercury toxicity issues include the extreme toxicity of the dimethylmercury compound noted in 1998, the possible toxicity related to dental amalgams, and the disproved relationship between vaccines and autism related to the presence of the mercury-containing preservative, thimerosal.; Hair has been used in many studies as a bioindicator of mercury exposure for human populations. At the time of hair formation, mercury from the blood capillaries penetrates into the hair follicles. As hair grows approximately 1 cm each month, mercury exposure over time is recapitulated in hair strands. Mercury levels in hair closest to the scalp reflect the most recent exposure, while those farthest from the scalp are representative of previous blood concentrations. Sequential analyses of hair mercury have been useful for identifying seasonal variations over time in hair mercury content, which may be the result of seasonal differences in bioavailability of fish and differential consumption of piscivorous and herbivorous fish species. Knowledge of the relation between fish-eating practices and hair mercury levels is particularly important for adequate mitigation strategies. Physiologically, it exists as an ion in the body. Methyl mercury is well absorbed, and because the biological half-life is long, the body burden in humans may reach high levels. People who frequently eat contaminated seafood can acquire mercury concentrations that are potentially dangerous to the fetus in pregnant women. The dose-response relationships have been extensively studied, and the safe levels of exposure have tended to decline. Individual methyl mercury exposure is usually determined by analysis of mercury in blood and hair. ; Whilst the clinical features of acute mercury poisoning have been well described, chronic low dose exposure to mercury remains poorly characterised and its potential role in various chronic disease states remains controversial. Low molecular weight thiols, i.e. sulfhydryl containing molecules such as cysteine, are emerging as important factors in the transport and distribution of mercury throughout the body due to the phenomenon of "Molecular Mimicry" and its role in the molecular transport of mercury. Chelation agents such as the dithiols sodium 2,3-dimercaptopropanesulfate (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) are the treatments of choice for mercury toxicity. Alpha-lipoic acid (ALA), a disulfide, and its metabolite dihydrolipoic acid (DHLA), a dithiol, have also been shown to have chelation properties when used in an appropriate manner. Whilst N-acetyl-cysteine (NAC) and glutathione (GSH) have been recommended in the treatment of mercury toxicity in the past, an examination of available evidence suggests these agents may in fact be counterproductive. Zinc and selenium have also been shown to exert protective effects against mercury toxicity, most likely mediated by induction of the metal binding proteins metallothionein and selenoprotein-P. Evidence suggests however that the co-administration of selenium and dithiol chelation agents during treatment may also be counter-productive. Finally, the issue of diagnostic testing for chronic, historical or low dose mercury poisoning is considered including an analysis of the influence of ligand interactions and nutritional factors upon the accuracy of "chelation challenge" tests. (PMID: 17448359, 17408840, 17193738). Mercury is found in many foods, some of which are rice, wild carrot, horseradish, and endive.

   

Pentostatin

(8R)-3-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-3H,6H,7H,8H-imidazo[4,5-d][1,3]diazepin-8-ol

C11H16N4O4 (268.1171)


Pentostatin is only found in individuals that have used or taken this drug. It is a potent inhibitor of adenosine deaminase. The drug is effective in the treatment of many lymphoproliferative malignancies, particularly hairy-cell leukemia. It is also synergistic with some other antineoplastic agents and has immunosuppressive activity. [PubChem]Pentostatin is a potent transition state inhibitor of adenosine deaminase (ADA), the greatest activity of which is found in cells of the lymphoid system. T-cells have higher ADA activity than B-cells, and T-cell malignancies have higher activity than B-cell malignancies. The cytotoxicity that results from prevention of catabolism of adenosine or deoxyadenosine is thought to be due to elevated intracellular levels of dATP, which can block DNA synthesis through inhibition of ribonucleotide reductase. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Cytotoxicity is cell cycle phase-specific (S-phase). D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D058892 - Adenosine Deaminase Inhibitors C471 - Enzyme Inhibitor > C2157 - Adenosine Deaminase Inhibitor

   

Aerobactin

(2S)-2-[3-carboxy-3-({[(1S)-1-carboxy-5-(N-hydroxyacetamido)pentyl]carbamoyl}methyl)-3-hydroxypropanamido]-6-(N-hydroxyacetamido)hexanoic acid

C22H36N4O13 (564.2279)


Aerobactin is a virulence factor for enteric bacteria found occasionally in humans, and is produced by bacteria such as Enterobacter cloacae. E. cloacae is part of the normal intestinal floras of many individuals and not a primary human pathogen but has been considered to be an important cause of nosocomial infections. Aerobactin secretion in vivo could be an important step in the stages of the infection cycle during which intestine-populating opportunistic bacteria effectively colonize the gut, penetrate the mucous layer covering the intestinal villi, translocate out of intestinal lumen through the epithelial cells, and finally spread to organs within which they may survive. (PMID: 9453621, 8752377) [HMDB] Aerobactin is a virulence factor for enteric bacteria found occasionally in humans, and is produced by bacteria such as Enterobacter cloacae. E. cloacae is part of the normal intestinal floras of many individuals and not a primary human pathogen but has been considered to be an important cause of nosocomial infections. Aerobactin secretion in vivo could be an important step in the stages of the infection cycle during which intestine-populating opportunistic bacteria effectively colonize the gut, penetrate the mucous layer covering the intestinal villi, translocate out of intestinal lumen through the epithelial cells, and finally spread to organs within which they may survive. (PMID: 9453621, 8752377). D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents

