Oxytetracycline (BioDeep_00000001631)

 

Secondary id: BioDeep_00000397878

human metabolite Endogenous blood metabolite Chemicals and Drugs Antibiotics natural product


代谢物信息卡片


(4S,4aR,5S,5aR,6S,12aS)-4-(dimethylamino)-3,5,6,10,11,12a-hexahydroxy-6-methyl-1,12-dioxo-1,4,4a,5,5a,6,12,12a-octahydrotetracene-2-carboxamide

化学式: C22H24N2O9 (460.1482)
中文名称: 土霉素
谱图信息: 最多检出来源 Homo sapiens(blood) 22.46%

分子结构信息

SMILES: CC1(C2C(C3C(C(=O)C(=C(C3(C(=O)C2=C(C4=C1C=CC=C4O)O)O)O)C(=O)N)N(C)C)O)O
InChI: InChI=1S/C22H24N2O9/c1-21(32)7-5-4-6-8(25)9(7)15(26)10-12(21)17(28)13-14(24(2)3)16(27)11(20(23)31)19(30)22(13,33)18(10)29/h4-6,12-14,17,25-26,28,30,32-33H,1-3H3,(H2,23,31)

描述信息

Oxytetracycline is a tetracycline analog isolated from the actinomycete streptomyces rimosus and used in a wide variety of clinical conditions. [PubChem]Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane. Oxytetracycline is a clinically used broad-spectrum antibacterial antibiotic. It is approved by FDA for use in fish and animal feeds. Oxytetracycline is known as a broad-spectrum antibiotic due to its activity against such a wide range of infections. It was the second of the tetracyclines to be discovered. Oxytetracycline, like other tetracyclines, is used to treat many infections common and rare. Its better absorption profile makes it preferable to tetracycline for moderately severe acne, but alternatives sould be sought if no improvement occurs by 3 months
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics
A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment
D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use > D06AA - Tetracycline and derivatives
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines
Clinically used broad-spectrum antibacterial antibiotic. Approved by FDA for use in fish and animal feeds
S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics
C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
C254 - Anti-Infective Agent > C258 - Antibiotic
Oxytetracycline is an antibiotic belonging to the tetracycline class. Oxytetracycline potent inhibits Gram-negative and Gram-positive bacteria. Oxytetracycline is a protein synthesis inhibitor and prevents the binding from aminoacil-tRNA to the complex m-ribosomal RNA. Oxytetracycline also possesses anti-HSV-1 activity[1][2][3].

同义名列表

77 个代谢物同义名

(4S,4aR,5S,5aR,6S,12aS)-4-(dimethylamino)-3,5,6,10,11,12a-hexahydroxy-6-methyl-1,12-dioxo-1,4,4a,5,5a,6,12,12a-octahydrotetracene-2-carboxamide; (4S,4aR,5S,5aR,6S,12aS)-4-(dimethylamino)-3,5,6,10,11,12a-hexahydroxy-6-methyl-1,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide; 6153-65-7 (Di-hydrochloride salt, di-hydrate); 7179-50-2 (Calcium (1:1) salt); 2058-46-0 (mono-Hydrochloride); Oxytetracycline (anhydrous); Oxytetracycline amphoteric; Oxytetracycline anhydrous; Oxytetracycline calcium; 5-Hydroxy-tetracycline; 6153-64-6 (Di-hydrate); 5-Hydroxytetracycline; Mycoshield TMQTHC 20; 79-57-2 (ANHYDROUS); Hydroxytetracycline; Liquamycin la 200; Oxitetracyclinum; Oxytetracyclinum; Antibiotic TM 25; Ossitetraciclina; Oxy-kesso-tetra; Oxitetraciclina; Oxytetracycline; Oxitetracyclin; Oxytetracyclin; NSC9169 (HCL); Galsenomycin; Solkaciclina; Oxyterracyne; Terrafungine; Oxyterracine; Bisolvomycin; Dabicycline; Ursocycline; Oxytetracid; Oxyterracin; Terramitsin; Lenocycline; Proteroxyna; Biostat pa; Oksisyklin; Pennox 200; Liquamycin; Ursocyclin; Oxacycline; Oxysteclin; Terramycin; Stecsolin; Fanterrin; Medamycin; Vendarcin; Riomitsin; Imperacin; Dalimycin; Oxymykoin; Berkmycen; Oxymycin; Geomycin; Adamycin; Geotilin; Unimycin; Stevacin; NSC 9169; Ryomycin; Teravit; Abbocin; Oxatets; Tarocyn; Tarosin; Biostat; Macocyn; Oxypam; Oxydon; Tetran; OTC; Oxytetracycline; Oxytetracycline hydrochloride



