Sucrose (BioDeep_00000000099)

 

Secondary id: BioDeep_00000400114, BioDeep_00000860006

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-3,4-Dihydroxy-2,(2R,3R,4S,5S,6R)-2-{[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

化学式: C12H22O11 (342.1162)
中文名称: 蔗糖
谱图信息: 最多检出来源 Homo sapiens(blood) 11.59%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

Sucrose. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/sucrose (retrieved 2025-01-05) (BioDeep RN: BioDeep_00000000099). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C1C(C(C(C(O1)OC2(C(C(C(O2)CO)O)O)CO)O)O)O)O
InChI: InChI=1S/C12H22O11/c13-1-4-6(16)8(18)9(19)11(21-4)23-12(3-15)10(20)7(17)5(2-14)22-12/h4-11,13-20H,1-3H2

描述信息

Sucrose is a nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane (Saccharum officinarum), sugar beet (Beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is derived by crushing and extracting sugarcane with water or by extracting sugar beet with water, evaporating, and purifying with lime, carbon, and various liquids. Sucrose is also obtainable from sorghum. Sucrose occurs in low percentages in honey and maple syrup. Sucrose is used as a sweetener in foods and soft drinks, in the manufacture of syrups, in invert sugar, confectionery, preserves and jams, demulcent, pharmaceutical products, and caramel. Sucrose is also a chemical intermediate for detergents, emulsifying agents, and other sucrose derivatives. Sucrose is widespread in the seeds, leaves, fruits, flowers, and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynthesis. The annual world production of sucrose is in excess of 90 million tons mainly from the juice of sugar cane (20\\\%) and sugar beet (17\\\%). In addition to its use as a sweetener, sucrose is used in food products as a preservative, antioxidant, moisture control agent, stabilizer, and thickening agent. BioTransformer predicts that sucrose is a product of 6-O-sinapoyl sucrose metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223).

Sucrose appears as white odorless crystalline or powdery solid. Denser than water.
Sucrose is a glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. It has a role as an osmolyte, a sweetening agent, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite.
A nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane, sugar beet (beta vulgaris), and other plants and used extensively as a food and a sweetener.
Sucrose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Sucrose is a natural product found in Haplophyllum ramosissimum, Cyperus esculentus, and other organisms with data available.
Sucrose is a metabolite found in or produced by Saccharomyces cerevisiae.
A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener.
See also: Anise; ferrous disulfide; sucrose (component of); Phosphoric acid; sucrose (component of); Sucrose caramel (related) ... View More ...
In chemistry, sugar loosely refers to a number of carbohydrates, such as monosaccharides, disaccharides, or oligosaccharides. In food, sugar refers to a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose characterized by a sweet flavor. Other sugars are used in industrial food preparation, but are usually known by more specific names - glucose, fructose or fruit sugar, high fructose corn syrup, etc. Sugars is found in many foods, some of which are ucuhuba, butternut squash, common walnut, and miso.
A glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose.

Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula C
12H
22O
11.

For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet.

Sugar is often an added ingredient in food production and recipes. About 185 million tonnes of sugar were produced worldwide in 2017.[6]

Sucrose is particularly dangerous as a risk factor for tooth decay because Streptococcus mutans bacteria convert it into a sticky, extracellular, dextran-based polysaccharide that allows them to cohere, forming plaque. Sucrose is the only sugar that bacteria can use to form this sticky polysaccharide.[7]

Sucrose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8030-20-4 (retrieved 2024-06-29) (CAS RN: 57-50-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

153 个代谢物同义名

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; (2R,3R,4S,5S,6R)-2-((2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yloxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; (2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl]oxy-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol; (2R,3R,4S,5S,6R)-2-((2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-ylhydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; (2R,3R,4S,5S,6R)-2-{[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; (2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol; Sucrose, BioReagent, suitable for cell culture, suitable for insect cell culture, >=99.5\\% (GC); Compressible sugar, United States Pharmacopeia (USP) Reference Standard; Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF; Sucrose, United States Pharmacopeia (USP) Reference Standard; Sucrose, anhydrous, free-flowing, Redi-Dri(TM), ACS reagent; Sucrose, analytical standard, for enzymatic assay kit SCA20; SUCROSE (CONSTITUENT OF CRANBERRY LIQUID PREPARATION) [DSC]; Sucrose, BioUltra, for molecular biology, >=99.5\\% (HPLC); beta-D-fructofuranosyl-(2↔1)-alpha-D-glucopyranoside; WURCS=2.0/2,2,1/[ha122h-2b_2-5][a2122h-1a_1-5]/1-2/a2-b1; Sucrose, European Pharmacopoeia (EP) Reference Standard; Sucrose, British Pharmacopoeia (BP) Reference Standard; Sucrose, Vetec(TM) reagent grade, RNase and DNase free; alpha-D-glucopyranosyl-(1->2)-beta-D-fructofuranoside; SUCROSE (CONSTITUENT OF CRANBERRY LIQUID PREPARATION); .ALPHA.-D-GLUCOPYRANOSIDE, .BETA.-D-FRUCTOFURANOSYL-; 1-alpha-D-glucopyranosyl-2-beta-D-fructofuranoside; .BETA.-D-FRUCTOFURANOSYL-.ALPHA.-D-GLUCOPYRANOSIDE; 1-alpha-D-glucopyranosyl-2-beta-D-fructofranoside; Fructofuranoside, alpha-D-glucopyranosyl, beta-D; Sucrose, for microbiology, ACS reagent, >=99.0\\%; Glucopyranoside, beta-D-fructofuranosyl, alpha-D; alpha-D-Glucopyranoside, beta-D-fructofuranosyl-; Sucrose|?-D-Fructofuranosyl ?-D-glucopyranoside; alpha-D-Glucopyranoside, beta-D-fructofuranosyl; alpha-D-Glucopyranosyl beta-D-fructofuranoside; beta-D-Fructofuranosyl-alpha-D-glucopyranoside; beta-D-Fructofuranosyl alpha-D-glucopyranoside; alpha-D-Glucopyranosylbeta-D-fructofuranoside; Sucrose, for molecular biology, >=99.5\\% (GC); Sucrose, NIST(R) SRM(R) 17f, optical rotation; Sucrose, Grade II, plant cell culture tested; 1-Α-D-glucopyranosyl-2-β-D-fructofuranoside; (alpha-D-Glucosido)-beta-D-fructofuranoside; Sucrose, Grade I, plant cell culture tested; 1-a-D-Glucopyranosyl-2-b-D-fructofuranoside; Sucrose, meets USP testing specifications; b -D-Fructofuranosyl a-D-glucopyranoside; a-D-Glucopyranosyl A-D-fructofuranoside; Sucrose, Vetec(TM) reagent grade, 99\\%; Sucrose, for electrophoresis, >99\\%; Sucrose, Molecular Biology Grade; beta-D-Fruf-(2<->1)-alpha-D-Glcp; Sucrose, BioXtra, >=99.5\\% (GC); beta-D-Fruf-(21)-alpha-D-GLCP; Sucrose, analytical standard; alpha-D-Glc-(1-2)-beta-D-Fru; Sucrose, cell culture tested; SACCHARUM OFFICINALE [HPUS]; CZMRCDWAGMRECN-UGDNZRGBSA-N; Sucrose, p.a., ACS reagent; Sucrose, JIS special grade; Sucrose Biochemical grade; Sugar, confectioners (NF); Sucrose, SAJ first grade; Sugar, compressible (NF); White soft sugar (JP17); Sucrose (for injection); Sucrose, >=99.5\\% (GC); SUCROSE (EP MONOGRAPH); Β-D-fruf-(21)-α-D-GLCP; Sucrose, reagent grade; Sucraloxum [INN-Latin]; SUCROSE [EP MONOGRAPH]; Sucraloxum (INN-Latin); b-D-Fruf-(21)-a-D-GLCP; SUCROSE (EP IMPURITY); Glc(alpha1->2beta)Fru; SUCROSE [EP IMPURITY]; SACCHARUM OFFICINALE; Sucrose, ACS reagent; Sugar, confectioners; Confectioners sugar; Sugar, compressible; Compressible sugar; DYSPEPSIA HEADACHE; Sucrose [USAN:JAN]; Sugar spheres (NF); Sucrose, ultrapure; Sucrose,ultrapure; Sucrose (JP17/NF); Sucrose, >=99.5\\%; Sucrose, purified; Sucrose ACS grade; SUCROSE [USP-RS]; Sucrose [JAN:NF]; SUCROSE (USP-RS); White soft sugar; SUCROSE [WHO-DD]; D-(+)-Saccharose; SUCROSE [VANDF]; D(+)-Saccharose; SUCROSE [HSDB]; SUCROSE [INCI]; SUCROSE [JAN]; Sugar spheres; Sucrose, pure; REFINED SUGAR; SUGAR [VANDF]; Sucrose, dust; D-(+)-Sucrose; SUCROSE [FCC]; SUCROSE (II); D-Saccharose; SUCROSE [MI]; Sucrose, USP; GLC-(1-2)FRU; D(+)-Sucrose; Tox21_300410; Tox21_112093; SUCROSE [NF]; Tox21_201397; Sucrose (TN); SUGAR, WHITE; SUCROSE [II]; Frost Sugar; Sucrose, LR; (+)-Sucrose; Sucrose, AR; CAS-57-50-1; Table sugar; White sugar; saccharose; Manalox AS; Rohrzucker; Cane sugar; Rock candy; Sucraloxum; Sugar,(S); Saccharum; Sacharose; Saccarose; AI3-09085; Beetsugar; D-Sucrose; Amerfand; sacarosa; Amerfond; Microse; Sucrose; Sugars; S-67F; sugar; 1af6; A-5; Sucrose; Sucrose