   

Clavulanate

(Z)-(2R,5R)-3-(2-Hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo(3.2.0)heptane-2-carboxylic acid

C8H9NO5 (199.0481)


Clavulanic acid and its salts and esters. The acid is a suicide inhibitor of bacterial beta-lactamase enzymes from Streptomyces clavuligerus. Administered alone, it has only weak antibacterial activity against most organisms, but given in combination with beta-lactam antibiotics prevents antibiotic inactivation by microbial lactamase. [PubChem]. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D065093 - beta-Lactamase Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002969 - Clavulanic Acids D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C2140 - Adjuvant > C183118 - Beta-lactamase Inhibitor It is used as a food additive . D004791 - Enzyme Inhibitors

   

Aztreonam

2-{[(Z)-[(2-amino-1,3-thiazol-4-yl)({[(2S,3S)-2-methyl-4-oxo-1-sulfoazetidin-3-yl]carbamoyl})methylidene]amino]oxy}-2-methylpropanoic acid

C13H17N5O8S2 (435.0519)


Aztreonam is only found in individuals that have used or taken this drug. It is a monocyclic beta-lactam antibiotic originally isolated from Chromobacterium violaceum. It is resistant to beta-lactamases and is used in gram-negative infections, especially of the meninges, bladder, and kidneys. It may cause a superinfection with gram-positive organisms. [PubChem]The bactericidal action of aztreonam results from the inhibition of bacterial cell wall synthesis due to a high affinity of aztreonam for penicillin binding protein 3 (PBP3). By binding to PBP3, aztreonam inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. It is possible that aztreonam interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DF - Monobactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Busulfan

4-(methanesulfonyloxy)butyl methanesulfonate

C6H14O6S2 (246.0232)


An alkylating agent having a selective immunosuppressive effect on bone marrow. It has been used in the palliative treatment of chronic myeloid leukemia (myeloid leukemia, chronic), but although symptomatic relief is provided, no permanent remission is brought about. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), busulfan is listed as a known carcinogen. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AB - Alkyl sulfonates C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000477 - Alkylating Agents

   

Chlorambucil

N,N-Di-2-chloroethyl-gamma-p-aminophenylbutyric acid

C14H19Cl2NO2 (303.0793)


A nitrogen mustard alkylating agent used as antineoplastic agent for the treatment of various malignant and nonmalignant diseases. Although it is less toxic than most other nitrogen mustards, it has been listed as a known carcinogen in the Fourth Annual Report on Carcinogens (NTP 85-002, 1985). (Merck Index, 11th ed) L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AA - Nitrogen mustard analogues D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents

   

Lomustine

1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea

C9H16ClN3O2 (233.0931)


Lomustine is only found in individuals that have used or taken this drug. It is an alkylating agent of value against both hematologic malignancies and solid tumors. [PubChem]Lomustine is a highly lipophilic nitrosourea compound which undergoes hydrolysis in vivo to form reactive metabolites. These metabolites cause alkylation and cross-linking of DNA (at the O6 position of guanine-containing bases) and RNA, thus inducing cytotoxicity. Other biologic effects include inhibition of DNA synthesis and some cell cycle phase specificity. Nitrosureas generally lack cross-resistance with other alkylating agents. As lomustine is a nitrosurea, it may also inhibit several key processes such as carbamoylation and modification of cellular proteins. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

Prednisolone Acetate

Prednisolone 21-acetate

C23H30O6 (402.2042)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

Maytansine

[(16Z,18E)-11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.110,14.03,5]hexacosa-10,12,14(26),16,18-pentaen-6-yl] 2-[acetyl(methyl)amino]propanoate

C34H46ClN3O10 (691.2872)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product C1907 - Drug, Natural Product Same as: D04864 Maytansine is a highly potent microtubule-targeted compound that induces mitotic arrest and kills tumor cells at subnanomolar concentrations[1].

   

Boric acid (H3BO3)

1332-77-0 (Di-potassium salt)

BH3O3 (62.0175)


Food contaminant deriving from paper and paperboard in contact with food. V. limited use as an antibacterial agent in caviar. Boric acid (H3BO3) is found in many foods, some of which are pomegranate, fig, french plantain, and redcurrant. Boric acid (H3BO3) is found in fig. Boric acid (H3BO3) is a food contaminant deriving from paper and paperboard in contact with food. V. limited use as an antibacterial agent in cavia S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01089

   

Mercury chloride

Mercury(II) chloride

HgCl2 (271.9083)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AK - Mercurial products D000890 - Anti-Infective Agents D004202 - Disinfectants Same as: D01905

   

Sodium chloride (NaCl)

Sodium chloride, (24)nacl

ClNa (57.9586)


Preservative, chilling medium, curing agent, flavour enhancer, firming agent, pH control agent, antimicrobial agent, separation/filtration aid, moisture control agent, texturizer, colourant aid, emulsifier, material handling aid, leavening agent and clarifying/flocculating agent B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CB - Salt solutions A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent S - Sensory organs > S01 - Ophthalmologicals Same as: D02056