数据库引用编号

33 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

169 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ACE, ALB, CAT, G6PD, HMGB1, HPGDS, NR3C2, PARVA, TBX20
Peripheral membrane protein 2 G6PD, HMGB1
Endoplasmic reticulum membrane 1 NR3C2
Nucleus 5 ALB, HMGB1, NR3C2, PARVA, TBX20
cytosol 9 ALB, CAT, G6PD, GPT, GSR, HPGDS, LIPE, NR3C2, PARVA
centrosome 1 ALB
nucleoplasm 4 CD2, HMGB1, HPGDS, NR3C2
Cell membrane 5 ACE, CD2, HMGB1, LIPE, TNF
lamellipodium 1 PARVA
cell surface 3 CD2, HMGB1, TNF
Golgi apparatus 3 ALB, ATRN, CD2
Golgi membrane 1 INS
neuronal cell body 1 TNF
Cytoplasm, cytosol 2 G6PD, LIPE
Lysosome 1 ACE
endosome 2 ACE, HMGB1
plasma membrane 7 ACE, ATRN, CD2, HMGB1, IFNLR1, PARVA, TNF
Membrane 5 ACE, CAT, G6PD, IFNLR1, LIPE
caveola 1 LIPE
extracellular exosome 8 ACE, ALB, ATRN, CAT, G6PD, GPT, GSR, LYZ
endoplasmic reticulum 2 ALB, HMGB1
extracellular space 9 ACE, ALB, ATRN, HMGB1, IL10, IL6, INS, LYZ, TNF
mitochondrion 2 CAT, GSR
protein-containing complex 3 ALB, CAT, CD2
intracellular membrane-bounded organelle 3 CAT, G6PD, HPGDS
Single-pass type I membrane protein 4 ACE, ATRN, CD2, IFNLR1
Secreted 6 ACE, ALB, HMGB1, IL10, IL6, INS
extracellular region 10 ACE, ALB, CAT, CD2, HMGB1, IL10, IL6, INS, LYZ, TNF
cytoplasmic side of plasma membrane 2 CD2, G6PD
[Isoform 2]: Secreted 1 ATRN
mitochondrial matrix 2 CAT, GSR
Extracellular side 1 HMGB1
anchoring junction 1 ALB
centriolar satellite 1 G6PD
external side of plasma membrane 4 ACE, CD2, GSR, TNF
actin cytoskeleton 1 PARVA
Z disc 1 PARVA
cell-cell junction 1 CD2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
Cell junction, focal adhesion 1 PARVA
Cytoplasm, cytoskeleton 1 PARVA
focal adhesion 2 CAT, PARVA
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
receptor complex 1 NR3C2
ciliary basal body 1 ALB
chromatin 2 NR3C2, TBX20
phagocytic cup 1 TNF
Chromosome 1 HMGB1
centriole 1 ALB
brush border membrane 1 ACE
spindle pole 1 ALB
blood microparticle 1 ALB
sperm midpiece 1 ACE
[Isoform 3]: Secreted 1 ATRN
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
Cytoplasm, myofibril, sarcomere, Z line 1 PARVA
basal plasma membrane 1 ACE
ficolin-1-rich granule lumen 2 CAT, HMGB1
secretory granule lumen 3 CAT, HMGB1, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 ALB, IL6, INS
transcription repressor complex 1 HMGB1
platelet alpha granule lumen 1 ALB
specific granule lumen 1 LYZ
tertiary granule lumen 1 LYZ
transport vesicle 1 INS
azurophil granule lumen 1 LYZ
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
endoplasmic reticulum-Golgi intermediate compartment 1 HMGB1
[Isoform 1]: Cell membrane 1 ATRN
condensed chromosome 1 HMGB1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
alphav-beta3 integrin-HMGB1 complex 1 HMGB1
interleukin-6 receptor complex 1 IL6
[Angiotensin-converting enzyme, soluble form]: Secreted 1 ACE
[Isoform Testis-specific]: Cell membrane 1 ACE
ciliary transition fiber 1 ALB
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Xiao-Shi Cai, Hao Jiang, Jie Xiao, Xiangmin Yan, Penggui Xie, Wenjie Yu, Wen-Fa Lv, Jun Wang, Xiangyu Meng, Cheng-Zhen Chen, Mingjun Zhang, Yang Zhang, Bao Yuan, Jia-Bao Zhang. Changes in bacterial community composition in the uterus of Holstein cow with endometritis before and after treatment with oxytetracycline. Scientific reports. 2024 04; 14(1):9511. doi: 10.1038/s41598-024-59674-4. [PMID: 38664449]
  • Yuke Zhu, Mingjing Ke, Zhitao Yu, Chaotang Lei, Meng Liu, Yaohui Yang, Tao Lu, Ning-Yi Zhou, W J G M Peijnenburg, Tao Tang, Haifeng Qian. Combined effects of azoxystrobin and oxytetracycline on rhizosphere microbiota of Arabidopsis thaliana. Environment international. 2024 Apr; 186(?):108655. doi: 10.1016/j.envint.2024.108655. [PMID: 38626494]
  • Weiliang Pan, Yi Zhou, Huimin Xie, Lin Liang, Guoyuan Zou, Lianfeng Du, Xuan Guo. Plant and microbial response in constructed wetland treating tetracycline antibiotic polluted water: Evaluating the effects of microplastic size and concentration. Chemosphere. 2024 Apr; 353(?):141553. doi: 10.1016/j.chemosphere.2024.141553. [PMID: 38412891]
  • Wenqi Jiang, Zheng Cheng, Wangjing Zhai, Xiaoran Ma, Jing Gao, Xueke Liu, Donghui Liu, Zhiqiang Zhou, Peng Wang. Oxytetracycline Increases the Residual Risk of Imidacloprid in Radish (Raphanus sativus) and Disturbs the Plant-Rhizosphere Microbiome Holobiont Homeostasis. Journal of agricultural and food chemistry. 2024 Mar; 72(12):6167-6177. doi: 10.1021/acs.jafc.4c00271. [PMID: 38500001]
  • Haifeng Liu, Zhihao Zhang, Ju Zhao, Quanquan Cao, Jun Jiang. miRNA-seq analysis of liver tissue from largemouth bass (Micropterus salmoides) in response to oxytetracycline and enzyme-treated soy protein. Comparative biochemistry and physiology. Part D, Genomics & proteomics. 2024 Mar; 49(?):101202. doi: 10.1016/j.cbd.2024.101202. [PMID: 38306950]
  • Zekun Zhang, Le Zhao, Jie Yang, Jiayin Pang, Hans Lambers, Honghua He. Effects of environmentally relevant concentrations of oxytetracycline and sulfadiazine on the bacterial communities, antibiotic resistance genes, and functional genes are different between maize rhizosphere and bulk soil. Environmental science and pollution research international. 2024 Mar; 31(15):22663-22678. doi: 10.1007/s11356-024-32578-6. [PMID: 38409385]