数据库引用编号

34 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(7)

BioCyc(9)

PlantCyc(8)

代谢反应

1360 个相关的代谢反应过程信息。

Reactome(39)

BioCyc(65)

WikiPathways(2)

Plant Reactome(381)

INOH(0)

PlantCyc(839)

COVID-19 Disease Map(1)

PathBank(33)

PharmGKB(0)

1054 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 AKR1B1, BDNF, CHIA, G6PD, GCK, NR3C1, POMC
Peripheral membrane protein 6 ACHE, COQ10A, G6PD, GBA1, GCK, HSD17B6
Endosome membrane 2 INSR, TF
Endoplasmic reticulum membrane 1 HSP90B1
Nucleus 5 ACHE, GCK, HSP90B1, NR3C1, SMARCA4
cytosol 7 AKR1B1, G6PD, GCK, HSP90B1, NR3C1, SLC2A1, SLC2A4
dendrite 1 BDNF
trans-Golgi network 2 GBA1, SLC2A4
centrosome 1 NR3C1
nucleoplasm 4 AKR1B1, GCK, NR3C1, SMARCA4
Cell membrane 5 ACHE, CD79A, INSR, SLC2A1, SLC2A4
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 2 SLC2A1, SLC2A4
Golgi apparatus membrane 2 GCK, ST3GAL4
Synapse 2 ACHE, NR3C1
cell surface 2 ACHE, TF
Golgi apparatus 4 ACHE, ATRN, GBA1, ST3GAL4
Golgi membrane 3 GCK, SLC2A1, ST3GAL4
lysosomal membrane 1 GBA1
mitochondrial inner membrane 1 COQ10A
neuromuscular junction 1 ACHE
sarcolemma 2 SLC2A1, SLC2A4
smooth endoplasmic reticulum 1 HSP90B1
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 1 G6PD
Lysosome 2 GBA1, INSR
Presynapse 2 SLC2A1, SLC2A4
plasma membrane 7 ACHE, ATRN, CD79A, INSR, SLC2A1, SLC2A4, TF
Membrane 10 ACHE, BDNF, G6PD, HSP90B1, INSR, NR3C1, SLC2A1, SLC2A4, SMARCA4, ST3GAL4
apical plasma membrane 2 SLC2A1, TF
axon 2 BDNF, INSR
basolateral plasma membrane 2 GCK, SLC2A1
caveola 2 INSR, SLC2A1
extracellular exosome 9 AKR1B1, ATRN, G6PD, GBA1, HSP90B1, INSR, SLC2A1, SLC2A4, TF
Lysosome membrane 1 GBA1
Lumenal side 2 GBA1, HSD17B6
endoplasmic reticulum 3 GBA1, HSD17B6, HSP90B1
extracellular space 8 ACHE, AKR1B1, ATRN, BDNF, CHIA, POMC, SMARCA4, TF
lysosomal lumen 1 GBA1
perinuclear region of cytoplasm 5 ACHE, BDNF, HSP90B1, SLC2A4, TF
intercalated disc 1 SLC2A1
mitochondrion 4 AKR1B1, COQ10A, GCK, NR3C1
protein-containing complex 3 HSP90B1, NR3C1, SMARCA4
intracellular membrane-bounded organelle 2 G6PD, HSD17B6
Microsome membrane 1 HSD17B6
Single-pass type I membrane protein 3 ATRN, CD79A, INSR
Secreted 4 ACHE, BDNF, POMC, TF
extracellular region 7 ACHE, BDNF, CHIA, HSP90B1, POMC, ST3GAL4, TF
cytoplasmic side of plasma membrane 1 G6PD
basal part of cell 1 TF
neuronal cell body membrane 1 INSR
[Isoform 2]: Secreted 1 ATRN
mitochondrial matrix 1 NR3C1
Extracellular side 1 ACHE
centriolar satellite 1 G6PD
photoreceptor inner segment 1 SLC2A1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NR3C1
external side of plasma membrane 3 CD79A, INSR, SLC2A4
multivesicular body 2 CD79A, SLC2A4
T-tubule 1 SLC2A4
Z disc 1 SLC2A1
cytoplasmic vesicle 1 TF
nucleolus 1 SMARCA4
midbody 2 HSP90B1, SLC2A1
Early endosome 1 TF
clathrin-coated pit 2 SLC2A4, TF
recycling endosome 1 TF
Single-pass type II membrane protein 1 ST3GAL4
vesicle 1 TF
Cytoplasm, perinuclear region 1 SLC2A4
Mitochondrion inner membrane 1 COQ10A
Matrix side 1 COQ10A
Membrane raft 2 CD79A, SLC2A4
Cytoplasm, cytoskeleton, spindle 1 NR3C1
focal adhesion 1 HSP90B1
spindle 1 NR3C1
basement membrane 1 ACHE
sarcoplasmic reticulum 1 SLC2A4
collagen-containing extracellular matrix 1 HSP90B1
secretory granule 1 POMC
nuclear speck 1 NR3C1
Late endosome 2 INSR, TF
receptor complex 1 INSR
chromatin 2 NR3C1, SMARCA4
Chromosome 2 NR3C1, SMARCA4
blood microparticle 2 SLC2A1, TF
Basolateral cell membrane 1 GCK
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 3]: Secreted 1 ATRN
fibrillar center 1 SMARCA4
Endomembrane system 1 SLC2A4
female germ cell nucleus 1 SLC2A1
Cytoplasmic vesicle membrane 1 SLC2A4
Nucleus, nucleoplasm 1 NR3C1
Melanosome 2 HSP90B1, SLC2A1
Golgi cisterna membrane 1 ST3GAL4
side of membrane 1 ACHE
sperm plasma membrane 1 HSP90B1
basal plasma membrane 1 TF
clathrin-coated vesicle 1 SLC2A4
trans-Golgi network transport vesicle 1 SLC2A4
secretory granule lumen 2 POMC, TF
HFE-transferrin receptor complex 1 TF
endoplasmic reticulum lumen 3 BDNF, HSP90B1, TF
nuclear matrix 1 SMARCA4
cortical actin cytoskeleton 1 SLC2A1
kinetochore 1 SMARCA4
endocytic vesicle 1 TF
bBAF complex 1 SMARCA4
nBAF complex 1 SMARCA4
npBAF complex 1 SMARCA4
SWI/SNF complex 1 SMARCA4
vesicle membrane 1 SLC2A4
clathrin-coated endocytic vesicle membrane 1 TF
Sarcoplasmic reticulum lumen 1 HSP90B1
synaptic cleft 1 ACHE
female pronucleus 1 SLC2A1
[Isoform 1]: Cell membrane 1 ATRN
dendrite membrane 1 INSR
[Isoform Alpha]: Cytoplasm 1 NR3C1
GBAF complex 1 SMARCA4
RSC-type complex 1 SMARCA4
vesicle coat 1 TF
endocytic vesicle lumen 1 HSP90B1
IgM B cell receptor complex 1 CD79A
[Isoform Beta]: Nucleus 1 NR3C1
[Isoform Alpha-B]: Nucleus 1 NR3C1
insulin receptor complex 1 INSR
endoplasmic reticulum chaperone complex 1 HSP90B1
glucose transporter complex 1 SLC2A1
B cell receptor complex 1 CD79A
insulin-responsive compartment 1 SLC2A4
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
dense body 1 TF


