NCBI Taxonomy: 77014
Melicope (ncbi_taxid: 77014)
found 100 associated metabolites at genus taxonomy rank level.
Ancestor: Zanthoxyloideae
Child Taxonomies: Melicope ovata, Melicope remyi, Melicope maxii, Melicope rubra, Melicope feddei, Melicope munroi, Melicope retusa, Melicope stonei, Melicope lucida, Melicope ovalis, Melicope glabra, Melicope grisea, Melicope richii, Melicope aneura, Melicope hookeri, Melicope jonesii, Melicope obscura, Melicope sororia, Melicope anisata, Melicope hayesii, Melicope balloui, Melicope hosakae, Melicope makahae, Melicope cornuta, Melicope hiiakae, Melicope pallida, Melicope radiata, Melicope reflexa, Melicope vatiana, Melicope simplex, Melicope ternata, Melicope anomala, Melicope brassii, Melicope denhamii, Melicope forbesii, Melicope viticina, Melicope cruciata, Melicope lydgatei, Melicope rostrata, Melicope sessilis, Melicope degeneri, Melicope puberula, Melicope revoluta, Melicope accedens, Melicope coodeana, Melicope cravenii, Melicope cucullata, Melicope durifolia, Melicope glomerata, Melicope mucronata, Melicope pachypoda, Melicope schraderi, Melicope barbigera, Melicope latifolia, Melicope oahuensis, Melicope volcanica, Melicope wawraeana, Melicope elliptica, Melicope inopinata, Melicope knudsenii, Melicope albiflora, Melicope mantellii, Melicope bonwickii, Melicope elleryana, Melicope triphylla, Melicope vitiflora, Melicope borbonica, Melicope margaretae, Melicope palawensis, Melicope petiolaris, Melicope polyadenia, Melicope stellulata, Melicope adscendens, Melicope tahitensis, Melicope trichantha, Melicope haleakalae, Melicope haupuensis, Melicope hawaiensis, Melicope kavaiensis, Melicope ponapensis, Melicope spathulata, Melicope waialealae, Melicope paniculata, Melicope polybotrya, Melicope macrocarpa, Melicope nishimurae, Melicope glaberrima, Melicope lasioneura, Melicope micrococca, Melicope contermina, Melicope capillacea, Melicope clemensiae, Melicope frutescens, Melicope goilalensis, Melicope obtusifolia, Melicope trachycarpa, Melicope mucronulata, Melicope orbicularis, Melicope vieillardii, Melicope clusiifolia, Melicope hivaoaensis, Melicope pachyphylla, Melicope pteleifolia, Melicope crassifolia, Melicope lunu-ankenda, Melicope oblanceolata, Melicope molokaiensis, Melicope oppenheimeri, Melicope peduncularis, Melicope sandwicensis, Melicope rotundifolia, Melicope patulinervia, Melicope nukuhivensis, Melicope lauterbachii, Melicope rhytidocarpa, unclassified Melicope, Melicope sambiranensis, Melicope pseudoanisata, Melicope broadbentiana, Melicope novoguineensis, Melicope xanthoxyloides, Melicope quadrangularis, Melicope semecarpifolia, Melicope subunifoliolata, Melicope quadrilocularis, Melicope madagascariensis, Melicope christophersenii, Melicope cf. crassiramis SW-2006
Scopoletin
Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).
Umbelliferone
Umbelliferone is a hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. It has a role as a fluorescent probe, a plant metabolite and a food component. Umbelliferone is a natural product found in Ficus septica, Artemisia ordosica, and other organisms with data available. See also: Chamomile (part of). Occurs widely in plants including Angelica subspecies Phytoalexin of infected sweet potato. Umbelliferone is found in many foods, some of which are macadamia nut, silver linden, quince, and capers. Umbelliferone is found in anise. Umbelliferone occurs widely in plants including Angelica species Phytoalexin of infected sweet potat A hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. [Raw Data] CB220_Umbelliferone_pos_50eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_40eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_30eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_10eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_20eV_CB000077.txt [Raw Data] CB220_Umbelliferone_neg_40eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_10eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_30eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_20eV_000039.txt Umbelliferone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=93-35-6 (retrieved 2024-07-12) (CAS RN: 93-35-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.
Angelicin
Angelicin is a furanocoumarin. Angelicin is a natural product found in Cullen cinereum, Psoralea glabra, and other organisms with data available. Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). See also: Angelica archangelica root (part of); Cullen corylifolium fruit (part of). Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). Constituent of roots and leaves of angelica (Angelica archangelica). Found in roots and on surface of parsnips and diseased celery D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).
Marmesin
Marmesin is a member of psoralens and a tertiary alcohol. 2-(2-Hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one is a natural product found in Zanthoxylum beecheyanum, Zanthoxylum arnottianum, and other organisms with data available. Nodakenetin is found in wild celery. Nodakenetin is a constituent of Angelica species Constituent of Angelica subspecies Nodakenetin is found in wild celery. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. (+)-Marmesin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13849-08-6 (retrieved 2024-09-04) (CAS RN: 13849-08-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Adenosine
Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].