  • Hong-Tao Wang, Qiu-Yu Gan, Gang Li, Dong Zhu. Effects of Zinc Thiazole and Oxytetracycline on the Microbial Metabolism, Antibiotic Resistance, and Virulence Factor Genes of Soil, Earthworm Gut, and Phyllosphere. Environmental science & technology. 2024 Jan; 58(1):160-170. doi: 10.1021/acs.est.3c06513. [PMID: 38148496]
  • Guanlin Li, Yi Tang, Kiran Yasmin Khan, Yowhan Son, Jinho Jung, Xuchun Qiu, Xin Zhao, Babar Iqbal, Peter Joseph Stoffella, Gwang-Jung Kim, Daolin Du. The toxicological effect on pak choi of co-exposure to degradable and non-degradable microplastics with oxytetracycline in the soil. Ecotoxicology and environmental safety. 2023 Dec; 268(?):115707. doi: 10.1016/j.ecoenv.2023.115707. [PMID: 37988994]
  • Fredrick Gudda, Emmanuel Stephen Odinga, Lei Tang, Michael Gatheru Waigi, Jian Wang, Dyaaaldin Abdalmegeed, Yanzheng Gao. Tetracyclines uptake from irrigation water by vegetables: Accumulation and antimicrobial resistance risks. Environmental pollution (Barking, Essex : 1987). 2023 Dec; 338(?):122696. doi: 10.1016/j.envpol.2023.122696. [PMID: 37804902]
  • Qianqian Lang, Xuan Guo, Guoyuan Zou, Chao Wang, Yufei Li, Junxiang Xu, Xiang Zhao, Jijin Li, Bensheng Liu, Qinping Sun. Hydrochar reduces oxytetracycline in soil and Chinese cabbage by altering soil properties, shifting microbial community structure and promoting microbial metabolism. Chemosphere. 2023 Oct; 338(?):139578. doi: 10.1016/j.chemosphere.2023.139578. [PMID: 37478999]
  • Yinhan Jin, Jiuyan Chen, Qiang Zhang, Usman Farooq, Taotao Lu, Bin Wang, Zhichong Qi, Weifeng Chen. Biosurfactant-affected mobility of oxytetracycline and its variations with surface chemical heterogeneity in saturated porous media. Water research. 2023 Oct; 244(?):120509. doi: 10.1016/j.watres.2023.120509. [PMID: 37634454]
  • Ahmed H Sherif, Adel E Toulan, Naglaa El-Kalamwi, Enas A H Farag, Abeer E Mahmoud. Silymarin enhances the response to oxytetracycline treatment in Oreochromis niloticus experimentally infected with Aeromonas hydrophila. Scientific reports. 2023 Sep; 13(1):16235. doi: 10.1038/s41598-023-43270-z. [PMID: 37758826]
  • George W Sundin, Jingyu Peng, Lindsay Brown, Quan Zeng, Helga Forster, James E Adaskaveg. A novel IncX plasmid mediates high-level oxytetracycline and streptomycin resistance in Erwinia amylovora from commercial pear orchards in California. Phytopathology. 2023 Aug; ?(?):. doi: 10.1094/phyto-06-23-0190-sa. [PMID: 37565835]
  • Kenneth B Johnson, Todd N Temple, Achala N Kc. Acidifying spray suspensions of oxytetracycline and kasugamycin enhances their effectiveness for fire blight control in apple and pear. Phytopathology. 2023 Aug; ?(?):. doi: 10.1094/phyto-04-23-0122-r. [PMID: 37530490]
  • Junqiang Yang, Zhongmei Shen, Pengyan Qu, Rui Yang, Anping Shao, Hao Li, Ailing Zhao, Chunzhen Cheng. Influences of Jujube Witches' Broom (JWB) Phytoplasma Infection and Oxytetracycline Hydrochloride Treatment on the Gene Expression Profiling in Jujube. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms241210313. [PMID: 37373459]
  • Hui Liu, Yue Wang, Xinyu Shi. Co-existing antibiotics alter the enantioselective dissipation characteristics of zoxamide and drive combined impact on soil microenvironment. Journal of environmental management. 2023 Jun; 344(?):118340. doi: 10.1016/j.jenvman.2023.118340. [PMID: 37336018]
  • Xinyi Wang, Lei Zhang, Chunmei Han, Yanyan Zhang, Jiaxin Zhuo. Simulation study of oxytetracycline contamination remediation in groundwater circulation wells enhanced by nano-calcium peroxide and ozone. Scientific reports. 2023 06; 13(1):9136. doi: 10.1038/s41598-023-36310-1. [PMID: 37277445]
  • Leigh Archer, Sanju Kunwar, Fernando Alferez, Ozgur Batuman, Ute Albrecht. Trunk Injection of Oxytetracycline for Huanglongbing Management in Mature Grapefruit and Sweet Orange Trees. Phytopathology. 2023 Jun; 113(6):1010-1021. doi: 10.1094/phyto-09-22-0330-r. [PMID: 36474420]
  • Weishang Zhou, Wei Shi, Xueying Du, Yu Han, Yu Tang, Sanghyok Ri, Kwangjin Ju, Tongchol Kim, Lin Huang, Weixia Zhang, Yihan Yu, Dandan Tian, Yingying Yu, Liangbiao Chen, Zhichao Wu, Guangxu Liu. Assessment of Nonalcoholic Fatty Liver Disease Symptoms and Gut-Liver Axis Status in Zebrafish after Exposure to Polystyrene Microplastics and Oxytetracycline, Alone and in Combination. Environmental health perspectives. 2023 Apr; 131(4):47006. doi: 10.1289/ehp11600. [PMID: 37027337]
  • Lichun Yin, Xingshuo Wang, Yangyang Li, Ziyin Liu, Qinyuan Mei, Zeyou Chen. Uptake of the Plant Agriculture-Used Antibiotics Oxytetracycline and Streptomycin by Cherry Radish─Effect on Plant Microbiome and the Potential Health Risk. Journal of agricultural and food chemistry. 2023 Mar; 71(11):4561-4570. doi: 10.1021/acs.jafc.3c01052. [PMID: 36945880]
  • Guiyin Wang, Yan Yang, Xiaoxun Xu, Shirong Zhang, Zhanbiao Yang, Zhang Cheng, Junren Xian, Ting Li, Yulin Pu, Wei Zhou, Gang Xiang, Zhien Pu. Rape Straw Supported FeS Nanoparticles with Encapsulated Structure as Peroxymonosulfate and Hydrogen Peroxide Activators for Enhanced Oxytetracycline Degradation. Molecules (Basel, Switzerland). 2023 Mar; 28(6):. doi: 10.3390/molecules28062771. [PMID: 36985744]