文献列表

  • C Gasser, J M Faurie, F Rul. Regulation of lactose, glucose and sucrose metabolisms in S. thermophilus. Food microbiology. 2024 Aug; 121(?):104487. doi: 10.1016/j.fm.2024.104487. [PMID: 38637064]
  • Aigerim Soltabayeva, Assylay Kurmanbayeva, Aizat Bekturova, Dinara Oshanova, Zhadyrassyn Nurbekova, Sudhakar Srivastava, Dominic Standing, Edyta Zdunek-Zastocka, Moshe Sagi. Endogenous ureides are employed as a carbon source in Arabidopsis plants exposed to carbon starvation conditions. Plant science : an international journal of experimental plant biology. 2024 Jul; 344(?):112108. doi: 10.1016/j.plantsci.2024.112108. [PMID: 38705480]
  • Juan C Baca Cabrera, Regina T Hirl, Rudi Schäufele, Jianjun Zhu, Hai Tao Liu, Xiao Ying Gong, Jérôme Ogée, Hans Schnyder. Half of the 18O enrichment of leaf sucrose is conserved in leaf cellulose of a C3 grass across atmospheric humidity and CO2 levels. Plant, cell & environment. 2024 Jun; 47(6):2274-2287. doi: 10.1111/pce.14881. [PMID: 38488789]
  • Xiaoguang Lu, Fuzhi Zhang, Chenglong Zhang, Guorui Li, Yuchen Du, Cicong Zhao, Wei Zhao, Fengmei Gao, Lianshuang Fu, Xin Liu, Jun Liu, Xiaonan Wang. TaTPS11 enhances wheat cold resistance by regulating source-sink factor. Plant physiology and biochemistry : PPB. 2024 Jun; 211(?):108695. doi: 10.1016/j.plaphy.2024.108695. [PMID: 38744088]
  • Hugo Alejandro Tinoco-Tafolla, José López-Hernández, Randy Ortiz-Castro, José López-Bucio, Homero Reyes de la Cruz, Jesús Campos-García, Jesús Salvador López-Bucio. Sucrose supplements modulate the Pseudomonas chlororaphis-Arabidopsis thaliana interaction via decreasing the production of phenazines and enhancing the root auxin response. Journal of plant physiology. 2024 Jun; 297(?):154259. doi: 10.1016/j.jplph.2024.154259. [PMID: 38705079]
  • Fani Sereti, Maria Alexandri, Aikaterini Papadaki, Harris Papapostolou, Nikolaos Kopsahelis. Carotenoids production by Rhodosporidium paludigenum yeasts: Characterization of chemical composition, antioxidant and antimicrobial properties. Journal of biotechnology. 2024 May; 386(?):52-63. doi: 10.1016/j.jbiotec.2024.03.011. [PMID: 38548021]
  • Ning Jiang, Caihong Yao, Yiwen Zhang, Yuzhen Chen, Fang Chen, Yanqin Luo, Muhammad Iqbal Choudhary, Ruile Pan, Xinmin Liu. Antidepressant effects of Parishin C in chronic social defeat stress-induced depressive mice. Journal of ethnopharmacology. 2024 May; 325(?):117891. doi: 10.1016/j.jep.2024.117891. [PMID: 38331122]
  • Tao Yang, Yunqin Huang, Longyu Liao, Shanshan Wang, Haoyu Zhang, Jingying Pan, Yongcai Huang, Xiaoling Li, Di Chen, Tao Liu, Xiaoduo Lu, Yongrui Wu. Sucrose-associated SnRK1a1-mediated phosphorylation of Opaque2 modulates endosperm filling in maize. Molecular plant. 2024 May; 17(5):788-806. doi: 10.1016/j.molp.2024.04.004. [PMID: 38615195]
  • Qi-Yang Wang, Hao-Yu Wang, Wei-Guo Zhang, Jian-Zhong Xu. Economical one-pot synthesis of isoquercetin and D-allulose from quercetin and sucrose using whole-cell biocatalyst. Enzyme and microbial technology. 2024 May; 176(?):110412. doi: 10.1016/j.enzmictec.2024.110412. [PMID: 38402828]
  • Shuang Qiao, Wendy Huang, Darina Kuzma, Aleshia Kormendi. Acesulfame and other artificial sweeteners in a wastewater treatment plant in Alberta, Canada: Occurrence, degradation, and emission. Chemosphere. 2024 May; 356(?):141893. doi: 10.1016/j.chemosphere.2024.141893. [PMID: 38582168]
  • Yinan Zhao, Wanting Ma, Kexin Tian, Zhe Wang, Xingxing Fu, Qi Zuo, Yanfei Qi, Shubiao Zhang. Sucrose ester embedded lipid carrier for DNA delivery. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2024 May; 198(?):114269. doi: 10.1016/j.ejpb.2024.114269. [PMID: 38527635]
  • Heyun Song, Jia Xin, Dong Yang, Gangqiang Dong, Xianbao Deng, Juan Liu, Minghua Zhang, Lin Chen, Yanyan Su, Hui Yang, Mei Yang, Heng Sun. NnSUS1 encodes a sucrose synthase involved in sugar accumulation in lotus seed cotyledons. Plant physiology and biochemistry : PPB. 2024 May; 210(?):108591. doi: 10.1016/j.plaphy.2024.108591. [PMID: 38583314]
  • A Berenice Aguilar-Guadarrama, Mónica Aideé Díaz-Román, Maribel Osorio-García, Myrna Déciga-Campos, María Yolanda Rios. Chemical Constituents from Agave applanata and Its Antihyperglycemic, Anti-inflammatory, and Antimicrobial Activities Associated with Its Tissue Repair Capability. Planta medica. 2024 May; 90(5):397-410. doi: 10.1055/a-2270-5527. [PMID: 38365219]
  • Thi Van Anh Nguyen, Thi Minh Hang Nguyen, Thi Thoa Ha, Thuy Duong Nguyen, Duc Huy Bui. Antiplatelet and Anticoagulant Effects of Two New Phenylpropanoid Sucrose Esters and Other Secondary Metabolites from the Aerial Part of Canna edulis. Chemistry & biodiversity. 2024 May; 21(5):e202400302. doi: 10.1002/cbdv.202400302. [PMID: 38454878]
  • Manqi Shi, Qi Zeng, Xiaoxian Hu, Haobo Jin, Xiaohui Lv, Jiaxuan Ma, Rong Chen, Yongguo Jin. The effects of sucrose/NaCl combined pickling on the textural characteristics, moisture distribution, and protein aggregation behavior of egg yolk. Journal of food science. 2024 May; 89(5):2684-2700. doi: 10.1111/1750-3841.17007. [PMID: 38551186]
  • Jierui Wu, Xiaoyu Wang, Lin Bian, Zhenyi Li, Xiaohong Jiang, Fengling Shi, Fang Tang, Zhiqiang Zhang. Starch and sucrose metabolism plays an important role in the stem development in Medicago sativa. Functional plant biology : FPB. 2024 05; 51(?):. doi: 10.1071/fp24073. [PMID: 38739736]