Vanillin
Vanillin, also known as vanillaldehyde or lioxin, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is used by the food industry as well as ethylvanillin. Vanillin exists in all living species, ranging from bacteria to humans. Vanillin is a sweet, chocolate, and creamy tasting compound. Vanillin is found, on average, in the highest concentration within a few different foods, such as corns, ryes, and sherries and in a lower concentration in beers, rums, and oats. Vanillin has also been detected, but not quantified, in several different foods, such as gooseberries, other bread, brazil nuts, shea tree, and ohelo berries. This could make vanillin a potential biomarker for the consumption of these foods. Vanillin is a potentially toxic compound. Synthetic vanillin, instead of natural Vanillin extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. Vanillin is the primary component of the extract of the Vanillin bean. Because of the scarcity and expense of natural Vanillin extract, there has long been interest in the synthetic preparation of its predominant component. Artificial Vanillin flavoring is a solution of pure vanillin, usually of synthetic origin. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Vanillin appears as white or very slightly yellow needles. Vanillin is a member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, a flavouring agent, an antioxidant and an anticonvulsant. It is a member of phenols, a monomethoxybenzene and a member of benzaldehydes. Vanillin is a natural product found in Ficus erecta var. beecheyana, Pandanus utilis, and other organisms with data available. Vanillin is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. It is used by the food industry as well as ethylvanillin.Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. (Wiki). Vanillin is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of vanilla (Vanilla subspecies) and many other plants, e.g. Peru balsam, clove bud oil. Widely used flavouring agent especies in cocoa products. obtained from spent wood-pulp liquors. Vanillin is found in many foods, some of which are pomes, elderberry, common cabbage, and dock. A member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; ML_ID 59 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.
Scoparone
Scoparone is a member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. It has a role as a plant metabolite, an anti-inflammatory agent, an antilipemic drug, an immunosuppressive agent, an antihypertensive agent and an anti-allergic agent. It is a member of coumarins and an aromatic ether. It is functionally related to an esculetin. Scoparone is a natural product found in Haplophyllum ramosissimum, Haplophyllum thesioides, and other organisms with data available. A member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Scoparone is found in anise. Scoparone is found in several citrus oil D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Found in several citrus oils Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].
Imperatorin
Imperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor and a metabolite. Imperatorin is a natural product found in Allium wallichii, Ammi visnaga, and other organisms with data available. Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative.Imperatorin has been shown to exhibit anti-hypertrophic and anti-convulsant functions (A7784, A7785).Imperatorin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica Dahurica Root (part of); Aegle marmelos fruit (part of); Ammi majus seed (part of) ... View More ... Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip) INTERNAL_ID 2244; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2244 Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.
Narcissin
Isorhamnetin-3-O-rutinoside is a disaccharide derivative, a glycosyloxyflavone, a monomethoxyflavone and a trihydroxyflavone. Narcissoside is a natural product found in Phoenix canariensis, Scolymus hispanicus, and other organisms with data available. See also: Ginkgo (part of); Calendula Officinalis Flower (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1]. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1].
Osthol
Osthol, also known as 7-methoxy-8-(3-methylpent-2-enyl)coumarin, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Osthol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Osthol can be found in a number of food items such as wild celery, lemon, parsley, and wild carrot, which makes osthol a potential biomarker for the consumption of these food products. Osthol is an O-methylated coumarin. It is a calcium channel blocker, found in plants such as Cnidium monnieri, Angelica archangelica and Angelica pubescens . Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.
Isopimpinellin
Isopimpinellin is a member of psoralens. Isopimpinellin is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip) Isopimpinellin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica keiskei top (part of). Present in the seeds of Pastinaca sativa (parsnip). Isopimpinellin is found in many foods, some of which are carrot, anise, celery stalks, and fennel. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1]. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1].
Benzoic acid
Benzoic acid appears as a white crystalline solid. Slightly soluble in water. The primary hazard is the potential for environmental damage if released. Immediate steps should be taken to limit spread to the environment. Used to make other chemicals, as a food preservative, and for other uses.
Benzoic acid is a compound comprising a benzene ring core carrying a carboxylic acid substituent. It has a role as an antimicrobial food preservative, an EC 3.1.1.3 (triacylglycerol lipase) inhibitor, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a plant metabolite, a human xenobiotic metabolite, an algal metabolite and a drug allergen. It is a conjugate acid of a benzoate.
A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid. As the sodium salt form, sodium benzoate is used as a treatment for urea cycle disorders due to its ability to bind amino acids. This leads to excretion of these amino acids and a decrease in ammonia levels. Recent research shows that sodium benzoate may be beneficial as an add-on therapy (1 gram/day) in schizophrenia. Total Positive and Negative Syndrome Scale scores dropped by 21\\\\\% compared to placebo.
Benzoic acid is a Nitrogen Binding Agent. The mechanism of action of benzoic acid is as an Ammonium Ion Binding Activity.
Benzoic acid, C6H5COOH, is a colourless crystalline solid and the simplest aromatic carboxylic acid. Benzoic acid occurs naturally free and bound as benzoic acid esters in many plant and animal species. Appreciable amounts have been found in most berries (around 0.05\\\\\%). Cranberries contain as much as 300-1300 mg free benzoic acid per kg fruit. Benzoic acid is a fungistatic compound that is widely used as a food preservative. It often is conjugated to glycine in the liver and excreted as hippuric acid. Benzoic acid is a byproduct of phenylalanine metabolism in bacteria. It is also produced when gut bacteria process polyphenols (from ingested fruits or beverages).
A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid.
See also: Salicylic Acid (active moiety of); Benzoyl Peroxide (active moiety of); Sodium Benzoate (active moiety of) ... View More ...