   

alfaxalone

3-Hydroxypregnane-11,20-dione

C21H32O3 (332.2351)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D018377 - Neurotransmitter Agents > D000081227 - Neurosteroids

   

Lipid A

{[(2R,3S,4R,5R,6R)-5-[(3R)-3-(dodecanoyloxy)tetradecanamido]-6-{[(2R,3S,4R,5R,6R)-3-hydroxy-5-[(3R)-3-hydroxytetradecanamido]-4-{[(3R)-3-hydroxytetradecanoyl]oxy}-6-(phosphonooxy)oxan-2-yl]methoxy}-2-(hydroxymethyl)-4-{[(3R)-3-(tetradecanoyloxy)tetradecanoyl]oxy}oxan-3-yl]oxy}phosphonic acid

C94H178N2O25P2 (1797.2193)


Lipid A is a lipid component of an endotoxin held responsible for toxicity of Gram-negative bacteria. It is the innermost of the three regions of the lipopolysaccharide (LPS, also called endotoxin) molecule, and its hydrophobic nature allows it to anchor the LPS to the outer membrane. While its toxic effects can be damaging, the sensing of lipid A by the human immune system may also be critical for the onset of immune responses to Gram-negative infection, and for the subsequent successful fight against the infection. Many of the immune activating abilities of LPS can be attributed to the lipid A unit. It is a very potent stimulant of the immune system, activating cells (for example, monocytes or macrophages) at picogram per milliliter quantities. Lipid A has been found in Escherichia, Pseudomonas, Salmonella and meningococcus (PMID: 11948150; PMID: 12045108). Lipid A is a lipid component of an endotoxin held responsible for toxicity of Gram-negative bacteria. It is the innermost of the three regions of the lipopolysaccharide (LPS, also called endotoxin) molecule, and its hydrophobic nature allows it to anchor the LPS to the outer membrane. While its toxic effects can be damaging, the sensing of lipid A by the human immune system may also be critical for the onset of immune responses to Gram-negative infection, and for the subsequent successful fight against the infection.; Many of the immune activating abilities of LPS can be attributed to the lipid A unit. It is a very potent stimulant of the immune system, activating cells (for example, monocytes or macrophages) at picogram per milliliter quantities. [HMDB]

   

warfarin

(S)-Warfarin

C19H16O4 (308.1049)


A hydroxycoumarin that is 4-hydroxycoumarin which is substituted at position 3 by a 1-phenyl-3-oxo-1-butyl group. C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent > C173064 - Vitamin K Antagonist D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins D010575 - Pesticides > D012378 - Rodenticides D016573 - Agrochemicals Warfarin is a rodenticide used in the home, outdoors, in food service establishments, near fruit trees, in storage buildings, sewers and other places where rodents may be a problem. This white, odorless, tasteless compound, an anti-coagulant, causes bleeding and blood-thinning. [HMDB] CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4694; ORIGINAL_PRECURSOR_SCAN_NO 4690 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4720; ORIGINAL_PRECURSOR_SCAN_NO 4717 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4676; ORIGINAL_PRECURSOR_SCAN_NO 4675 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4690; ORIGINAL_PRECURSOR_SCAN_NO 4686 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4734; ORIGINAL_PRECURSOR_SCAN_NO 4730 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4724; ORIGINAL_PRECURSOR_SCAN_NO 4721 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9135; ORIGINAL_PRECURSOR_SCAN_NO 9131 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9068; ORIGINAL_PRECURSOR_SCAN_NO 9067 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9082; ORIGINAL_PRECURSOR_SCAN_NO 9080 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9187; ORIGINAL_PRECURSOR_SCAN_NO 9186 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9209; ORIGINAL_PRECURSOR_SCAN_NO 9207 CONFIDENCE standard compound; INTERNAL_ID 1289; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9110; ORIGINAL_PRECURSOR_SCAN_NO 9108 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4721; ORIGINAL_PRECURSOR_SCAN_NO 4716 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4720; ORIGINAL_PRECURSOR_SCAN_NO 4719 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4745; ORIGINAL_PRECURSOR_SCAN_NO 4744 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4738; ORIGINAL_PRECURSOR_SCAN_NO 4733 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4832; ORIGINAL_PRECURSOR_SCAN_NO 4831 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4726; ORIGINAL_PRECURSOR_SCAN_NO 4723 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9106; ORIGINAL_PRECURSOR_SCAN_NO 9104 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9133; ORIGINAL_PRECURSOR_SCAN_NO 9130 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9163; ORIGINAL_PRECURSOR_SCAN_NO 9159 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9170; ORIGINAL_PRECURSOR_SCAN_NO 9166 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9145; ORIGINAL_PRECURSOR_SCAN_NO 9142 CONFIDENCE standard compound; INTERNAL_ID 377; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9185; ORIGINAL_PRECURSOR_SCAN_NO 9180 CONFIDENCE standard compound; INTERNAL_ID 2415 CONFIDENCE standard compound; INTERNAL_ID 4042 CONFIDENCE standard compound; INTERNAL_ID 8347 INTERNAL_ID 4042; CONFIDENCE standard compound

   

Clavulanate

Clavulanic Acid - Dark Web Drugs

C8H9NO5 (199.0481)