  • Yonghui Pan, Fang Li, Wen Lin, Youping Zhou, Xin Song. Quantifying isotope parameters associated with carbonyl-water oxygen exchange during sucrose translocation in tree phloem. The New phytologist. 2024 May; 242(3):975-987. doi: 10.1111/nph.19654. [PMID: 38439696]
  • Ting-Ting Zhang, Yu-Jing Lin, Hao-Feng Liu, Ya-Qi Liu, Zhi-Feng Zeng, Xiao-Yan Lu, Xue-Wei Li, Zhen-Lu Zhang, Shuai Zhang, Chun-Xiang You, Qing-Mei Guan, Zhao-Bo Lang, Xiao-Fei Wang. The AP2/ERF transcription factor MdDREB2A regulates nitrogen utilisation and sucrose transport under drought stress. Plant, cell & environment. 2024 May; 47(5):1668-1684. doi: 10.1111/pce.14834. [PMID: 38282271]
  • Yun Li, Yanyan Jiang, Dong Cao, Bin Dang, Xijuan Yang, Shiting Fan, Yuhu Shen, Genying Li, Baolong Liu. Creating a zero amylose barley with high soluble sugar content by genome editing. Plant molecular biology. 2024 Apr; 114(3):50. doi: 10.1007/s11103-024-01445-w. [PMID: 38656412]
  • Jiahong Chen, Lei Yang, Hehua Zhang, Junbin Ruan, Yuan Wang. Role of sugars in the apical hook development of Arabidopsis etiolated seedlings. Plant cell reports. 2024 Apr; 43(5):131. doi: 10.1007/s00299-024-03217-8. [PMID: 38656568]
  • Peng Cai, Yanhong Lan, Fangyi Gong, Chun Li, Feng Xia, Yifan Li, Chao Fang. Comparative physiology and transcriptome response patterns in cold-tolerant and cold-sensitive varieties of Solanum melongena. BMC plant biology. 2024 Apr; 24(1):256. doi: 10.1186/s12870-024-04922-y. [PMID: 38594627]
  • Yaqian Chen, Jinfeng Wu, Changrui Ma, Dawei Zhang, Dinggang Zhou, Jihong Zhang, Mingli Yan. Metabolome and transcriptome analyses reveal changes of rapeseed in response to ABA signal during early seedling development. BMC plant biology. 2024 Apr; 24(1):245. doi: 10.1186/s12870-024-04918-8. [PMID: 38575879]
  • Chenyu Rong, Renren Zhang, Yuexin Liu, Zhongyuan Chang, Ziyu Liu, Yanfeng Ding, Chengqiang Ding. Purine permease (PUP) family gene PUP11 positively regulates the rice seed setting rate by influencing seed development. Plant cell reports. 2024 Apr; 43(4):112. doi: 10.1007/s00299-024-03193-z. [PMID: 38568250]
  • Hany M El-Naggar, Shimaa M Ali, Amira R Osman. A novel efficient multi-walled carbon nanotubes/gibberellic acid composite for enhancement vase life and quality of Rosa hybrida cv. 'Moonstone'. BMC plant biology. 2024 Apr; 24(1):239. doi: 10.1186/s12870-024-04925-9. [PMID: 38570782]
  • Linsheng Zheng, Shaopeng Zhao, Yifan Zhou, Guoling Yang, A Chen, Xinxin Li, Jinxiang Wang, Jiang Tian, Hong Liao, Xiurong Wang. The soybean sugar transporter GmSWEET6 participates in sucrose transport towards fungi during arbuscular mycorrhizal symbiosis. Plant, cell & environment. 2024 Apr; 47(4):1041-1052. doi: 10.1111/pce.14772. [PMID: 37997205]
  • Francisco M Dillon, Charalampos Panagos, Gonçalo Gouveia, Fariba Tayyari, Hugo D Chludil, Arthur S Edison, Jorge A Zavala. Changes in primary metabolite content may affect thrips feeding preference in soybean crops. Phytochemistry. 2024 Apr; 220(?):114014. doi: 10.1016/j.phytochem.2024.114014. [PMID: 38354875]
  • Muhammad Irfan Waris, Yanyuan Lei, Guojun Qi, Ziying Guan, Abdul Rashied, Jie Chen, Lihua Lyu. The temporal-spatial expression and functional analysis of three gustatory receptor genes in Solenopsis invicta using sweet and bitter compounds. Insect science. 2024 Apr; 31(2):448-468. doi: 10.1111/1744-7917.13301. [PMID: 38010036]
  • Sheng Fang, Zehua Wan, Tinghai Shen, Guoqing Liang. Potassium attenuates drought damage by regulating sucrose metabolism and gene expression in sesame leaf. Plant physiology and biochemistry : PPB. 2024 Apr; 209(?):108547. doi: 10.1016/j.plaphy.2024.108547. [PMID: 38522132]
  • Liang Chi, YifeiYang, Xiaoming Bian, Bei Gao, Pengcheng Tu, Hongyu Ru, Kun Lu. Chronic sucralose consumption inhibits farnesoid X receptor signaling and perturbs lipid and cholesterol homeostasis in the mouse livers, potentially by altering gut microbiota functions. The Science of the total environment. 2024 Apr; 919(?):169603. doi: 10.1016/j.scitotenv.2023.169603. [PMID: 38272087]
  • Yulei Zhu, Shengwei Hu, Jiahuan Min, Yingtong Zhao, Hanqi Yu, Muhammad Irfan, Chuanqiang Xu. Transcriptomic analysis provides an insight into the function of CmGH9B3, a key gene of β-1, 4-glucanase, during the graft union healing of oriental melon scion grafted onto squash rootstock. Biotechnology journal. 2024 Apr; 19(4):e2400006. doi: 10.1002/biot.202400006. [PMID: 38581090]
  • Huimin Shi, Jianhua Hou, Dandan Li, Haibo Hu, Yanxia Wang, Yang Wu, Liuxi Yi. Comparative transcriptome and coexpression network analysis reveals key pathways and hub candidate genes associated with sunflower (Helianthus annuus L.) drought tolerance. BMC plant biology. 2024 Mar; 24(1):224. doi: 10.1186/s12870-024-04932-w. [PMID: 38539093]
  • Rong Wu, Ying Xiong, Yun Gu, Li-Yue Cao, Shu-Ying Zhang, Zhi-Xiu Song, Pu Fan, Lin Lin. Traditional Pediatric Massage Enhanced Hippocampal GR, BDNF and IGF-1 Expressions and Exerted an Anti-depressant Effect in an Adolescent Rat Model of CUMS-induced Depression. Neuroscience. 2024 Mar; 542(?):47-58. doi: 10.1016/j.neuroscience.2024.01.025. [PMID: 38364964]
  • Olivier Harlé, Jérôme Niay, Sandrine Parayre, Aurélie Nicolas, Gwenaële Henry, Marie-Bernadette Maillard, Florence Valence, Anne Thierry, Éric Guédon, Hélène Falentin, Stéphanie-Marie Deutsch. Deciphering the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice fermentation using phenotypic and transcriptional analysis. Applied and environmental microbiology. 2024 Mar; 90(3):e0193623. doi: 10.1128/aem.01936-23. [PMID: 38376234]