Widespread in plants especies in essential oils and fruits, mostly in esterified formand is also present in butter, cooked meats, pork fat, white wine, black and green tea, mushroom and Bourbon vanilla. It is used in foodstuffs as antimicrobial and flavouring agent and as preservative. In practical food preservation, the Na salt of benzoic acid is the most widely used form (see
Bergapten
Bergapten, also known as O-methylbergaptol or heraclin, belongs to the class of organic compounds known as 5-methoxypsoralens. These are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Bergapten is found, on average, in the highest concentration within a few different foods, such as anises, figs, and parsnips and in a lower concentration in carrots, fennels, and celery stalks. Bergapten has also been detected, but not quantified, in several different foods, such as coconuts, pepper (c. frutescens), corianders, sesbania flowers, and cardamoms. This could make bergapten a potential biomarker for the consumption of these foods. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. Bergapten is a potentially toxic compound. Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, especially the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Bergapten was under investigation in clinical trial NCT00533195 "Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis". Grayish-white microcrystalline powder or yellow fluffy solid. (NTP, 1992) 5-methoxypsoralen is a 5-methoxyfurocoumarin that is psoralen substituted by a methoxy group at position 5. It has a role as a hepatoprotective agent and a plant metabolite. It is a member of psoralens, a 5-methoxyfurocoumarin and an organic heterotricyclic compound. It is functionally related to a psoralen. Bergapten is under investigation in clinical trial NCT00533195 (Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis). Bergapten is a natural product found in Ficus auriculata, Ficus virens, and other organisms with data available. A linear furanocoumarin that has phototoxic and anti-inflammatory properties, with effects similar to METHOXSALEN. It is used in PUVA THERAPY for the treatment of PSORIASIS. See also: Parsley (part of); Anise (part of); Angelica archangelica root (part of) ... View More ... Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, esp. the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8020; ORIGINAL_PRECURSOR_SCAN_NO 8017 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8000 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7968; ORIGINAL_PRECURSOR_SCAN_NO 7967 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8005; ORIGINAL_PRECURSOR_SCAN_NO 8002 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8376; ORIGINAL_PRECURSOR_SCAN_NO 8372 [Raw Data] CBA84_Bergapten_pos_20eV.txt [Raw Data] CBA84_Bergapten_pos_10eV.txt [Raw Data] CBA84_Bergapten_pos_30eV.txt [Raw Data] CBA84_Bergapten_pos_40eV.txt [Raw Data] CBA84_Bergapten_pos_50eV.txt Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.
Psoralen
Psoralen is the simplest member of the class of psoralens that is 7H-furo[3,2-g]chromene having a keto group at position 7. It has been found in plants like Psoralea corylifolia and Ficus salicifolia. It has a role as a plant metabolite. 8-methoxsalen and 5-methoxsalen are furocoumarins referred to collectively as psoralens that have photosensitizing activity and are used orally and topically in conjunction with ultraviolet irradiation for the therapy of psoriasis and vitiligo. Psoralens have been linked to a low rate of transient serum enzyme elevations during therapy and to rare instances of clinically apparent acute liver injury. Psoralen is a natural product found in Cullen cinereum, Ficus erecta var. beecheyana, and other organisms with data available. Psoralen is a furocoumarin that intercalates with DNA, inhibiting DNA synthesis and cell division. Psoralen is used in Photochemotherapy with high-intensity long-wavelength UVA irradiation. Psoralens are tricyclic furocumarins and have a strong tendency to intercalate with DNA base pairs. Irradiation of nucleic acids in the presence of psoralen with long wave UV (~360 nm) results in the 2+2 cyclo- addition of either of its two photoreactive sites with 5,6-carbon bonds of pyrimidines resulting in crosslinking double-stranded nucleic acids. Psoralen is found in carrot. Psoralen is found in common vegetables, e.g. parsnip, celery especially if diseased or `spoiled Psoralen is a significant mutagen and is used for this purpose in molecular biology research.Psoralen has been shown to exhibit anti-proliferative, anti-allergenic and anti-histamine functions (A7781, A7782, A7782).Psoralen belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. A naturally occurring furocoumarin, found in PSORALEA. After photoactivation with UV radiation, it binds DNA via single and double-stranded cross-linking. See also: Angelica keiskei top (part of); Cullen corylifolium fruit (part of). Psoralen, also known as psoralene, ficusin or manaderm, belongs to the class of organic compounds known as psoralens. These are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Psoralen is the parent compound in a family of naturally occurring organic compounds known as the linear furanocoumarins. Psoralen is structurally related to coumarin by the addition of a fused furan ring and is considered as a derivative of umbelliferone. Biosynthetically, psoralen originates from coumarins in the shikimate pathway. Psoralen is produced exclusively by plants but can be found in animals that consume these plants. Psoralen can be found in several plant sources with Ficus carica (the common fig) being probably the most abundant source of psoralens. They are also found in small quantities in Ammi visnaga (bisnaga), Pastinaca sativa (parsnip), Petroselinum crispum (parsley), Levisticum officinale (lovage), Foeniculum vulgare (fruit, i.e., Fennel seeds), Daucus carota (carrot), Psoralea corylifolia (babchi), Apium graveolens (celery), and bergamot oil (bergapten, bergamottin). Psoralen is found in all citrus fruits. Psoralen is a well-known mutagen and is used for this purpose in molecular biology research. Psoralen intercalates into DNA and on exposure to ultraviolet (UVA) radiation can form monoadducts and covalent inter-strand cross-links (ICL) with thymines in the DNA molecule. Psoralen also functions as a drug. An important use of psoralen is in the treatment for skin problems such as psoriasis and, to a lesser extent, eczema and vitiligo. This treatment takes advantage of the high UV absorbance of psoralen. In treating these skin conditions psoralen is applied first to sensitise the skin, then UVA light is applied to clean up the skin problem. Psoralen has also been recommended for treating alopecia. The simplest member of the class of psoralens that is 7H-furo[3,2-g]chromene having a keto group at position 7. It has been found in plants like Psoralea corylifolia and Ficus salicifolia. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics Found in common vegetables, e.g. parsnip, celery especies if diseased or `spoiled D003879 - Dermatologic Agents INTERNAL_ID 18; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 18 Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1]. Psoralen. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-97-7 (retrieved 2024-10-18) (CAS RN: 66-97-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Nodakenetic
Nodakenetic, also known as (-)-marmesin or marmesin, (R)-isomer, is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Nodakenetic is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Nodakenetic can be found in wild celery, which makes nodakenetic a potential biomarker for the consumption of this food product. Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.