Antibiotic isolated from Streptomyces clavuligerus. It acts as a suicide inhibitor of bacterial beta-lactamase enzymes. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D065093 - beta-Lactamase Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002969 - Clavulanic Acids D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C2140 - Adjuvant > C183118 - Beta-lactamase Inhibitor D004791 - Enzyme Inhibitors

   

Leucine

2-Amino-4-methylpentanoic acid

C6H13NO2 (131.0946)


A branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isobutyl group. Leucine (symbol Leu or L)[3] is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG. Leucine is named after the Greek word for "white": λευκός (leukós, "white"), after its common appearance as a white powder, a property it shares with many other amino acids.[4] Like valine and isoleucine, leucine is a branched-chain amino acid. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other.[5] It is the most important ketogenic amino acid in humans.[6] Leucine and β-hydroxy β-methylbutyric acid, a minor leucine metabolite, exhibit pharmacological activity in humans and have been demonstrated to promote protein biosynthesis via the phosphorylation of the mechanistic target of rapamycin (mTOR).[7][8] L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

Acridone

9-Acridone Acridanone Acridin-9-one Acridine, 9,10-dihydro-9-oxo- Dihydroketoacridine

C13H9NO (195.0684)


Acridone is a member of the class of acridines that is 9,10-dihydroacridine substituted by an oxo group at position 9. It is a member of acridines and a cyclic ketone. Acridone is a natural product found in Thamnosma montana with data available. Acridone is an organic compound based on the acridine skeleton. Acridone has antibacterial, antimalarial, antiviral and anti neoplastic activities[1]. Acridone is an organic compound based on the acridine skeleton. Acridone has antibacterial, antimalarial, antiviral and anti neoplastic activities[1].

   

ARGININOSUCCINATE

2-[N-(4-amino-4-carboxybutyl)carbamimidamido]butanedioic acid

C10H18N4O6 (290.1226)


   

Maitansine

11-Chloro-21,23-dihydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8-oxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.1¹⁰,¹⁴.0³,⁵]hexacosa-10,12,14(26),16,18,22-hexaen-6-yl 2-(N-methylacetamido)propanoic acid

C34H46ClN3O10 (691.2872)


   

bilirubin

bilirubin

C33H36N4O6 (584.2635)


D020011 - Protective Agents > D000975 - Antioxidants COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Leucine

L-Leucine

C6H13NO2 (131.0946)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

GLUTAMINE

l-glutamine-13c5, 15n2, 99 atom \\% 13c, 9

C5H10N2O3 (146.0691)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives COVID info from COVID-19 Disease Map, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].

   

Citric Acid

Citric Acid

C6H8O7 (192.027)


A - Alimentary tract and metabolism > A09 - Digestives, incl. enzymes > A09A - Digestives, incl. enzymes > A09AB - Acid preparations D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents D006401 - Hematologic Agents > D000925 - Anticoagulants C26170 - Protective Agent > C275 - Antioxidant COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

urea

urea

CH4N2O (60.0324)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.

   

sulfasalazine

Sulfasalazine (Azulfidine)

C18H14N4O5S (398.0685)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D005765 - Gastrointestinal Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4230; ORIGINAL_PRECURSOR_SCAN_NO 4229 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4221; ORIGINAL_PRECURSOR_SCAN_NO 4220 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4107; ORIGINAL_PRECURSOR_SCAN_NO 4106 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4144; ORIGINAL_PRECURSOR_SCAN_NO 4143 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4237; ORIGINAL_PRECURSOR_SCAN_NO 4236 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4245; ORIGINAL_PRECURSOR_SCAN_NO 4244 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8819; ORIGINAL_PRECURSOR_SCAN_NO 8816 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8829; ORIGINAL_PRECURSOR_SCAN_NO 8824 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8833; ORIGINAL_PRECURSOR_SCAN_NO 8830 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8842; ORIGINAL_PRECURSOR_SCAN_NO 8838 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8867; ORIGINAL_PRECURSOR_SCAN_NO 8863 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8846; ORIGINAL_PRECURSOR_SCAN_NO 8844

   

Ochratoxin A

NCGC00162403-05_C20H18ClNO6_L-Phenylalanine, N-[[(3R)-5-chloro-3,4-dihydro-8-hydroxy-3-methyl-1-oxo-1H-2-benzopyran-7-yl]carbonyl]-

C20H18ClNO6 (403.0823)


A phenylalanine derivative resulting from the formal condensation of the amino group of L-phenylalanine with the carboxy group of (3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-3,4-dihydro-1H-2-benzopyran-7-carboxylic acid (ochratoxin alpha). It is among the most widely occurring food-contaminating mycotoxins, produced by Aspergillus ochraceus, Aspergillus carbonarius and Penicillium verrucosum. D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D009676 - Noxae > D011042 - Poisons > D009793 - Ochratoxins D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D000077264 - Calcium-Regulating Hormones and Agents D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 5966 CONFIDENCE Reference Standard (Level 1)

   

Squalene

InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24

C30H50 (410.3912)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Maitansine

N-Acetyl-N-methyl-L-alanine(1S-(1R*,2S*,3R*,5R*,6R*,16E,18E,20S*,21R*))-11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethy-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo(19.3.1.1(sup 10,14).0(sup 3,5))hexacosa-10,12,14(26),16,18-pentaen-6-yl ester