  • Jibao Jia, Huiping Dai, Shuhe Wei, Jianming Xue, Lidia Skuza, Quan Sun, Rong Li. Toxicity of emerging contaminant antibiotics in soil to Capsicum annuum L. growth and their effects on it accumulating copper. Plant physiology and biochemistry : PPB. 2023 Mar; 196(?):661-667. doi: 10.1016/j.plaphy.2023.02.019. [PMID: 36801528]
  • Marium Fiaz, Iftikhar Ahmed, Sumara Masood Ul Hassan, Adnan Khan Niazi, Muhammad Fahim Khokhar, Zeshan, Muhammad Ansar Farooq, Muhammad Arshad. Antibiotic induced changes in nitrogen metabolism and antioxidative enzymes in mung bean (Vigna radiata). The Science of the total environment. 2023 Feb; ?(?):162449. doi: 10.1016/j.scitotenv.2023.162449. [PMID: 36841411]
  • Erik L Roldán, Lukasz L Stelinski, Kirsten S Pelz-Stelinski. Foliar Antibiotic Treatment Reduces Candidatus Liberibacter asiaticus Acquisition by the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), but Does not Reduce Tree Infection Rate. Journal of economic entomology. 2023 02; 116(1):78-89. doi: 10.1093/jee/toac200. [PMID: 36516405]
  • L S Xu, W Z Wang, J B Deng, W H Xu. The residue of tetracycline antibiotics in soil and Brassica juncea var. gemmifera, and the diversity of soil bacterial community under different livestock manure treatments. Environmental geochemistry and health. 2023 Jan; 45(1):7-17. doi: 10.1007/s10653-022-01213-z. [PMID: 35138517]
  • Yinhan Jin, Mengya Liu, Qiang Zhang, Usman Farooq, Weifeng Chen, Taotao Lu, Zhichong Qi. Transport of oxytetracycline through saturated porous media: role of surface chemical heterogeneity. Environmental science. Processes & impacts. 2022 Dec; 24(12):2368-2377. doi: 10.1039/d2em00330a. [PMID: 36317984]
  • V Matamoros, M Escolà Casas, E Pastor, Đ Tadić, N Cañameras, N Carazo, J M Bayona. Effects of tetracycline, sulfonamide, fluoroquinolone, and lincosamide load in pig slurry on lettuce: Agricultural and human health implications. Environmental research. 2022 12; 215(Pt 1):114237. doi: 10.1016/j.envres.2022.114237. [PMID: 36084673]
  • Hao Zhang, Zuhan Ge, Yaguang Li, Suzhen Huang, Jibiao Zhang, Zheng Zheng. Response of submerged macrophytes and leaf biofilms to different concentrations of oxytetracycline and sulfadiazine. Chemosphere. 2022 Dec; 308(Pt 1):136098. doi: 10.1016/j.chemosphere.2022.136098. [PMID: 35995188]
  • Min Cui, Songguo Yu, Yufei Yu, Xuehai Chen, Jia Li. Responses of cherry radish to different types of microplastics in the presence of oxytetracycline. Plant physiology and biochemistry : PPB. 2022 Nov; 191(?):1-9. doi: 10.1016/j.plaphy.2022.09.012. [PMID: 36162140]
  • Shuai Wu, Jingmiao Zhang, Ao Xia, Yun Huang, Xianqing Zhu, Xun Zhu, Qiang Liao. Microalgae cultivation for antibiotic oxytetracycline wastewater treatment. Environmental research. 2022 11; 214(Pt 1):113850. doi: 10.1016/j.envres.2022.113850. [PMID: 35817165]
  • Xiaoying Li, Tian Gan, Jiaen Zhang, Zhaoji Shi, Ziqiang Liu, Zeheng Xiao. High-capacity removal of oxytetracycline hydrochloride from wastewater via Mikania micrantha Kunth-derived biochar modified by Zn/Fe-layered double hydroxide. Bioresource technology. 2022 Oct; 361(?):127646. doi: 10.1016/j.biortech.2022.127646. [PMID: 35868467]
  • B-G Liu, M Xie, Y-T Gong, Y Dong, G-M Zheng, H Wu, G-Z Hu, M Bai, E-P Xu. Prevalence, resistance phenotypes, and fluoroquinolone resistance genes of Salmonella isolates from raw milk of healthy dairy cows in Henan province, China. European review for medical and pharmacological sciences. 2022 09; 26(18):6837-6844. doi: 10.26355/eurrev_202209_29786. [PMID: 36196732]
  • Yan Yang, Xiaoxun Xu, Shirong Zhang, Guiyin Wang, Zhanbiao Yang, Zhang Cheng, Junren Xian, Ting Li, Yulin Pu, Wei Zhou, Gang Xiang. Two novel and efficient plant composites for the degradation of oxytetracycline: nanoscale ferrous sulphide supported on rape straw waste. Environmental science and pollution research international. 2022 Sep; 29(42):63545-63559. doi: 10.1007/s11356-022-20063-x. [PMID: 35461415]
  • Lishan Zhang, Zujie Yao, Huamei Tang, Qingli Song, Huanhuan Song, Jindong Yao, Zhen Li, Xiaofang Xie, Yuexu Lin, Xiangmin Lin. The Lysine Acetylation Modification in the Porin Aha1 of Aeromonas hydrophila Regulates the Uptake of Multidrug Antibiotics. Molecular & cellular proteomics : MCP. 2022 09; 21(9):100248. doi: 10.1016/j.mcpro.2022.100248. [PMID: 35605723]
  • Khalid Ibrahim Sallam, Faisal Saad Saud Saad, Adel Abdelkhalek. Health risk assessment of antimicrobial residues in sheep carcasses marketed in Kuwait. Food chemistry. 2022 Jul; 383(?):132401. doi: 10.1016/j.foodchem.2022.132401. [PMID: 35217278]
  • Juan E Romano, Andrea Barbarossa, Giampiero Pagliuca, Graciela B Villadóniga, Teresa Gazzotti, Beatrice Mislei, Elisa Zironi, Gaetano Mari. Pharmacokinetics of oxytetracycline long-acting on plasma and semen of beef bulls. Theriogenology. 2022 Jul; 186(?):21-26. doi: 10.1016/j.theriogenology.2022.03.032. [PMID: 35421775]
  • Anisa Bardhi, Teresa Gazzotti, Giampiero Pagliuca, Gaetano Mari, Andrea Barbarossa. Validation of a single liquid chromatography-tandem mass spectrometry approach for oxytetracycline determination in bull plasma, seminal plasma and urine. Drug testing and analysis. 2022 Jul; 14(7):1338-1342. doi: 10.1002/dta.3246. [PMID: 35195370]