Columbianetin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (S)-columbianetin is the (S)-(+)-enantiomer of columbianetin. It is an enantiomer of a (R)-columbianetin. Columbianetin is a natural product found in Campylotropis hirtella, Prangos tschimganica, and other organisms with data available. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2].
Phellopterin
Phellopterin is a member of the class of compounds known as 5-methoxypsoralens. 5-methoxypsoralens are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Phellopterin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Phellopterin can be found in lemon, lime, and wild celery, which makes phellopterin a potential biomarker for the consumption of these food products. Phellopterin is a non-carcinogenic (not listed by IARC) potentially toxic compound. The furocoumarin 8-methoxypsoralen is carcinogenic to humans, and possibly 5-methoxypsoralen as well (L135). There is some evidence from mouse studies that other furocoumarins are carcinogenic when combined with exposure to UVA radiation (A15105). The SKLM regards the additional risk of skin cancer arising from the consumption of typical quantities of furocoumarin-containing foods, which remain significantly below the range of phototoxic doses, as insignificant. However, the consumption of phototoxic quantities cannot be ruled out for certain foods, particularly celery and parsnips, that may lead to significant increases in furocoumarin concentrations, depending on the storage, processing and production conditions (L2157) Furocoumarin photochemotherapy is known to induce a number of side-effects including erythema, edema, hyperpigmentation, and premature aging of skin. All photobiological effects of furocoumarins result from their photochemical reactions. Because many dietary or water soluble furocoumarins are strong inhibitors of cytochrome P450s, they will also cause adverse drug reactions when taken with other drugs. It activates adrenaline-induced lipolysis and activate ACTH-induced lipolysis (L579) (T3DB). Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1]. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1]. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1].
Campesterol
Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
Stigmasterol
Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol
beta-Sitosterol
beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
beta-Sitosterol 3-O-beta-D-galactopyranoside
Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.
Squalene
Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].
Isorhamnetin
3,4,5,7-tetrahydroxy-3-methoxyflavone is a tetrahydroxyflavone having the 4-hydroxy groups located at the 3- 4- 5- and 7-positions as well as a methoxy group at the 2-position. It has a role as a metabolite and an antimicrobial agent. It is a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3-methoxyflavon-7-olate. 3-O-Methylquercetin is a natural product found in Lotus ucrainicus, Wollastonia biflora, and other organisms with data available. See also: Tobacco Leaf (part of). 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1]. 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1].
Sequoyitol
1D-5-O-methyl-myo-inositol is a member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3r,4R,5S,6r-stereoisomer). It has a role as a plant metabolite. Sequoyitol is a natural product found in Podocarpus sellowii, Aristolochia gigantea, and other organisms with data available. Occurs in all gymnosperms and two families of dicotyledonsand is also isolated from ferns Nephrolepis auriculata and Nephrolepis biserrata. Sequoyitol is found in soy bean and ginkgo nuts. Sequoyitol is found in ginkgo nuts. Sequoyitol occurs in all gymnosperms and two families of dicotyledons. Also isolated from ferns Nephrolepis auriculata and Nephrolepis biserrat Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1]. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1].
Osthenol
Osthenol is a hydroxycoumarin that is umbelliferone in which the hydrogen at position 8 has been replaced by a prenyl group. It has a role as a plant metabolite and an antifungal agent. It is functionally related to an umbelliferone. Osthenol is a natural product found in Zanthoxylum beecheyanum, Prangos tschimganica, and other organisms with data available. Isolated from seeds of Apium graveolens. Osthenol is found in many foods, some of which are green vegetables, wild celery, fennel, and angelica. A hydroxycoumarin that is umbelliferone in which the hydrogen at position 8 has been replaced by a prenyl group. Osthenol is found in angelica. Osthenol is isolated from seeds of Apium graveolens. Osthenol (Ostenol), a prenylated coumarin isolated from the dried roots of Angelica pubescens, is selective, reversible, and competitive human monoamine oxidase-A (hMAO-A) inhibitor (Ki=0.26 μM). Osthenol potently inhibits recombinant hMAO-A with an IC50 of 0.74 μM and shows a high selectivity index for hMAO-A versus hMAO-B[1]. Osthenol (Ostenol), a prenylated coumarin isolated from the dried roots of Angelica pubescens, is selective, reversible, and competitive human monoamine oxidase-A (hMAO-A) inhibitor (Ki=0.26 μM). Osthenol potently inhibits recombinant hMAO-A with an IC50 of 0.74 μM and shows a high selectivity index for hMAO-A versus hMAO-B[1].
DUB OM HTO
Oleic acid methyl ester is a clear to amber liquid. Insoluble in water. (NTP, 1992) Methyl oleate is a fatty acid methyl ester resulting from the formal condensation of the carboxy group of oleic acid with methanol. It is functionally related to an oleic acid. Methyl oleate is a natural product found in Anchietea pyrifolia, Lepidium meyenii, and other organisms with data available. Methyl oleate is a fatty acid methyl ester (FAME). Methyl oleate substantially improves the antioxidation ability but markedly impaired the antiwear capacity of zinc dialkyldithiophosphate (ZDDP)[1]. Methyl oleate is a fatty acid methyl ester (FAME). Methyl oleate substantially improves the antioxidation ability but markedly impaired the antiwear capacity of zinc dialkyldithiophosphate (ZDDP)[1].