C34H46ClN3O10 (691.2872)


Maytansine is an organic heterotetracyclic compound and 19-membered macrocyclic lactam antibiotic originally isolated from the Ethiopian shrub Maytenus serrata but also found in other Maytenus species. It exhibits cytotoxicity against many tumour cell lines. It has a role as a plant metabolite, an antimicrobial agent, an antineoplastic agent, a tubulin modulator and an antimitotic. It is an epoxide, a carbamate ester, an organochlorine compound, an alpha-amino acid ester, an organic heterotetracyclic compound and a maytansinoid. Maytansine is a natural product found in Putterlickia verrucosa and Gymnosporia diversifolia with data available. Maytansine is an ansamycin antibiotic originally isolated from the Ethiopian shrub Maytenus serrata. Maytansine binds to tubulin at the rhizoxin binding site, thereby inhibiting microtubule assembly, inducing microtubule disassembly, and disrupting mitosis. Maytansine exhibits cytotoxicity against many tumor cell lines and may inhibit tumor growth in vivo. (NCI04) An ansa macrolide isolated from the MAYTENUS genus of East African shrubs. An organic heterotetracyclic compound and 19-membered macrocyclic lactam antibiotic originally isolated from the Ethiopian shrub Maytenus serrata but also found in other Maytenus species. It exhibits cytotoxicity against many tumour cell lines. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents C1907 - Drug, Natural Product Same as: D04864 Maytansine is a highly potent microtubule-targeted compound that induces mitotic arrest and kills tumor cells at subnanomolar concentrations[1].

   

sulfamethoxazole

sulfamethoxazole

C10H11N3O3S (253.0521)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EC - Intermediate-acting sulfonamides An isoxazole (1,2-oxazole) compound having a methyl substituent at the 5-position and a 4-aminobenzenesulfonamido group at the 3-position. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu); Flow Injection CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) CONFIDENCE standard compound; INTERNAL_ID 2343 CONFIDENCE standard compound; INTERNAL_ID 8563 CONFIDENCE Reference Standard (Level 1) CONFIDENCE standard compound; INTERNAL_ID 1018

   

lidocaine

LID_235.1805_10.1

C14H22N2O (234.1732)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1212 CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 800 CONFIDENCE Reference Standard (Level 1) Lidocaine (Lignocaine) inhibits sodium channels involving complex voltage and using dependence[1]. Lidocaine decreases growth, migration and invasion of gastric carcinoma cells via up-regulating miR-145 expression and further inactivation of MEK/ERK and NF-κB signaling pathways. Lidocaine is an amide derivative and has potential for the research of ventricular arrhythmia[2].

   

cyclophosphamide

cyclophosphamide

C7H15Cl2N2O2P (260.0248)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AA - Nitrogen mustard analogues D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens D018501 - Antirheumatic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2579

   

Mycophenolic acid

Mycophenolic (Mycophenolate)

C17H20O6 (320.126)


A member of the class of 2-benzofurans that is 2-benzofuran-1(3H)-one which is substituted at positions 4, 5, 6, and 7 by methyl, methoxy, (2E)-5-carboxy-3-methylpent-2-en-1-yl, and hydroxy groups, respectively. It is an antibiotic produced by Penicillium brevi-compactum, P. stoloniferum, P. echinulatum and related species. An immunosuppressant, it is widely used (partiularly as its sodium salt and as the 2-(morpholin-4-yl)ethyl ester prodrug, mycophenolate mofetil) to prevent tissue rejection following organ transplants and for the treatment of certain autoimmune diseases. L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C471 - Enzyme Inhibitor > C2087 - Inosine Monophosphate Dehydrogenase Inhibitor C308 - Immunotherapeutic Agent > C574 - Immunosuppressant COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE isolated standard relative retention time with respect to 9-anthracene Carboxylic Acid is 1.096 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.098 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2808 Mycophenolic acid is a potent uncompetitive inosine monophosphate dehydrogenase (IMPDH) inhibitor with an EC50 of 0.24 μM.?Mycophenolic acid demonstrates antiviral effects against a wide range of RNA viruses including influenza. Mycophenolic acid is an immunosuppressive agent. Antiangiogenic and antitumor effects[1][2].

   

Amoxicillin

Amoxicilin - Dark Web Drugs

C16H19N3O5S (365.1045)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum A penicillin in which the substituent at position 6 of the penam ring is a 2-amino-2-(4-hydroxyphenyl)acetamido group. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Constituent of Panax notoginseng (sanchi). Notoginsenoside J is found in tea. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; LSQZJLSUYDQPKJ-NJBDSQKTSA-N_Amoxicillin_STSL_0201_Amoxicillin Trihydrate_2000fmol_180831_S2_L02M02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3083

   

Oxytetracycline

Oxytetracycline

C22H24N2O9 (460.1482)


A tetracycline used for treatment of infections caused by a variety of Gram positive and Gram negative microorganisms including Mycoplasma pneumoniae, Pasteurella pestis, Escherichia coli, Haemophilus influenzae (respiratory infections), and Diplococcus pneumoniae. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use > D06AA - Tetracycline and derivatives J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic relative retention time with respect to 9-anthracene Carboxylic Acid is 0.486 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.490 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3610 EAWAG_UCHEM_ID 3610; CONFIDENCE standard compound Oxytetracycline is an antibiotic belonging to the tetracycline class. Oxytetracycline potent inhibits Gram-negative and Gram-positive bacteria. Oxytetracycline is a protein synthesis inhibitor and prevents the binding from aminoacil-tRNA to the complex m-ribosomal RNA. Oxytetracycline also possesses anti-HSV-1 activity[1][2][3].