  • Xianglei Xu, Haikun Wei, Kejun Yao, Hao Wu, Tingting Huang, Mei Han, Tao Su, Fuliang Cao. Integrative omics studies revealed synergistic link between sucrose metabolic isogenes and carbohydrates in poplar roots infected by Fusarium wilt. Plant molecular biology. 2024 Mar; 114(2):29. doi: 10.1007/s11103-024-01426-z. [PMID: 38502380]
  • Yuqing Liu, Qingzhi Wu, Jian Zhang, Xiaoying Mao. Effect of synergism of sucrose ester and xanthan gum on the stability of walnut milk. Journal of the science of food and agriculture. 2024 Mar; 104(4):1909-1919. doi: 10.1002/jsfa.13075. [PMID: 37884470]
  • Ye Yao, Xiaojuan Wang, Dongyu Li, Shujuan Chen, Chengjie Li, Haiyu Guan, Dongsheng Wang, Xiaoli Nie. Cyclocarya paliurus leaves alleviate high-sucrose diet-induced obesity by improving intestinal metabolic disorders. Aging. 2024 Mar; 16(6):5452-5470. doi: 10.18632/aging.205657. [PMID: 38484370]
  • Kaikai Qiao, Qingtao Zeng, Jiaoyan Lv, Lingling Chen, Juxin Hao, Ding Wang, Qifeng Ma, Shuli Fan. Exploring the role of GhN/AINV23: implications for plant growth, development, and drought tolerance. Biology direct. 2024 Mar; 19(1):22. doi: 10.1186/s13062-024-00465-2. [PMID: 38486336]
  • Xiaoming Li, Zhonghui Chen, Haiyang Li, Lin Yue, Cuirong Tan, Hongjie Liu, Yilong Hu, Yuhua Yang, Xiani Yao, Lingping Kong, Xiang Huang, Bin Yu, Chunyu Zhang, Yuefeng Guan, Baohui Liu, Fanjiang Kong, Xingliang Hou. Dt1 inhibits SWEET-mediated sucrose transport to regulate photoperiod-dependent seed weight in soybean. Molecular plant. 2024 03; 17(3):496-508. doi: 10.1016/j.molp.2024.02.007. [PMID: 38341616]
  • Lijie Li, Xiaochen Lu, Ping Dai, Huaiyu Ma. DIA-Based Quantitative Proteomics in the Flower Buds of Two Malus sieversii (Ledeb.) M. Roem Subtypes at Different Overwintering Stages. International journal of molecular sciences. 2024 Mar; 25(5):. doi: 10.3390/ijms25052964. [PMID: 38474210]
  • Xiao Wan, Long-Hai Zou, Xiaoyun Pan, Yaying Ge, Liang Jin, Qunyang Cao, Jiewei Shi, Danqing Tian. Auxin and carbohydrate control flower bud development in Anthurium andraeanum during early stage of sexual reproduction. BMC plant biology. 2024 Mar; 24(1):159. doi: 10.1186/s12870-024-04869-0. [PMID: 38429715]
  • Yuanshan Zhang, Xiangxin Guo, Junyan Song, Guanqun Chen, Xiaohui Shen. Enhancing cryopreservation survival in Petunia × Calibrachoa 'Light Yellow' callus: Insights into material characteristics and genetic integrity. Cryobiology. 2024 03; 114(?):104846. doi: 10.1016/j.cryobiol.2024.104846. [PMID: 38295926]
  • Yueruxin Jin, Canying Li, Shuran Zhang, Jiaqi Liu, Miao Wang, Yan Guo, Hengping Xu, Yonghong Ge. Sucrose, cell wall, and polyamine metabolisms involve in preserving postharvest quality of 'Zaosu' pear fruit by L-glutamate treatment. Plant physiology and biochemistry : PPB. 2024 Mar; 208(?):108455. doi: 10.1016/j.plaphy.2024.108455. [PMID: 38428157]
  • Maria M Jenderek, Kathleen M Yeater, Andrew L Thomas. Germplasm of Ozark chinquapin (Castanea ozarkensis Ashe) can be cryopreserved by dormant winter buds. Cryobiology. 2024 03; 114(?):104833. doi: 10.1016/j.cryobiol.2023.104833. [PMID: 38072181]
  • Kriti Roopendra, Priyanka, Amaresh Chandra, Yusuf Akhter, Sangeeta Saxena. Transcriptome scale analysis to decode the differential sucrose accumulation mechanisms in sugarcane under the effect of gibberellin. Physiologia plantarum. 2024 Mar; 176(2):e14290. doi: 10.1111/ppl.14290. [PMID: 38634341]
  • Dongxin Huai, Chenyang Zhi, Jie Wu, Xiaomeng Xue, Meiling Hu, Jianan Zhang, Nian Liu, Li Huang, Liying Yan, Yuning Chen, Xin Wang, Qianqian Wang, Yanping Kang, Zhihui Wang, Huifang Jiang, Boshou Liao, Yong Lei. Unveiling the molecular regulatory mechanisms underlying sucrose accumulation and oil reduction in peanut kernels through genetic mapping and transcriptome analysis. Plant physiology and biochemistry : PPB. 2024 Mar; 208(?):108448. doi: 10.1016/j.plaphy.2024.108448. [PMID: 38422578]
  • Javier A Miret, Cara A Griffiths, Matthew J Paul. Sucrose homeostasis: Mechanisms and opportunity in crop yield improvement. Journal of plant physiology. 2024 Mar; 294(?):154188. doi: 10.1016/j.jplph.2024.154188. [PMID: 38295650]
  • Carolyn M Lorch, Nikolas W Hayes, Jessica L Xia, Stefan W Fleps, Hayley E McMorrow, Haley S Province, Joshua A Frydman, Jones G Parker, Lisa R Beutler. Sucrose overconsumption impairs AgRP neuron dynamics and promotes palatable food intake. Cell reports. 2024 Feb; 43(2):113675. doi: 10.1016/j.celrep.2024.113675. [PMID: 38224492]
  • Siyang Gao, Mingxin Yin, Mingyang Xu, He Zhang, Shuai Li, Yinxiao Han, Shujuan Ji, Xinyue Li, Guodong Du. Transcription factors PuPRE6/PuMYB12 and histone deacetylase PuHDAC9-like regulate sucrose levels in pear. Plant physiology. 2024 Feb; 194(3):1577-1592. doi: 10.1093/plphys/kiad628. [PMID: 38006319]
  • Zhihui Wang, Yue Zhang, Dongxin Huai, Yuning Chen, Xin Wang, Yanping Kang, Liying Yan, Huifang Jiang, Kede Liu, Yong Lei, Boshou Liao. Detection of two homologous major QTLs and development of diagnostic molecular markers for sucrose content in peanut. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2024 Feb; 137(3):61. doi: 10.1007/s00122-024-04549-5. [PMID: 38411751]