Ayanin
3,5-dihydroxy-3,4,7-trimethoxyflavone is a trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups. It has a role as a plant metabolite. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,5-dihydroxy-3,4,7-trimethoxyflavone(1-). Ayanin is a natural product found in Psiadia viscosa, Solanum pubescens, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups.
Kobusin
Demethoxyaschantin is a member of the class of furofurans that is tetrahydro-1H,3H-furo[3,4-c]furan-1-yl]-1,3-benzodioxole carrying an additional 3,4-dimethoxyphenyl substituent at position 4. It has a role as a plant metabolite. It is a furofuran, a lignan, a dimethoxybenzene and a member of benzodioxoles. Kobusin is a natural product found in Pandanus utilis, Pandanus boninensis, and other organisms with data available. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2]. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2].
Myricetin
Myricetin, also known as cannabiscetin or myricetol, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, myricetin is considered to be a flavonoid lipid molecule. A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. Myricetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Myricetin is found, on average, in the highest concentration within a few different foods, such as common walnuts, carobs, and fennels and in a lower concentration in welsh onions, yellow bell peppers, and jutes. Myricetin has also been detected, but not quantified in several different foods, such as napa cabbages, sesames, mixed nuts, lichee, and garden cress. Myricetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. It has a role as a cyclooxygenase 1 inhibitor, an antineoplastic agent, an antioxidant, a plant metabolite, a food component, a hypoglycemic agent and a geroprotector. It is a hexahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a myricetin(1-). Myricetin is a natural product found in Ficus auriculata, Visnea mocanera, and other organisms with data available. Myricetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Quercetin (related). Flavanol found in a wide variety of foodstuffs especially in red table wine, bee pollen, bilberries, blueberries, bog whortleberries, broad beans, Chinese bajberry, corn poppy leaves, cranberries, crowberries, blackcurrants, dock leaves, fennel, grapes, parsley, perilla, rutabaga, dill weed and tea (green and black). Glycosides are also widely distributed. Potential nutriceutical showing anti-HIV activity A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB066_Myricetin_pos_30eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_20eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_40eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_50eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_10eV_CB000028.txt [Raw Data] CB066_Myricetin_neg_10eV_000019.txt [Raw Data] CB066_Myricetin_neg_40eV_000019.txt [Raw Data] CB066_Myricetin_neg_50eV_000019.txt [Raw Data] CB066_Myricetin_neg_20eV_000019.txt [Raw Data] CB066_Myricetin_neg_30eV_000019.txt Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.
Isorhamnetin
Isorhamnetin is the methylated metabolite of quercetin. Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. Isorhamnetin prevents endothelial cell injuries from oxidized LDL via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin. Isorhamnetin prevents endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II. Isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells. (PMID: 15493462, 17368593, 17374653, 16963021). Isorhamnetin is a monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, an anticoagulant and a metabolite. It is a 7-hydroxyflavonol, a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of an isorhamnetin(1-). Isorhamnetin is a natural product found in Lotus ucrainicus, Strychnos pseudoquina, and other organisms with data available. Isorhamnetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Peumus boldus leaf (part of). Widespread flavonol found especially in bee pollen, chives, corn poppy leaves, garden cress, fennel, hartwort, red onions, pears, dillweed, parsley and tarragon. Isorhamnetin is found in many foods, some of which are italian sweet red pepper, carrot, yellow wax bean, and lemon balm. A monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. Acquisition and generation of the data is financially supported in part by CREST/JST. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.
Syringic acid
Syringic acid, also known as syringate or cedar acid, belongs to the class of organic compounds known as gallic acid and derivatives. Gallic acid and derivatives are compounds containing a 3,4,5-trihydroxybenzoic acid moiety. Outside of the human body, Syringic acid is found, on average, in the highest concentration within a few different foods, such as common walnuts, swiss chards, and olives and in a lower concentration in apples, tarragons, and peanuts. Syringic acid has also been detected, but not quantified in several different foods, such as sweet marjorams, silver lindens, bulgurs, annual wild rices, and barley. This could make syringic acid a potential biomarker for the consumption of these foods. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Research suggests that phenolics from wine may play a positive role against oxidation of low-density lipoprotein (LDL), which is a key step in the development of atherosclerosis. Syringic acid is a phenol present in some distilled alcohol beverages. It is also a product of microbial (gut) metabolism of anthocyanins and other polyphenols that have been consumed (in fruits and alcoholic beverages - PMID:18767860). Syringic acid is also a microbial metabolite that can be found in Bifidobacterium (PMID:24958563). Syringic acid is a dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. It has a role as a plant metabolite. It is a member of benzoic acids, a dimethoxybenzene and a member of phenols. It is functionally related to a gallic acid. It is a conjugate acid of a syringate. Syringic acid is a natural product found in Visnea mocanera, Pittosporum illicioides, and other organisms with data available. Syringic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Present in various plants free and combined, e.g. principal phenolic constituent of soyabean meal (Glycine max) A dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID S018 Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.
Oleic acid
Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Methylpyrrolidone
D009676 - Noxae > D013723 - Teratogens CONFIDENCE standard compound; INTERNAL_ID 2778 CONFIDENCE standard compound; INTERNAL_ID 8697 KEIO_ID M024
Skimmianine
Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].
Haplopine
Haplopine is an oxacycle, an organonitrogen heterocyclic compound and an organic heterotricyclic compound. Haplopine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available.
Dictamnine
Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.