  • Aiyun Guo, Chengrong Pan, Xiangmiao Su, Xu Zhou, Yanyu Bao. Combined effects of oxytetracycline and microplastic on wheat seedling growth and associated rhizosphere bacterial communities and soil metabolite profiles. Environmental pollution (Barking, Essex : 1987). 2022 Jun; 302(?):119046. doi: 10.1016/j.envpol.2022.119046. [PMID: 35217135]
  • Gaixia Zhang, Yifan Xu, Youran Xia, Gang Wang, Hongfeng Zhao. Transcriptomic Analysis of Hepatotoxicology of Adult Zebrafish (Danio rerio) Exposed to Environmentally Relevant Oxytetracycline. Archives of environmental contamination and toxicology. 2022 May; 82(4):539-550. doi: 10.1007/s00244-022-00930-x. [PMID: 35460351]
  • Saeed Moradi, Sina Javanmardi, Pooria Gholamzadeh, Kamran Rezaei Tavabe. The ameliorative role of ascorbic acid against blood disorder, immunosuppression, and oxidative damage of oxytetracycline in rainbow trout (Oncorhynchus mykiss). Fish physiology and biochemistry. 2022 Feb; 48(1):201-213. doi: 10.1007/s10695-022-01045-9. [PMID: 35059978]
  • Xiaoyi Xu, Zhimin He, Hui Tang, Yidong Sun, Shuyuan Zhang, Dezhi Shi, Fangying Ji. Removal of diclofenac and oxytetracycline from synthetic urine by furfuryl alcohol-derived mesoporous carbon. Chemosphere. 2022 Feb; 288(Pt 1):132317. doi: 10.1016/j.chemosphere.2021.132317. [PMID: 34582931]
  • Lirui Hou, Fang Liu, Chong Zhao, Lihong Fan, Hongbo Hu, Shutao Yin. Combination of oxytetracycline and quinocetone synergistically induces hepatotoxicity via generation of reactive oxygen species and activation of mitochondrial pathway. Toxicology mechanisms and methods. 2022 Jan; 32(1):49-57. doi: 10.1080/15376516.2021.1965273. [PMID: 34348565]
  • Mercedes Lourido, Julieta Peluso, Carolina M Aronzon. Lethal and sublethal effects of the emerging contaminant oxytetracycline on the embryo-larval development of Rhinella arenarum. Environmental toxicology and pharmacology. 2022 Jan; 89(?):103783. doi: 10.1016/j.etap.2021.103783. [PMID: 34896275]
  • Yuhao Fu, Mingyun Jia, Fang Wang, Ziquan Wang, Zhi Mei, Yongrong Bian, Xin Jiang, Marko Virta, James M Tiedje. Strategy for Mitigating Antibiotic Resistance by Biochar and Hyperaccumulators in Cadmium and Oxytetracycline Co-contaminated Soil. Environmental science & technology. 2021 12; 55(24):16369-16378. doi: 10.1021/acs.est.1c03434. [PMID: 34695355]
  • Yukun Yang, Zhuo Shi, Yuanyuan Chang, Xiaomin Wang, Ligang Yu, Caixia Guo, Jinhua Zhang, Baoqing Bai, Dandan Sun, Sanhong Fan. Surface molecularly imprinted magnetic MOFs: A novel platform coupled with magneto electrode for high throughput electrochemical sensing analysis of oxytetracycline in foods. Food chemistry. 2021 Nov; 363(?):130337. doi: 10.1016/j.foodchem.2021.130337. [PMID: 34147891]
  • Thangapalam Jawahar Abraham, Anwesha Roy, Roy Beryl Julinta, Jasmine Singha, Prasanna Kumar Patil, Edapparambil Krishnappan Nanitha Krishna, Ravindran Rajisha, Kesavan Ashok Kumar. Accumulation and clearance of tissue residues and health status of Nile tilapia Oreochromis niloticus (L.) juveniles as influenced by the extended oral oxytetracycline-dosing. Environmental science and pollution research international. 2021 Oct; 28(39):55362-55372. doi: 10.1007/s11356-021-14854-x. [PMID: 34132958]
  • Mahbubul H Riad, Ronald E Baynes, Lisa A Tell, Jennifer L Davis, Fiona P Maunsell, Jim E Riviere, Zhoumeng Lin. Development and Application of an Interactive Physiologically Based Pharmacokinetic (iPBPK) Model to Predict Oxytetracycline Tissue Distribution and Withdrawal Intervals in Market-Age Sheep and Goats. Toxicological sciences : an official journal of the Society of Toxicology. 2021 09; 183(2):253-268. doi: 10.1093/toxsci/kfab095. [PMID: 34329480]
  • Ufuk Mercan Yücel, Volkan Koşal, Mikail Kara, Filiz Taşpınar, Barış Atalay Uslu. Adverse effects of oxytetracycline and enrofloxacin on the fertility of Saanen bucks. Tropical animal health and production. 2021 Sep; 53(5):466. doi: 10.1007/s11250-021-02898-7. [PMID: 34546445]
  • Mingrong Qian, Jianmei Wang, Xiaofeng Ji, Hua Yang, Biao Tang, Hu Zhang, Guiling Yang, Zhiwei Bao, Yuanxiang Jin. Sub-chronic exposure to antibiotics doxycycline, oxytetracycline or florfenicol impacts gut barrier and induces gut microbiota dysbiosis in adult zebrafish (Daino rerio). Ecotoxicology and environmental safety. 2021 Sep; 221(?):112464. doi: 10.1016/j.ecoenv.2021.112464. [PMID: 34198189]
  • Yi-Huan Xu, Christer Hogstrand, Yi-Chuang Xu, Tao Zhao, Hua Zheng, Zhi Luo. Environmentally relevant concentrations of oxytetracycline and copper increased liver lipid deposition through inducing oxidative stress and mitochondria dysfunction in grass carp Ctenopharyngodon idella. Environmental pollution (Barking, Essex : 1987). 2021 Aug; 283(?):117079. doi: 10.1016/j.envpol.2021.117079. [PMID: 33845287]
  • Anwesha Roy, T Jawahar Abraham, R Beryl Julinta, Jasmine Singha, Satyanarayana Boda, Gadadhar Dash, T S Nagesh, Tapas Kumar Sar, Prasanna Kumar Patil. Influence of Fluctuating Water Temperature and Dietary Oxytetracycline on the Safety of Monosex Nile Tilapia Oreochromis niloticus Fries. Bulletin of environmental contamination and toxicology. 2021 Aug; 107(2):361-369. doi: 10.1007/s00128-021-03227-2. [PMID: 33835206]