  • Bao-Lam Huynh, James C R Stangoulis, Tri D Vuong, Haiying Shi, Henry T Nguyen, Tra Duong, Ousmane Boukar, Francis Kusi, Benoit J Batieno, Ndiaga Cisse, Mouhamadou Moussa Diangar, Frederick Justice Awuku, Patrick Attamah, José Crossa, Paulino Pérez-Rodríguez, Jeffrey D Ehlers, Philip A Roberts. Quantitative trait loci and genomic prediction for grain sugar and mineral concentrations of cowpea [Vigna unguiculata (L.) Walp.]. Scientific reports. 2024 02; 14(1):4567. doi: 10.1038/s41598-024-55214-2. [PMID: 38403625]
  • Pradhi Rajeev, Tarun Gupta, Leszek Marynowski. Neutral saccharides and hemicellulose over two urban sites in Indo-Gangetic Plain and Central Europe during winter. The Science of the total environment. 2024 Feb; 912(?):168849. doi: 10.1016/j.scitotenv.2023.168849. [PMID: 38056638]
  • Hanifeh Seyed Hajizadeh, Somayeh Bayrami Aghdam, Hadi Fakhrghazi, Sinem Karakus, Ozkan Kaya. Physico-Chemical Responses of Alstroemeria spp. cv. Rebecca to the presence of Salicylic Acid and Sucrose in vase solution during postharvest life. BMC plant biology. 2024 Feb; 24(1):121. doi: 10.1186/s12870-024-04814-1. [PMID: 38373932]
  • Gyeongseon An, Sunghoon Park, Jungmin Ha. The enhancement effect of mungbean on the physical, functional, and sensory characteristics of soy yoghurt. Scientific reports. 2024 02; 14(1):3684. doi: 10.1038/s41598-024-54106-9. [PMID: 38355653]
  • Pengfei Su, Dacheng Wang, Ping Wang, Yameng Gao, Huiling Jia, Jinyan Hou, Lifang Wu. In vitro regeneration, photomorphogenesis and light signaling gene expression in Hydrangea quercifolia cv. 'Harmony' under different LED environments. Planta. 2024 Feb; 259(3):71. doi: 10.1007/s00425-024-04335-z. [PMID: 38353793]
  • Liangliang Li, Yan Li, Guijie Ding. Response mechanism of carbon metabolism of Pinus massoniana to gradient high temperature and drought stress. BMC genomics. 2024 Feb; 25(1):166. doi: 10.1186/s12864-024-10054-2. [PMID: 38347506]
  • Guang Chen, Wenli Lian, Anjing Geng, Yihan Wang, Minghao Liu, Yue Zhang, Xu Wang. pOsHAK1:OsSUT1 Promotes Sugar Transport and Enhances Drought Tolerance in Rice. International journal of molecular sciences. 2024 Feb; 25(4):. doi: 10.3390/ijms25042158. [PMID: 38396836]
  • Yanhong Cui, Xingzhou Ji, Yu Zhang, Yang Liu, Qian Bai, Shuchai Su. Transcriptomic and Metabolic Profiling Reveal the Mechanism of Ovule Development in Castanea mollissima. International journal of molecular sciences. 2024 Feb; 25(4):. doi: 10.3390/ijms25041974. [PMID: 38396651]
  • Arianne Morissette, Alice de Wouters d'Oplinter, Diana Majolli Andre, Marilou Lavoie, Bruno Marcotte, Thibault V Varin, Jocelyn Trottier, Geneviève Pilon, Martin Pelletier, Patrice D Cani, Olivier Barbier, Vanessa P Houde, André Marette. Rebaudioside D decreases adiposity and hepatic lipid accumulation in a mouse model of obesity. Scientific reports. 2024 02; 14(1):3077. doi: 10.1038/s41598-024-53587-y. [PMID: 38321177]
  • Ou Cai, Hanjiao Zhang, Lu Yang, Hongyu Wu, Min Qin, Wenjing Yao, Feiyi Huang, Long Li, Shuyan Lin. Integrated Transcriptome and Metabolome Analyses Reveal Bamboo Culm Color Formation Mechanisms Involved in Anthocyanin Biosynthetic in Phyllostachys nigra. International journal of molecular sciences. 2024 Feb; 25(3):. doi: 10.3390/ijms25031738. [PMID: 38339012]
  • Prashant Kumar, Akansha Madhawan, Akshya Sharma, Vinita Sharma, Deepak Das, Afsana Parveen, Vikas Fandade, Deepak Sharma, Joy Roy. A sucrose non-fermenting-1-related protein kinase 1 gene from wheat, TaSnRK1α regulates starch biosynthesis by modulating AGPase activity. Plant physiology and biochemistry : PPB. 2024 Feb; 207(?):108407. doi: 10.1016/j.plaphy.2024.108407. [PMID: 38340690]
  • Mingjuan Li, Hongye Li, Qidong Zhu, Dong Liu, Zhen Li, Haifei Chen, Jinsong Luo, Pan Gong, Abdelbagi M Ismail, Zhenhua Zhang. Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.). The New phytologist. 2024 Feb; 241(3):1250-1265. doi: 10.1111/nph.19411. [PMID: 38009305]
  • Marília Aparecida Stroka, Letícia Reis, Kamila Karoline de Souza Los, Calistene Aparecida Pinto, Flávia Maria Gustani, Charles F Forney, Rafael Mazer Etto, Carolina Weigert Galvão, Ricardo Antonio Ayub. The maturation profile triggers differential expression of sugar metabolism genes in melon fruits. Plant physiology and biochemistry : PPB. 2024 Feb; 207(?):108418. doi: 10.1016/j.plaphy.2024.108418. [PMID: 38346367]
  • Junjie Tian, Shumin Wei, Yingying Jiao, Wenxing Liang, Guangyuan Wang. A strategy to reduce the byproduct glucose by simultaneously producing levan and single cell oil using an engineered Yarrowia lipolytica strain displaying levansucrase on the surface. Bioresource technology. 2024 Jan; ?(?):130395. doi: 10.1016/j.biortech.2024.130395. [PMID: 38301939]
  • Ning Xiao, Haizhen Ma, Wanxia Wang, Zengkun Sun, Panpan Li, Tao Xia. Overexpression of ZmSUS1 increased drought resistance of maize (Zea mays L.) by regulating sucrose metabolism and soluble sugar content. Planta. 2024 Jan; 259(2):43. doi: 10.1007/s00425-024-04336-y. [PMID: 38277077]
  • Fengjuan Liu, Xupeng Shao, Yingying Fan, Binxin Jia, Weizhong He, Yan Wang, Fengzhong Wang, Cheng Wang. Time-Series Transcriptome of Cucumis melo Reveals Extensive Transcriptomic Differences with Different Maturity. Genes. 2024 Jan; 15(2):. doi: 10.3390/genes15020149. [PMID: 38397139]
  • Erin Dobrange, Jaime Ricardo Porras-Domínguez, Wim Van den Ende. The Complex GH32 Enzyme Orchestra from Priestia megaterium Holds the Key to Better Discriminate Sucrose-6-phosphate Hydrolases from Other β-Fructofuranosidases in Bacteria. Journal of agricultural and food chemistry. 2024 Jan; 72(2):1302-1320. doi: 10.1021/acs.jafc.3c06874. [PMID: 38175162]