Eudesmin
(+)-Eudesmin is a lignan. (+)-Eudesmin is a natural product found in Pandanus utilis, Zanthoxylum fagara, and other organisms with data available. Origin: Plant Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1]. Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1]. Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2]. Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2].
Xanthyletin
Xanthyletin is a member of the class of compounds known as linear pyranocoumarins. Linear pyranocoumarins are organic compounds containing a pyran (or a hydrogenated derivative) linearly fused to a coumarin moiety. Xanthyletin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Xanthyletin can be found in lemon, lime, mandarin orange (clementine, tangerine), and sweet orange, which makes xanthyletin a potential biomarker for the consumption of these food products.
2,6-Dimethoxy-1,4-benzoquinone
2,6-Dimethoxy-1,4-benzoquinone is a natural product found in Diospyros eriantha, Iris milesii, and other organisms with data available. 2,6-Dimethoxyquinone is a methoxy-substituted benzoquinone and bioactive compound found in fermented wheat germ extracts, with potential antineoplastic and immune-enhancing activity. 2,6-Dimethoxyquinone (2,6-DMBQ) inhibits anaerobic glycolysis thereby preventing cellular metabolism and inducing apoptosis. As cancer cells use the anaerobic glycolysis pathway to metabolize glucose and cancer cells proliferate at an increased rate as compared to normal, healthy cells, this agent is specifically cytotoxic towards cancer cells. In addition, 2,6-DMBQ exerts immune-enhancing effects by increasing natural killer (NK) cell and T-cell activity against cancer cells. See also: Acai fruit pulp (part of). 2,6-Dimethoxy-1,4-benzoquinone is found in common wheat. 2,6-Dimethoxy-1,4-benzoquinone is a constituent of bark of Phyllostachys heterocycla var. pubescens (moso bamboo) Constituent of bark of Phyllostachys heterocycla variety pubescens (moso bamboo). 2,6-Dimethoxy-1,4-benzoquinone is found in green vegetables and common wheat. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].
Xanthoxylin
obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree). Xanthoxylin is found in many foods, some of which are herbs and spices, german camomile, fats and oils, and pomegranate. Xanthoxylin is found in fats and oils. Xanthoxylin is obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2]. Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2].
Hentriacontane
Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.
Pachypodol
Pachypodol is a trimethoxyflavone that is quercetin in which the hydroxy groups at position 3, 7 and 3 are replaced by methoxy groups. It has been isolated from Combretum quadrangulare and Euodia elleryana. It has a role as a plant metabolite and an antiemetic. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. Pachypodol is a natural product found in Larrea cuneifolia, Macaranga triloba, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at position 3, 7 and 3 are replaced by methoxy groups. It has been isolated from Combretum quadrangulare and Euodia elleryana. Pachypodol exerts antioxidant and cytoprotective effects in HepG2 cells[1].Pachypodol inhibits the growth of CaCo 2 colon cancer cell line in vitro(IC50 = 185.6 mM)[2]. Pachypodol exerts antioxidant and cytoprotective effects in HepG2 cells[1].Pachypodol inhibits the growth of CaCo 2 colon cancer cell line in vitro(IC50 = 185.6 mM)[2].
Acronycidine
A quinoline alkaloid that is furo[2,3-b]quinoline bearing four methoxy substituents at positions 4, 5, 7 and 8.
Arborinine
Arborinine is found in herbs and spices. Arborinine is an alkaloid from Ruta graveolens (rue
N-Methylflindersine
N-Methylflindersine is an oxacycle, an organic heterotricyclic compound and an organonitrogen heterocyclic compound. N-Methylflindersine is a natural product found in Zanthoxylum beecheyanum, Melicope denhamii, and other organisms with data available. N-Methylflindersine is a compound isolated as insect antifeedants from the East African Rutaceous medicinal plants Fagara chalybea and F. holtziana[1]. N-Methylflindersine is a compound isolated as insect antifeedants from the East African Rutaceous medicinal plants Fagara chalybea and F. holtziana[1].
Citropten
5,7-dimethoxy-1-benzopyran-2-one is a member of coumarins. 5,7-Dimethoxycoumarin is a natural product found in Edgeworthia chrysantha, Melicope borbonica, and other organisms with data available. Citropten is found in citrus. Citropten is found in lime and bergamot oils. Found in lime and bergamot oils Citropten (5,7-Dimethoxycoumarin) is a coumarin isolated from bergamot oil. Citropten (5,7-Dimethoxycoumarin) has an antiproliferative activity against A2058 human melanoma cell line[1][2]. Citropten (5,7-Dimethoxycoumarin) is a coumarin isolated from bergamot oil. Citropten (5,7-Dimethoxycoumarin) has an antiproliferative activity against A2058 human melanoma cell line[1][2].
Methyl vanillate
Methyl vanillate is a member of the class of compounds known as m-methoxybenzoic acids and derivatives. These compounds are benzoic acids in which the hydrogen atom at position 3 of the benzene ring is replaced by a methoxy group. Methyl vanillate is considered to be a slightly soluble in water acidic compound. Methyl vanillate can be synthesized from vanillic acid. Vanillic acid is a phenolic acid or chlorogenic acid that is an oxidized form of vanillin. Vanillic acid is also an intermediate in the production of vanillin from ferulic acid. It is found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. Vanillic acid is also found in wine and vinegar. Vanillic acid is a metabolic by-product of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5-nucleotidase activity (PMID:16899266 ). Vanillic acid is also a microbial metabolite found in several bacterial genera including Amycolatopsis, Delftia, and Pseudomonas (PMID:11152072 , 10543794 , 11728709 , 9579070 ). Methyl vanillate has been identified in foods such as cows milk (PMID:4682334) and beer (PMID:20800742). Methyl vanillate is a benzoate ester that is the methyl ester of vanillic acid. It has a role as an antioxidant and a plant metabolite. It is a benzoate ester, a member of phenols and an aromatic ether. It is functionally related to a vanillic acid. Methyl vanillate is a natural product found in Cestrum parqui, Aristolochia elegans, and other organisms with data available. Methyl vanillate is a metabolite found in or produced by Saccharomyces cerevisiae. A benzoate ester that is the methyl ester of vanillic acid. Flavouring compound [Flavornet] Methyl vanillate, one of the ingredients in Oryza sativa Linn., is a Wnt/β-catenin pathway activator[1]. A benzoate ester that is the methyl ester of vanillic acid. It has a role as an antioxidant and a plant metabolite. Methyl vanillate, one of the ingredients in Oryza sativa Linn., is a Wnt/β-catenin pathway activator[1]. A benzoate ester that is the methyl ester of vanillic acid. It has a role as an antioxidant and a plant metabolite.