   

L-Glutamine

l-glutamine-13c5, 15n2, 99 atom \\% 13c, 9

C5H10N2O3 (146.0691)


An alpha-amino acid that consists of butyric acid bearing an amino substituent at position 2 and a carbamoyl substituent at position 4. Glutamine (symbol Gln or Q)[4] is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral, polar amino acid. It is non-essential and conditionally essential in humans, meaning the body can usually synthesize sufficient amounts of it, but in some instances of stress, the body's demand for glutamine increases, and glutamine must be obtained from the diet.[5][6] It is encoded by the codons CAA and CAG. It is named after glutamic acid, which in turn is named after its discovery in cereal proteins, gluten.[7] In human blood, glutamine is the most abundant free amino acid.[8] The dietary sources of glutamine include especially the protein-rich foods like beef, chicken, fish, dairy products, eggs, vegetables like beans, beets, cabbage, spinach, carrots, parsley, vegetable juices and also in wheat, papaya, Brussels sprouts, celery, kale and fermented foods like miso. The one-letter symbol Q for glutamine was assigned in alphabetical sequence to N for asparagine, being larger by merely one methylene –CH2– group. Note that P was used for proline, and O was avoided due to similarity with D. The mnemonic Qlutamine was also proposed.[7] A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives COVID info from COVID-19 Disease Map, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 13 Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].

   

Lidocain

lidocaine

C14H22N2O (234.1732)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; INTERNAL_ID 4102 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Lidocaine (Lignocaine) inhibits sodium channels involving complex voltage and using dependence[1]. Lidocaine decreases growth, migration and invasion of gastric carcinoma cells via up-regulating miR-145 expression and further inactivation of MEK/ERK and NF-κB signaling pathways. Lidocaine is an amide derivative and has potential for the research of ventricular arrhythmia[2].

   

Methotrexate

L(+)-Amethopterin hydrate

C20H22N8O5 (454.1713)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BA - Folic acid analogues L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

prednisolone

11,17,21-Trihydroxypregna-1,4-diene-3,20-dione

C21H28O5 (360.1937)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01C - Antiinflammatory agents and antiinfectives in combination > S01CB - Corticosteroids/antiinfectives/mydriatics in combination A glucocorticoid that is prednisone in which the oxo group at position 11 has been reduced to the corresponding beta-hydroxy group. It is a drug metabolite of prednisone. D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XA - Corticosteroids, weak, other combinations A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AC - Corticosteroids for local oral treatment C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AA - Corticosteroids, weak (group i) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids S - Sensory organs > S03 - Ophthalmological and otological preparations > S03B - Corticosteroids > S03BA - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid S - Sensory organs > S02 - Otologicals > S02B - Corticosteroids > S02BA - Corticosteroids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Prednisolone is a potent, orally active corticosteroid and a glucocorticoid. Prednisolone possesses about four times the anti-inflammatory activity of hydrocortisone while causing less salt and water retention. Prednisolone can be used for ocular, anti-inflammatory research[1][2].

   

Prednisone

Prednisone

C21H26O5 (358.178)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2196 CONFIDENCE standard compound; INTERNAL_ID 8744

   

Biotin

d-biotin

C10H16N2O3S (244.0882)


A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2876; ORIGINAL_PRECURSOR_SCAN_NO 2873 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2877; ORIGINAL_PRECURSOR_SCAN_NO 2875 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2896; ORIGINAL_PRECURSOR_SCAN_NO 2894 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2875; ORIGINAL_PRECURSOR_SCAN_NO 2872 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2894; ORIGINAL_PRECURSOR_SCAN_NO 2891 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2908; ORIGINAL_PRECURSOR_SCAN_NO 2906 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6231; ORIGINAL_PRECURSOR_SCAN_NO 6229 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6248; ORIGINAL_PRECURSOR_SCAN_NO 6246 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6251; ORIGINAL_PRECURSOR_SCAN_NO 6246 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6253; ORIGINAL_PRECURSOR_SCAN_NO 6251 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6265; ORIGINAL_PRECURSOR_SCAN_NO 6263 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6256; ORIGINAL_PRECURSOR_SCAN_NO 6253 CONFIDENCE standard compound; INTERNAL_ID 219 INTERNAL_ID 219; CONFIDENCE standard compound relative retention time with respect to 9-anthracene Carboxylic Acid is 0.474 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.471 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.469 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.470 Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].