  • Rongxue Wei, Chunchun Han. Insights into the influence of three types of sugar on goose fatty liver formation from endoplasmic reticulum stress (ERS). Poultry science. 2024 Jan; 103(3):103466. doi: 10.1016/j.psj.2024.103466. [PMID: 38277893]
  • Shuang Zhang, Lina Cao, Ruhui Chang, Heng Zhang, Jiajie Yu, Chunming Li, Guanjun Liu, Junxin Yan, Zhiru Xu. Network Analysis of Metabolome and Transcriptome Revealed Regulation of Different Nitrogen Concentrations on Hybrid Poplar Cambium Development. International journal of molecular sciences. 2024 Jan; 25(2):. doi: 10.3390/ijms25021017. [PMID: 38256092]
  • María-Graciela Delgado, Ricardo Delgado. Transient Synaptic Enhancement Triggered by Exogenously Supplied Monocarboxylate in Drosophila Motoneuron Synapse. Neuroscience. 2024 Jan; 539(?):66-75. doi: 10.1016/j.neuroscience.2024.01.003. [PMID: 38220128]
  • Xiaofang He, Xinxin Gao, Ying Hong, Jing Zhong, Yue Li, Weize Zhu, Junli Ma, Wenjin Huang, Yifan Li, Yan Li, Hao Wang, Zekun Liu, Yiyang Bao, Lingyun Pan, Ningning Zheng, Lili Sheng, Houkai Li. High Fat Diet and High Sucrose Intake Divergently Induce Dysregulation of Glucose Homeostasis through Distinct Gut Microbiota-Derived Bile Acid Metabolism in Mice. Journal of agricultural and food chemistry. 2024 Jan; 72(1):230-244. doi: 10.1021/acs.jafc.3c02909. [PMID: 38079533]
  • Tingting Mao, Yaru Zhang, Wenwen Xue, Yu Jin, Hongfei Zhao, Yibo Wang, Shengnan Wang, Shengjie Zhuo, Feifei Gao, Yanping Su, Chunyan Yu, Xiaotong Guo, Yuting Sheng, Juan Zhang, Hongxia Zhang. Identification, characterisation and expression analysis of peanut sugar invertase genes reveal their vital roles in response to abiotic stress. Plant cell reports. 2024 Jan; 43(2):30. doi: 10.1007/s00299-023-03123-5. [PMID: 38195770]
  • Qiang Zhang, Changzhao Chen, Rui Guo, Xiaofang Zhu, Xinyu Tao, Mengxing He, Zhiwen Li, Lan Shen, Qing Li, Deyong Ren, Jiang Hu, Li Zhu, Guangheng Zhang, Qian Qian. Plasma membrane-localized hexose transporter OsSWEET1b, affects sugar metabolism and leaf senescence. Plant cell reports. 2024 Jan; 43(1):29. doi: 10.1007/s00299-023-03125-3. [PMID: 38183427]
  • La Geng, Mengdi Li, Shanggeng Xie, Han Wang, Xinyi He, Nannan Sun, Guoping Zhang, Lingzhen Ye. HvBGlu3, a GH1 β-glucosidase enzyme gene, negatively influences β-glucan content in barley grains. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2024 Jan; 137(1):14. doi: 10.1007/s00122-023-04517-5. [PMID: 38165440]
  • Chikako Kiyose. Anti-inflammatory Effects of Food Ingredients on Mice Adipose Tissues and Adipocytes. Journal of oleo science. 2024; 73(4):411-418. doi: 10.5650/jos.ess23221. [PMID: 38556276]
  • Chiara Baccolini, Stéphanie Arrivault. Stable Isotope Labeling and Quantification of Photosynthetic Metabolites. Methods in molecular biology (Clifton, N.J.). 2024; 2790(?):439-466. doi: 10.1007/978-1-0716-3790-6_24. [PMID: 38649586]
  • Yuko Maejima, Shoko Yokota, Megumi Yamachi, Shingen Misaka, Tomoyuki Ono, Hiroaki Oizumi, Keita Mizuno, Shizu Hidema, Katsuhiko Nishimori, Masato Aoyama, Heidi de Wet, Kenju Shimomura. Traditional Japanese medicine Kamikihito ameliorates sucrose preference, chronic inflammation and obesity induced by a high fat diet in middle-aged mice. Frontiers in endocrinology. 2024; 15(?):1387964. doi: 10.3389/fendo.2024.1387964. [PMID: 38742193]
  • Cristiano Bellé, Renata Moccellin, Mauricio Haubert, Sergio Delmar Dos Anjos E Silva, Cesar B Gomes. Impact of different Meloidogyne species on the development of sugarcane plants. Anais da Academia Brasileira de Ciencias. 2024; 96(1):e20200004. doi: 10.1590/0001-3765202320200004. [PMID: 38359286]
  • Guopeng Chen, Ming Liu, Xuyang Zhao, George Bawa, Bing Liang, Liang Feng, Tian Pu, Taiwen Yong, Weiguo Liu, Jiang Liu, Junbo Du, Feng Yang, Yushan Wu, Chunyan Liu, Xiaochun Wang, Wenyu Yang. Improved photosynthetic performance under unilateral weak light conditions in a wide-narrow-row intercropping system is associated with altered sugar transport. Journal of experimental botany. 2024 Jan; 75(1):258-273. doi: 10.1093/jxb/erad370. [PMID: 37721809]
  • Denis O Omelchenko, Elena S Glagoleva, Anna Y Stepanova, Maria D Logacheva. Callus Induction Followed by Regeneration and Hairy Root Induction in Common Buckwheat. Methods in molecular biology (Clifton, N.J.). 2024; 2791(?):1-14. doi: 10.1007/978-1-0716-3794-4_1. [PMID: 38532087]
  • María Santos-Merino, Jonathan K Sakkos, Amit K Singh, Daniel C Ducat. Coordination of carbon partitioning and photosynthesis by a two-component signaling network in Synechococcus elongatus PCC 7942. Metabolic engineering. 2024 Jan; 81(?):38-52. doi: 10.1016/j.ymben.2023.11.001. [PMID: 37925065]
  • Zeng Zhang, Xiaodong Fu, Fengzhu Zhou, Duanchun Zhang, Yanqiu Xu, Zhaohua Fan, Shimei Wen, Yanting Shao, Zheng Yao, Yanming He. Huaju Xiaoji Formula Regulates ERS-lncMGC/miRNA to Enhance the Renal Function of Hypertensive Diabetic Mice with Nephropathy. Journal of diabetes research. 2024; 2024(?):6942156. doi: 10.1155/2024/6942156. [PMID: 38282657]
  • E V Markova, E I Leonova, Ju V Sopova. [Sweet protein brazzein as a promising sweetener]. Voprosy pitaniia. 2024; 93(1):61-71. doi: 10.33029/0042-8833-2024-93-1-61-71. [PMID: 38555610]
  • Benshui Shu, Xinyi Xie, Jinghua Dai, Luyang Liu, Xueming Cai, Zhongzhen Wu, Jintian Lin. Host plant-induced changes in metabolism and osmotic regulation gene expression in Diaphorina citri adults. Journal of insect physiology. 2024 01; 152(?):104599. doi: 10.1016/j.jinsphys.2023.104599. [PMID: 38072187]