dictamine
Dictamnine is an oxacycle, an organonitrogen heterocyclic compound, an organic heterotricyclic compound and an alkaloid antibiotic. Dictamnine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available. A furoquinoline alkaloid, dictamnine, is very common within the family Rutaceae. It is the main alkaloid in the roots of Dictamnus albus and responsible for the mutagenicity of the drug derived from crude extracts. Dictamnine was also reported to be a phototoxic and photomutagenic compound. It participates in the severe skin phototoxicity of the plant. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.
Syringaldehyde
Syringaldehyde is a hydroxybenzaldehyde that is 4-hydroxybenzaldehyde substituted by methoxy groups at positions 3 and 5. Isolated from Pisonia aculeata and Panax japonicus var. major, it exhibits hypoglycemic activity. It has a role as a hypoglycemic agent and a plant metabolite. It is a hydroxybenzaldehyde and a dimethoxybenzene. Syringaldehyde is a natural product found in Ficus septica, Mikania laevigata, and other organisms with data available. Syringaldehyde is a metabolite found in or produced by Saccharomyces cerevisiae. A hydroxybenzaldehyde that is 4-hydroxybenzaldehyde substituted by methoxy groups at positions 3 and 5. Isolated from Pisonia aculeata and Panax japonicus var. major, it exhibits hypoglycemic activity. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].
Pinitol
D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol. Methylinositol has been used in trials studying the treatment of Dementia and Alzheimers Disease. D-Pinitol is a natural product found in Aegialitis annulata, Senna macranthera var. micans, and other organisms with data available. A member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3S,4S,5S,6S-isomer). D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
Skimmianine
Skimmianine is an organonitrogen heterocyclic compound, an organic heterotricyclic compound, an oxacycle and an alkaloid antibiotic. Skimmianine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].
N-(p-Hydroxyphenyl)ethyl p-hydroxycinnamide
Trans-N-p-coumaroyl tyramine is a hydroxycinnamic acid. It has a role as a metabolite. p-Coumaroyltyramine is a natural product found in Ophiopogon japonicus, Polyalthia suberosa, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Constituent of Chinese onion (Allium chinense) and broad bean (Vicia faba). N-(p-Hydroxyphenyl)ethyl p-hydroxycinnamide is found in onion-family vegetables and pulses. N-p-cis-Coumaroyltyramine is found in onion-family vegetables. N-p-cis-Coumaroyltyramine is a constituent of Chinese onion Allium chinense. A natural product found particularly in Solanum melongena and Asimina triloba. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2]. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2].
Phelloterin
Phellopterin is a member of psoralens. Phellopterin is a natural product found in Amyris pinnata, Heracleum candolleanum, and other organisms with data available. A naturally occurring furanocoumarin found in roots of Angelica dahurica and in Seseli elatum (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1]. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1]. Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1].
3-Methoxynobiletin
3-Methoxynobiletin is a member of flavonoids and an ether. 3,3,4,5,6,7,8-Heptamethoxyflavone is a natural product found in Croton caudatus, Melicope triphylla, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from Citrus subspecies peels. 3-Methoxynobiletin is found in sweet orange, sweet bay, and citrus. 3-Methoxynobiletin is found in citrus. 3-Methoxynobiletin is isolated from Citrus species peels. 3,5,6,7,8,3',4'-heptamethoxyflavone, a flavonoid in Citrus reticulata peels, exhibits anti-tumor-initiating effect and Anti-neuroinflammatory activity[1][2][3]. 3,5,6,7,8,3',4'-heptamethoxyflavone inhibits collagenase activity and increased type I procollagen content in HDFn cells[1]. 3,5,6,7,8,3',4'-heptamethoxyflavone induces brain-derived neurotrophic factor (BDNF) expression via cAMP/ERK/CREB signaling and reduces phosphodiesterase activity in C6 cells[4]. 3,5,6,7,8,3',4'-heptamethoxyflavone, a flavonoid in Citrus reticulata peels, exhibits anti-tumor-initiating effect and Anti-neuroinflammatory activity[1][2][3]. 3,5,6,7,8,3',4'-heptamethoxyflavone inhibits collagenase activity and increased type I procollagen content in HDFn cells[1]. 3,5,6,7,8,3',4'-heptamethoxyflavone induces brain-derived neurotrophic factor (BDNF) expression via cAMP/ERK/CREB signaling and reduces phosphodiesterase activity in C6 cells[4].