   

Colchicine

(1e)-N-[(7s)-1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl] ethanimidic acid

C22H25NO6 (399.1682)


An alkaloid that is a carbotricyclic compound comprising 5,6,7,9-tetrahydrobenzo[a]heptalene having four methoxy substituents at the 1-, 2-, 3- and 10-positions as well as an oxo group at the 9-position and an acetamido group at the 7-position. It has been isolated from the plants belonging to genus Colchicum. Colchicine appears as odorless or nearly odorless pale yellow needles or powder that darkens on exposure to light. Used to treat gouty arthritis, pseudogout, sarcoidal arthritis and calcific tendinitis. (EPA, 1998) (S)-colchicine is a colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. It has a role as a mutagen, an anti-inflammatory agent and a gout suppressant. It is a colchicine and an alkaloid. It is an enantiomer of a (R)-colchicine. Colchicine is an Alkaloid. Colchicine is a plant alkaloid that is widely used for treatment of gout. Colchicine has not been associated with acute liver injury or liver test abnormalities except with serious overdoses. Colchicine is a natural product found in Colchicum arenarium, Colchicum bivonae, and other organisms with data available. Colchicine is an alkaloid isolated from Colchicum autumnale with anti-gout and anti-inflammatory activities. The exact mechanism of action by which colchicines exerts its effect has not been completely established. Colchicine binds to tubulin, thereby interfering with the polymerization of tubulin, interrupting microtubule dynamics, and disrupting mitosis. This leads to an inhibition of migration of leukocytes and other inflammatory cells, thereby reducing the inflammatory response to deposited urate crystals. Colchicine may also interrupt the cycle of monosodium urate crystal deposition in joint tissues, thereby also preventing the resultant inflammatory response. Overall, colchicine decreases leukocyte chemotaxis/migration and phagocytosis to inflamed areas, and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). See also: Colchicine; probenecid (component of). A colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AC - Preparations with no effect on uric acid metabolism COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, Guide to PHARMACOLOGY C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D018501 - Antirheumatic Agents > D006074 - Gout Suppressants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2258 CONFIDENCE standard compound; INTERNAL_ID 1172 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.982 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.979 Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4]. Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4].

   

Thymidine

Thymidine

C10H14N2O5 (242.0903)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.220 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.211 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.213 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].

   

busulfan

"Busulfan (Myleran, Busulfex)"

C6H14O6S2 (246.0232)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AB - Alkyl sulfonates C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000477 - Alkylating Agents

   

piroxicam

Piroxicam (Feldene)

C15H13N3O4S (331.0627)


A monocarboxylic acid amide resulting from the formal condensation of the carboxy group of 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide with the exocyclic nitrogen of 2-aminopyridine. A non-steroidal anti-inflammatory drug of the oxicam class, it is used to relieve pain and works by preventing the production of endogenous prostaglandins involved in the mediation of pain, stiffness, tenderness and swelling. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AC - Oxicams S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Tacrolimus

15,19-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone, 5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycycl ohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-, (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-

C44H69NO12 (803.482)


Tacrolimus (anhydrous) is a macrolide lactam containing a 23-membered lactone ring, originally isolated from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. It has a role as an immunosuppressive agent and a bacterial metabolite. Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex inhibits calcineurin which inhibits T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus anhydrous is a Calcineurin Inhibitor Immunosuppressant. The mechanism of action of tacrolimus anhydrous is as a Calcineurin Inhibitor. Tacrolimus is a calcineurin inhibitor and potent immunosuppressive agent used largely as a means of prophylaxis against cellular rejection after transplantation. Tacrolimus therapy can be associated with mild serum enzyme elevations, and it has been linked to rare instances of clinically apparent cholestatic liver injury. Tacrolimus is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and other organisms with data available. Tacrolimus is a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. Tacrolimus Anhydrous is anhydrous from of tacrolimus, a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. A macrolide isolated from the culture broth of a strain of Streptomyces tsukubaensis that has strong immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation in vitro. A macrolide lactam containing a 23-membered lactone ring, originally isolated from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AD - Calcineurin inhibitors C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C146638 - Calcineurin Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D016559 - Tacrolimus COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Sucrose

Sucrose

C12H22O11 (342.1162)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Argininosuccinic acid

L-Argininosuccinic acid

C10H18N4O6 (290.1226)


   

urea

urea

CH4N2O (60.0324)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis A carbonyl group with two C-bound amine groups. The commercially available fertilizer has an analysis of 46-0-0 (N-P2O5-K2O). D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.

   

Lamivudine

4-Amino-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-2(1H)-pyrimidinone

C8H11N3O3S (229.0521)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; INTERNAL_ID 903; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1726; ORIGINAL_PRECURSOR_SCAN_NO 1725 CONFIDENCE standard compound; INTERNAL_ID 903; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1732; ORIGINAL_PRECURSOR_SCAN_NO 1730 CONFIDENCE standard compound; INTERNAL_ID 903; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1745; ORIGINAL_PRECURSOR_SCAN_NO 1743 CONFIDENCE standard compound; INTERNAL_ID 903; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1734; ORIGINAL_PRECURSOR_SCAN_NO 1733 CONFIDENCE standard compound; INTERNAL_ID 903; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1740; ORIGINAL_PRECURSOR_SCAN_NO 1736 CONFIDENCE standard compound; INTERNAL_ID 903; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1743; ORIGINAL_PRECURSOR_SCAN_NO 1741 Lamivudine (BCH-189) is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Lamivudine can inhibit HIV reverse transcriptase 1/2 and also the reverse transcriptase of hepatitis B virus. Lamivudine salicylate can penetrate the CNS[1][2].