  • Yijiao Sun, Ruican Wang, Yuyang Sun, Xiong Zhang, Zhengqi Hao, Jingting Xu, Baichong Yang, Shuntang Guo. The attenuating effect of fermented soymilk on DSS-induced colitis in mice by suppressing immune response and modulating gut microbiota. Food research international (Ottawa, Ont.). 2024 Jan; 176(?):113797. doi: 10.1016/j.foodres.2023.113797. [PMID: 38163708]
  • Xiangyu Liu, Bo Zhang, Junsheng Tian, Yumei Han. Plasma metabolomics reveals the intervention mechanism of different types of exercise on chronic unpredictable mild stress-induced depression rat model. Metabolic brain disease. 2024 Jan; 39(1):1-13. doi: 10.1007/s11011-023-01310-7. [PMID: 37999885]
  • Lucia Piro, Sabrina Flütsch, Diana Santelia. Arabidopsis Sucrose Synthase 3 (SUS3) regulates starch accumulation in guard cells at the end of day. Plant signaling & behavior. 2023 Dec; 18(1):2171614. doi: 10.1080/15592324.2023.2171614. [PMID: 36774587]
  • Javier Raya-González, José Carlos Prado-Rodríguez, León Francisco Ruiz-Herrera, José López-Bucio. Loss-of-function of MEDIATOR 12 or 13 subunits causes the swelling of root hairs in response to sucrose and abscisic acid in Arabidopsis. Plant signaling & behavior. 2023 12; 18(1):2191460. doi: 10.1080/15592324.2023.2191460. [PMID: 36942634]
  • J Bak, B Yoo. Rheological characteristics of concentrated ternary gum mixtures with xanthan gum, guar gum, and carboxymethyl cellulose: Effect of NaCl, sucrose, pH, and temperature. International journal of biological macromolecules. 2023 Dec; 253(Pt 2):126559. doi: 10.1016/j.ijbiomac.2023.126559. [PMID: 37657581]
  • Mei-Kuang Lu, Chi-Hsein Chao, Yu-Chi Hsu. Advanced culture strategy shows varying bioactivities of sulfated polysaccharides of Poria cocos. International journal of biological macromolecules. 2023 Dec; 253(Pt 1):126669. doi: 10.1016/j.ijbiomac.2023.126669. [PMID: 37660853]
  • Heng Wang, Hongjun Yu, Lin Chai, Tao Lu, Yang Li, Weijie Jiang, Qiang Li. Exogenous Sucrose Confers Low Light Tolerance in Tomato Plants by Increasing Carbon Partitioning from Stems to Leaves. Journal of agricultural and food chemistry. 2023 Dec; 71(51):20625-20642. doi: 10.1021/acs.jafc.3c05985. [PMID: 38096491]
  • Ali Li, Danni Lv, Yan Zhang, Dongsheng Zhang, Yuzheng Zong, Xinrui Shi, Ping Li, Xingyu Hao. Elevated CO2 concentration enhances drought resistance of soybean by regulating cell structure, cuticular wax synthesis, photosynthesis, and oxidative stress response. Plant physiology and biochemistry : PPB. 2023 Dec; 206(?):108266. doi: 10.1016/j.plaphy.2023.108266. [PMID: 38103338]
  • Xiaoquan Fu, Lei Zhong, Hui Wang, Haohua He, Xiaorong Chen. Elucidation of the Mechanism of Rapid Growth Recovery in Rice Seedlings after Exposure to Low-Temperature Low-Light Stress: Analysis of Rice Root Transcriptome, Metabolome, and Physiology. International journal of molecular sciences. 2023 Dec; 24(24):. doi: 10.3390/ijms242417359. [PMID: 38139187]
  • Congge Liu, Haijing Cheng, Shuwei Wang, Dashi Yu, Yunmin Wei. Physiological and Transcriptomic Analysis Reveals That Melatonin Alleviates Aluminum Toxicity in Alfalfa (Medicago sativa L.). International journal of molecular sciences. 2023 Dec; 24(24):. doi: 10.3390/ijms242417221. [PMID: 38139053]
  • Luting Jia, Xu Zhang, Zan Zhang, Weiqi Luo, Savithri U Nambeesan, Qionghou Li, Xin Qiao, Bing Yang, Libin Wang, Shaoling Zhang. PbrbZIP15 promotes sugar accumulation in pear via activating the transcription of the glucose isomerase gene PbrXylA1. The Plant journal : for cell and molecular biology. 2023 Dec; ?(?):. doi: 10.1111/tpj.16569. [PMID: 38044792]
  • Yao Zhao, Jitao Hu, Yilin Zhang, Han Tao, Linying Li, Yuqing He, Xueying Zhang, Chi Zhang, Gaojie Hong. Unveiling targeted spatial metabolome of rice seed at the dough stage using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry imaging. Food research international (Ottawa, Ont.). 2023 Dec; 174(Pt 1):113578. doi: 10.1016/j.foodres.2023.113578. [PMID: 37986446]
  • Judith Scharte, Sebastian Hassa, Cornelia Herrfurth, Ivo Feussner, Giuseppe Forlani, Engelbert Weis, Antje von Schaewen. Metabolic priming in G6PDH isoenzyme-replaced tobacco lines improves stress tolerance and seed yields via altering assimilate partitioning. The Plant journal : for cell and molecular biology. 2023 Dec; 116(6):1696-1716. doi: 10.1111/tpj.16460. [PMID: 37713307]
  • Danial 'Aizat Norhisham, Norsharina Md Saad, Siti Rokhiyah Ahmad Usuldin, Diwiya A G Vayabari, Zul Ilham, Mohamad Faizal Ibrahim, Pau-Loke Show, Wan Abd Al Qadr Imad Wan-Mohtar. Performance of Malaysian kenaf Hibiscus cannabinus callus biomass and exopolysaccharide production in a novel liquid culture. Bioengineered. 2023 12; 14(1):2262203. doi: 10.1080/21655979.2023.2262203. [PMID: 37791464]
  • Francisco Moreno, Lucía Méndez, Ana Raner, Bernat Miralles-Pérez, Marta Romeu, Sara Ramos-Romero, Josep Lluís Torres, Isabel Medina. Fish oil supplementation counteracts the effect of high-fat and high-sucrose diets on the carbonylated proteome in the rat cerebral cortex. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Dec; 168(?):115708. doi: 10.1016/j.biopha.2023.115708. [PMID: 37857255]
  • Moritz Göbel, Franziska Fichtner. Functions of sucrose and trehalose 6-phosphate in controlling plant development. Journal of plant physiology. 2023 Dec; 291(?):154140. doi: 10.1016/j.jplph.2023.154140. [PMID: 38007969]