  • Kiran Yasmin Khan, Barkat Ali, Shuang Zhang, Peter Joseph Stoffella, Shan Yuan, Qian Xia, Hongjun Qu, Yu Shi, Xiaoqiang Cui, Ya Guo. Effects of antibiotics stress on growth variables, ultrastructure, and metabolite pattern of Brassica rapa ssp. chinensis. The Science of the total environment. 2021 Jul; 778(?):146333. doi: 10.1016/j.scitotenv.2021.146333. [PMID: 34030384]
  • Suzanne M Slack, Kellie J Walters, Cory A Outwater, George W Sundin. Effect of Kasugamycin, Oxytetracycline, and Streptomycin on In-orchard Population Dynamics of Erwinia amylovora on Apple Flower Stigmas. Plant disease. 2021 Jun; 105(6):1843-1850. doi: 10.1094/pdis-07-20-1469-re. [PMID: 33044145]
  • Jixiang Wang, Lihua Zou, Jingjing Xu, Rong Zhang, Hongbo Zhang. Molecularly imprinted fluoroprobes doped with Ag nanoparticles for highly selective detection of oxytetracycline in real samples. Analytica chimica acta. 2021 May; 1161(?):338326. doi: 10.1016/j.aca.2021.338326. [PMID: 33896557]
  • Maywan Hariono, Rollando Rollando, I Yoga, Abraham Harjono, Alfonsus Suryodanindro, Michael Yanuar, Thomas Gonzaga, Zet Parabang, Pandu Hariyono, Rifki Febriansah, Adi Hermawansyah, Wahyuning Setyani, Habibah Wahab. Bioguided Fractionation of Local Plants against Matrix Metalloproteinase9 and Its Cytotoxicity against Breast Cancer Cell Models: In Silico and In Vitro Study (Part II). Molecules (Basel, Switzerland). 2021 Mar; 26(5):. doi: 10.3390/molecules26051464. [PMID: 33800366]
  • Zhe Li, Yuxi Lin, Yi-You Huang, Runduo Liu, Chang-Guo Zhan, Xin Wang, Hai-Bin Luo. Reply to Ma and Wang: Reliability of various in vitro activity assays on SARS-CoV-2 main protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 2021 02; 118(8):. doi: 10.1073/pnas.2024937118. [PMID: 33568500]
  • Chunlong Ma, Jun Wang. Dipyridamole, chloroquine, montelukast sodium, candesartan, oxytetracycline, and atazanavir are not SARS-CoV-2 main protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 2021 02; 118(8):. doi: 10.1073/pnas.2024420118. [PMID: 33568498]
  • Yanting Liu, Li Zheng, Qiujie Cai, Yanbin Xu, Zhifan Xie, Jingyong Liu, Xunan Ning. Simultaneous reduction of antibiotics and antibiotic resistance genes in pig manure using a composting process with a novel microbial agent. Ecotoxicology and environmental safety. 2021 Jan; 208(?):111724. doi: 10.1016/j.ecoenv.2020.111724. [PMID: 33396055]
  • Dengmiao Cheng, Yuanwang Liu, Ebrahim Shehata, Yao Feng, Hui Lin, Jianming Xue, Zhaojun Li. In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. Journal of hazardous materials. 2021 01; 402(?):123710. doi: 10.1016/j.jhazmat.2020.123710. [PMID: 33254754]
  • Érika P Londero, Caroline A Bressan, Tanise S Pês, Etiane M H Saccol, Bernardo Baldisserotto, Isabela A Finamor, Maria A Pavanato. Rutin-added diet protects silver catfish liver against oxytetracycline-induced oxidative stress and apoptosis. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2021 Jan; 239(?):108848. doi: 10.1016/j.cbpc.2020.108848. [PMID: 32777463]
  • W Mohammad, T Mohammed, K A El-Wakeil, M M Hassan. Effects of combined treatment of cadmium and oxytetracycline on the terrestrial isopod Porcellio leavis. Brazilian journal of biology = Revista brasleira de biologia. 2021; 82(?):e246979. doi: 10.1590/1519-6984.246979. [PMID: 34133578]
  • Sammani Ramanayaka, Manish Kumar, Thusitha Etampawala, Meththika Vithanage. Macro, colloidal and nanobiochar for oxytetracycline removal in synthetic hydrolyzed human urine. Environmental pollution (Barking, Essex : 1987). 2020 Dec; 267(?):115683. doi: 10.1016/j.envpol.2020.115683. [PMID: 33254678]
  • Tanise da Silva Pês, Etiane Medianeira Hundertmarck Saccol, Ismael Jerez-Cepa, Giovana de Moraes Ourique, Neda Gilannejad, Bernardo Baldisserotto, Gonzalo Martínez-Rodríguez, Juan Miguel Mancera, Maria Amália Pavanato. Quercetin attenuates endocrine and metabolic responses to oxytetracycline in silver catfish (Rhamdia quelen). Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2020 Dec; 238(?):108864. doi: 10.1016/j.cbpc.2020.108864. [PMID: 32781297]
  • Yarira Ortiz-Alvarado, David R Clark, Carlos J Vega-Melendez, Zomary Flores-Cruz, Maria G Domingez-Bello, Tugrul Giray. Antibiotics in hives and their effects on honey bee physiology and behavioral development. Biology open. 2020 11; 9(11):. doi: 10.1242/bio.053884. [PMID: 33106276]
  • Xiaofan Xu, Yunxin Pan, Baoyang Xu, Yiqin Yan, Boqi Yin, Yanqing Wang, Shuxin Hu, Libao Ma. Effects of Cortex Phellodendri extract on post-weaning piglets diarrhoea. Veterinary medicine and science. 2020 11; 6(4):901-909. doi: 10.1002/vms3.304. [PMID: 32585771]
  • Marcelo Pedrosa Gomes, Júlio César Moreira Brito, Daiane Cristina Rocha, Mário Antônio Navarro-Silva, Philippe Juneau. Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. Ecotoxicology and environmental safety. 2020 Oct; 203(?):111025. doi: 10.1016/j.ecoenv.2020.111025. [PMID: 32888593]