   

procarbazine

procarbazine

C12H19N3O (221.1528)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XB - Methylhydrazines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents

   

bilirubin

Haematoidin

C33H36N4O6 (584.2635)


D020011 - Protective Agents > D000975 - Antioxidants COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Origin: Plant; Formula(Parent): C33H36N4O6; Bottle Name:Bilirubin from Porcine / Bilirubin ,Mixed isomers; PRIME Parent Name:Bilirubin; PRIME in-house No.:?0043 V0105, (?0043: Bilirubin, ?V0105: Bilirubin)

   

Prenol

4-01-00-02129 (Beilstein Handbook Reference)

C5H10O (86.0732)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

thiopental

thiopental

C11H18N2O2S (242.1089)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

PENTOSTATIN

PENTOSTATIN

C11H16N4O4 (268.1171)


A member of the class of coformycins that is coformycin in which the hydroxy group at position 2 is replaced with a hydrogen. It is a drug used for the treatment of hairy cell leukaemia. D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D058892 - Adenosine Deaminase Inhibitors C471 - Enzyme Inhibitor > C2157 - Adenosine Deaminase Inhibitor

   

FOH 5:1

3-METHYL-3-BUTEN-1-OL

C5H10O (86.0732)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

Mercury chloride

Mercuric Chloride

Cl2Hg (271.9083)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AK - Mercurial products D000890 - Anti-Infective Agents D004202 - Disinfectants

   

BORIC ACID

Orthoboric acid

BH3O3 (62.0175)


S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01089

   

Sodium chloride

Fast green FCF aluminium salt

ClNa (57.9586)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CB - Salt solutions A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent S - Sensory organs > S01 - Ophthalmologicals Same as: D02056 FDA permitted colourant for foods and food contact paper or board [DFC]

   

sugar

(2R,3R,4S,5S,6R)-2-[[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)-2-tetrahydrofuranyl]oxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C12H22O11 (342.1162)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Prenal

InChI=1\C5H8O\c1-5(2)3-4-6\h3-4H,1-2H

C5H8O (84.0575)


   

Acridone

InChI=1\C13H9NO\c15-13-9-5-1-3-7-11(9)14-12-8-4-2-6-10(12)13\h1-8H,(H,14,15

C13H9NO (195.0684)


Acridone is an organic compound based on the acridine skeleton. Acridone has antibacterial, antimalarial, antiviral and anti neoplastic activities[1]. Acridone is an organic compound based on the acridine skeleton. Acridone has antibacterial, antimalarial, antiviral and anti neoplastic activities[1].

   

naphthol

InChI=1\C10H8O\c11-10-7-3-5-8-4-1-2-6-9(8)10\h1-7,11

C10H8O (144.0575)


A naphthol carrying a hydroxy group at position 1. 1-naphthol is an excited state proton transfer (ESPT) fluorescent molecular probe. 1-naphthol is an excited state proton transfer (ESPT) fluorescent molecular probe.

   

Hyanit

EPA Pesticide Chemical Code 085702

CH4N2O (60.0324)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.

   

Maltodextrin

(2S,3R,4R,5S,6R)-6-(Hydroxymethyl)-5-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2,3,4-triol

C12H22O11 (342.1162)


Alpha-maltose is a maltose that has alpha-configuration at the reducing end anomeric centre. alpha-Maltose is a natural product found in Cyperus esculentus, Phytelephas aequatorialis, and other organisms with data available. Maltodextrin is an oligosaccharide derived from starch that is used as a food additive and as a carbohydrate supplement. As a supplement, maltodextrin is used to provide and sustain energy levels during endurance-oriented workouts o sports, and to help build muscle mass and support weight gain. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map A maltose that has alpha-configuration at the reducing end anomeric centre. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.

   

formaldehyde

formaldehyde

CH2O (30.0106)


An aldehyde resulting from the formal oxidation of methanol. D000890 - Anti-Infective Agents D004202 - Disinfectants D005404 - Fixatives

   

mercaptoethanol

beta-Mercaptoethanol

C2H6OS (78.0139)


   

Edetic Acid

Ethylenediaminetetraacetic acid

C10H16N2O8 (292.0907)


D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D000074385 - Food Ingredients > D005503 - Food Additives D006401 - Hematologic Agents > D000925 - Anticoagulants

   

chlorambucil

chlorambucil

C14H19Cl2NO2 (303.0793)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AA - Nitrogen mustard analogues D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents

   

3-Methyl-2-butenal

3-Methyl-2-butenal

C5H8O (84.0575)


   

lomustine

lomustine

C9H16ClN3O2 (233.0931)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

3-METHYL-2-BUTEN-1-OL

3-METHYL-2-BUTEN-1-OL

C5H10O (86.0732)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

Aerobactin

Aerobactin

C22H36N4O13 (564.2279)


D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents

   

Azactam

Urobactam

C13H17N5O8S2 (435.0519)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   
   

(N(omega)-L-arginino)succinic acid

(N(omega)-L-arginino)succinic acid

C10H18N4O6 (290.1226)