  • Noemi Soto, Alessandra R Humphries, De-Fen Mou, Ericka E Helmick, James P Glover, Brian W Bahder. Effect of Oxytetracycline-Hydrochloride on Phytoplasma Titer and Symptom Progression of the 16SrIV-D Phytoplasma in Cabbage Palms from Florida. Plant disease. 2020 Sep; 104(9):2330-2337. doi: 10.1094/pdis-01-20-0029-re. [PMID: 32687435]
  • Ewelina Patyra, Krzysztof Kwiatek, Carolina Nebot, Rosa Elvira Gavilán. Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry. Molecules (Basel, Switzerland). 2020 Jul; 25(14):. doi: 10.3390/molecules25143265. [PMID: 32709030]
  • Isabella Moro, Riccardo Trentin, Emanuela Moschin, Francesca Dalla Vecchia. Morpho-physiological responses by Isochrysis galbana Parke to different concentrations of oxytetracycline. Environmental pollution (Barking, Essex : 1987). 2020 Jul; 262(?):114273. doi: 10.1016/j.envpol.2020.114273. [PMID: 32146366]
  • Kousuke Akiyama, Noritaka Hirazawa, Akimasa Hatanaka. Coadministration of citric acid allows oxytetracycline dose reduction in yellowtail Seriola quinqueradiata infected with Vibrio anguillarum. Diseases of aquatic organisms. 2020 Jun; 140(?):25-29. doi: 10.3354/dao03485. [PMID: 32618285]
  • M Conde-Cid, D Fernández-Calviño, A Núñez-Delgado, M J Fernández-Sanjurjo, M Arias-Estévez, E Álvarez-Rodríguez. Estimation of adsorption/desorption Freundlich's affinity coefficients for oxytetracycline and chlortetracycline from soil properties: Experimental data and pedotransfer functions. Ecotoxicology and environmental safety. 2020 Jun; 196(?):110584. doi: 10.1016/j.ecoenv.2020.110584. [PMID: 32278142]
  • Hassan Shirzadi, Farid Shariatmadari, Mohammad Amir Karimi Torshizi, Shaban Rahimi, Ali Akbar Masoudi, Gholamreza Zaboli, Nemat Hedayat-Evrigh. Plant extract supplementation as a strategy for substituting dietary antibiotics in broiler chickens exposed to low ambient temperature. Archives of animal nutrition. 2020 Jun; 74(3):206-221. doi: 10.1080/1745039x.2019.1693860. [PMID: 31852306]
  • Yuanwang Liu, Dengmiao Cheng, Jianming Xue, Louise Weaver, Steve A Wakelin, Yao Feng, Zhaojun Li. Changes in microbial community structure during pig manure composting and its relationship to the fate of antibiotics and antibiotic resistance genes. Journal of hazardous materials. 2020 05; 389(?):122082. doi: 10.1016/j.jhazmat.2020.122082. [PMID: 32004835]
  • Weichao Zhang, Qunshan Wei, Jiuhua Xiao, Yanbiao Liu, Changzhou Yan, Jianshe Liu, Wolfgang Sand, Christopher W K Chow. The key factors and removal mechanisms of sulfadimethoxazole and oxytetracycline by coagulation. Environmental science and pollution research international. 2020 May; 27(14):16167-16176. doi: 10.1007/s11356-019-06884-3. [PMID: 32112357]
  • Po-Tsang Lee, Zhen-Hao Liao, Huai-Ting Huang, Chao-Yuan Chuang, Fan-Hua Nan. β-glucan alleviates the immunosuppressive effects of oxytetracycline on the non-specific immune responses and resistance against Vibrio alginolyticus infection in Epinephelus fuscoguttatus × Epinephelus lanceolatus hybrids. Fish & shellfish immunology. 2020 May; 100(?):467-475. doi: 10.1016/j.fsi.2020.03.046. [PMID: 32217140]
  • Sammani Ramanayaka, Binoy Sarkar, Asitha T Cooray, Yong Sik Ok, Meththika Vithanage. Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media. Journal of hazardous materials. 2020 02; 384(?):121301. doi: 10.1016/j.jhazmat.2019.121301. [PMID: 31600698]
  • Mengli Liu, Jia Cao, Chong Wang. Bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil. Ecotoxicology and environmental safety. 2020 Feb; 189(?):109996. doi: 10.1016/j.ecoenv.2019.109996. [PMID: 31785943]
  • Huilin Ge, Min Zhou, Daizhu Lv, Mingyue Wang, Defang Xie, Xinfeng Yang, Cunzhu Dong, Shuhuai Li, Peng Lin. Novel Segmented Concentration Addition Method to Predict Mixture Hormesis of Chlortetracycline Hydrochloride and Oxytetracycline Hydrochloride to Aliivibrio fischeri. International journal of molecular sciences. 2020 Jan; 21(2):. doi: 10.3390/ijms21020481. [PMID: 31940888]
  • M S El-Gohary, Adel M El Gamal, A A Atia, M F El-Dakroury. Treatment Trial of Nile Tilapia (Oreochromis niloticus) Experimentally Infected with Vibrio alginolyticus Isolated from Sea bass (Dicentrarchus labrax). Pakistan journal of biological sciences : PJBS. 2020 Jan; 23(12):1591-1600. doi: 10.3923/pjbs.2020.1591.1600. [PMID: 33274891]
  • Samwel Mchele Limbu, Han Zhang, Yuan Luo, Li-Qiao Chen, Meiling Zhang, Zhen-Yu Du. High carbohydrate diet partially protects Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects. Environmental pollution (Barking, Essex : 1987). 2020 Jan; 256(?):113508. doi: 10.1016/j.envpol.2019.113508. [PMID: 31706777]
  • Roy Beryl Julinta, Thangapalam Jawahar Abraham, Anwesha Roy, Jasmine Singha, Satyanarayana Boda, Prasanna Kumar Patil. Dietary influences of oxytetracycline on the growth and serum biomarkers of Oreochromis niloticus (L.). Ecotoxicology and environmental safety. 2019 Dec; 186(?):109752. doi: 10.1016/j.ecoenv.2019.109752. [PMID: 31605954]
  • Kaare Græsbøll, Inge Larsen, Julie Clasen, Anna Camilla Birkegård, Jens Peter Nielsen, Lasse Engbo Christiansen, John Elmerdahl Olsen, Øystein Angen, Anders Folkesson. Effect of tetracycline treatment regimens on antibiotic resistance gene selection over time in nursery pigs. BMC microbiology. 2019 12; 19(1):269. doi: 10.1186/s12866-019-1619-z. [PMID: 31791243]
  • Jinyun Li, Zhiqian Pang, Shuo Duan, Donghwan Lee, Vladimir G Kolbasov, Nian Wang. The in Planta Effective Concentration of Oxytetracycline Against 'Candidatus Liberibacter asiaticus' for Suppression of Citrus Huanglongbing. Phytopathology. 2019 Dec; 109(12):2046-2054. doi: 10.1094/phyto-06-19-0198-r. [PMID: 31369360]
  • Ebrahim Shehata, Yuanwang Liu, Yao Feng, Dengmiao Cheng, Zhaojun Li. Changes in Arsenic and Copper Bioavailability and Oxytetracycline Degradation during the Composting Process. Molecules (Basel, Switzerland). 2019 Nov; 24(23):. doi: 10.3390/molecules24234240. [PMID: 31766456]
  • Manuel Conde-Cid, Gustavo Ferreira-Coelho, Manuel Arias-Estévez, Cristina Álvarez-Esmorís, Juan Carlos Nóvoa-Muñoz, Avelino Núñez-Delgado, María J Fernández-Sanjurjo, Esperanza Álvarez-Rodríguez. Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on pine bark, oak ash and mussel shell. Journal of environmental management. 2019 Nov; 250(?):109509. doi: 10.1016/j.jenvman.2019.109509. [PMID: 31509789]
  • Manuel Conde-Cid, Gustavo Ferreira-Coelho, Avelino Núñez-Delgado, David Fernández-Calviño, Manuel Arias-Estévez, Esperanza Álvarez-Rodríguez, María J Fernández-Sanjurjo. Competitive adsorption of tetracycline, oxytetracycline and chlortetracycline on soils with different pH value and organic matter content. Environmental research. 2019 11; 178(?):108669. doi: 10.1016/j.envres.2019.108669. [PMID: 31450146]
  • Jing Ding, Xin Li An, Simon Bo Lassen, Hong Tao Wang, Dong Zhu, Xin Ke. Heavy metal-induced co-selection of antibiotic resistance genes in the gut microbiota of collembolans. The Science of the total environment. 2019 Sep; 683(?):210-215. doi: 10.1016/j.scitotenv.2019.05.302. [PMID: 31132699]
  • Weining Qi, Jian Long, Changqing Feng, Yao Feng, Dengmiao Cheng, Yuanwang Liu, Jianming Xue, Zhaojun Li. Fe3+ enhanced degradation of oxytetracycline in water by pseudomonas. Water research. 2019 Sep; 160(?):361-370. doi: 10.1016/j.watres.2019.05.058. [PMID: 31158618]
  • Mahmoud M Sebaiy, Wafaa S Hassan, Mostafa E Elhennawy. Developing a High-Performance Liquid Chromatography (HPLC) Method for Simultaneous Determination of Oxytetracycline, Tinidazole and Esomeprazole in Human Plasma. Journal of chromatographic science. 2019 Aug; 57(8):724-729. doi: 10.1093/chromsci/bmz046. [PMID: 31251331]
  • Anne Ostermann, Peter E Mortimer, Rongcai Huang, Lu Ma, Dengpan Bu, Jianchu Xu. Symbiotic Nitrogen Fixation in Soil Contaminated with the Veterinary Antibiotics Oxytetracycline and Sulfamethazine. Journal of environmental quality. 2019 Jul; 48(4):1067-1073. doi: 10.2134/jeq2019.01.0021. [PMID: 31589684]
  • Devin B Holman, Wenzhu Yang, Trevor W Alexander. Antibiotic treatment in feedlot cattle: a longitudinal study of the effect of oxytetracycline and tulathromycin on the fecal and nasopharyngeal microbiota. Microbiome. 2019 06; 7(1):86. doi: 10.1186/s40168-019-0696-4. [PMID: 31167657]
  • Kevin E Washburn, Virginia R Fajt, Ashley N Polasek, Sara D Lawhon, Ashley L Padgett, Chih-Ping Lo, Travis P Mays, Shannon E Washburn. Oxytetracycline concentrations in interstitial fluid from tissue chambers inoculated with Corynebacterium pseudotuberculosis after intramuscular or intrachamber administration in sheep. American journal of veterinary research. 2019 Jun; 80(6):586-594. doi: 10.2460/ajvr.80.6.586. [PMID: 31140853]
  • H Ziółkowski, H Madej-Śmiechowska, T Grabowski, J J Jaroszewski, T Maślanka. Hard water may increase the inhibitory effect of feed on the oral bioavailability of oxytetracycline in broiler chickens. Polish journal of veterinary sciences. 2019 Jun; 22(2):251-258. doi: 10.24425/pjvs.2019.127093. [PMID: 31269331]
  • Ana Rita Almeida, Marta Tacão, Ana Luísa Machado, Oksana Golovko, Vladimir Zlabek, Inês Domingues, Isabel Henriques. Long-term effects of oxytetracycline exposure in zebrafish: A multi-level perspective. Chemosphere. 2019 May; 222(?):333-344. doi: 10.1016/j.chemosphere.2019.01.147. [PMID: 30708167]
  • Mahdi Ghanbari, Viviana Klose, Fiona Crispie, Paul D Cotter. The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Scientific reports. 2019 03; 9(1):4062. doi: 10.1038/s41598-019-40496-8. [PMID: 30858509]
  • Maryn McKenna. Antibiotics set to flood Florida's troubled orange orchards. Nature. 2019 03; 567(7748):302-303. doi: 10.1038/d41586-019-00878-4. [PMID: 30890811]
  • A N Ngigi, Y S Ok, S Thiele-Bruhn. Biochar-mediated sorption of antibiotics in pig manure. Journal of hazardous materials. 2019 Feb; 364(?):663-670. doi: 10.1016/j.jhazmat.2018.10.045. [PMID: 30396139]
  • Nan Zhou, Yashen Ma, Bin Hu, Linghao He, Shijun Wang, Zhihong Zhang, Siyu Lu. Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosensors & bioelectronics. 2019 Feb; 127(?):92-100. doi: 10.1016/j.bios.2018.12.024. [PMID: 30594079]
  • Yanyu Bao, Yunxia Li, Jianv Liu, Weitao Liu, Qi Chen, Chengrong Pan, Xiaojing Song. Influence of the root plaque formation with different species on oxytetracycline accumulation in rice (Oryza sativa L.) and its elimination in culture solution. Environmental science and pollution research international. 2019 Feb; 26(4):4091-4103. doi: 10.1007/s11356-018-3965-z. [PMID: 30560535]