Jaceidin
Jaceidin is an ether and a member of flavonoids. Jaceidin is a natural product found in Centaurea bracteata, Pentanema britannicum, and other organisms with data available. Jaceidin is found in fruits. Jaceidin is found in buds of Prunus avium (wild cherry). Found in buds of Prunus avium (wild cherry)
Xanthoxyletin
Xanthoxyletin is a member of coumarins. It has a role as a metabolite. Xanthoxyletin is a natural product found in Zanthoxylum dipetalum, Murraya siamensis, and other organisms with data available. Isolated from Zanthoxylum americanum (prickly ash). Xanthoxyletin is found in lemon, sweet orange, and herbs and spices. Xanthoxyletin is found in herbs and spices. Xanthoxyletin is isolated from Zanthoxylum americanum (prickly ash). A natural product found in Clausena harmandiana.
3,3',4',5,7,8-Hexamethoxyflavone
3,3,4,5,7,8-Hexamethoxyflavone is an ether and a member of flavonoids. Gossypetin hexamethyl ether is a natural product found in Citrus medica, Melicope triphylla, and other organisms with data available. 3,3,4,5,7,8-Hexamethoxyflavone is found in citrus. 3,3,4,5,7,8-Hexamethoxyflavone is isolated from Valencia orange peel (Citrus sinensis) and shepherds purse (Capsella bursa-pastoris). Isolated from Valencia orange peel (Citrus sinensis) and shepherds purse (Capsella bursa-pastoris). Hexamethylgossypetin is found in sweet orange and citrus.
Dihydroferulate
Dihydroferulic acid is a monocarboxylic acid that is propanoic acid in which one of the hydrogens at position 3 has been replaced by a 4-hydroxy-3-methoxyphenyl group. It has a role as a human xenobiotic metabolite, a plant metabolite, a mouse metabolite and an antioxidant. It is a monocarboxylic acid, a phenylpropanoid and a member of guaiacols. It is functionally related to a propionic acid. It is a conjugate acid of a dihydroferulate. 3-(4-Hydroxy-3-methoxyphenyl)propionic acid is a natural product found in Colchicum kotschyi, Bulbophyllum vaginatum, and other organisms with data available. Dihydroferulic acid, also known as 3-(4-hydroxy-3-methoxyphenyl)propionic acid or dihydroconiferylate, is classified as a member of the phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. Dihydroferulic acid is considered to be slightly soluble (in water) and acidic. Dihydroferulic acid is a phenolic acid metabolite and was found to be significantly elevated in serum after whole grain consumption which makes this compound a potential serum biomarker of whole grain intake (PMID: 25646321). A monocarboxylic acid that is propanoic acid in which one of the hydrogens at position 3 has been replaced by a 4-hydroxy-3-methoxyphenyl group. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Dihydroferulic acid (Hydroferulic acid) is one of the main metabolites of curcumin and antioxidant/radical-scavenging properties with an IC50 value of 19.5 μM. Dihydroferulic acid is a metabolite of human gut microflora as well as a precursor of vanillic acid[1][2]. Dihydroferulic acid (Hydroferulic acid) is one of the main metabolites of curcumin and antioxidant/radical-scavenging properties with an IC50 value of 19.5 μM. Dihydroferulic acid is a metabolite of human gut microflora as well as a precursor of vanillic acid[1][2].
Docosane
N-docosane, also known as ch3-[ch2]20-ch3 or dokosan, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-docosane is considered to be a hydrocarbon lipid molecule. N-docosane is an alkane and waxy tasting compound and can be found in a number of food items such as lemon balm, linden, allspice, and sunflower, which makes N-docosane a potential biomarker for the consumption of these food products. N-docosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Docosane, also known as CH3-[CH2]20-CH3 or dokosan, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Docosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, docosane is considered to be a hydrocarbon lipid molecule. Docosane is an alkane and waxy tasting compound. Docosane is found, on average, in the highest concentration within lemon balms. Docosane has also been detected, but not quantified, in several different foods, such as allspices, lindens, papaya, and sunflowers. This could make docosane a potential biomarker for the consumption of these foods. A straight-chain alkane with 22 carbon atoms. N-docosane is a solid. Insoluble in water. Used in organic synthesis, calibration, and temperature sensing equipment. Docosane is a straight-chain alkane with 22 carbon atoms. It has a role as a plant metabolite. Docosane is a natural product found in Lonicera japonica, Erucaria microcarpa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane with 22 carbon atoms. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2]. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2].
Seselin
Seselin is a member of coumarins. It has a role as a metabolite. Seselin is a natural product found in Haplophyllum cappadocicum, Haplophyllum dshungaricum, and other organisms with data available. Constituent of Carum roxburghianum (Bishops weed). Seselin is found in many foods, some of which are sweet orange, herbs and spices, anise, and wild celery. Seselin is found in anise. Seselin is a constituent of Carum roxburghianum (Bishops weed) A natural product found in Citropsis articulata.
Keioside
Isorhamnetin 3-rutinoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Isorhamnetin 3-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isorhamnetin 3-rutinoside can be found in common bean, ginkgo nuts, sea-buckthornberry, and swede, which makes isorhamnetin 3-rutinoside a potential biomarker for the consumption of these food products. Isorhamnetin 3-robinobioside is found in pear. Isorhamnetin 3-robinobioside is isolated from Pyrus communis (pear). Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1]. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1].
7-hydroxy-8-(2-hydroxy-3-methylbut-3-en-1-yl)-2H-chromen-2-one
Methyl cis-p-coumarate 3-(3,7-dimethyl-2,6-octadienyl)
Methyl cis-p-coumarate 3-(3,7-dimethyl-2,6-octadienyl) is a constituent of Boronia megastigma (brown boronia). Constituent of Boronia megastigma (brown boronia)
3-Hydroxystigmast-5-en-7-one
3-Hydroxystigmast-5-en-7-one is found in brassicas. 3-Hydroxystigmast-5-en-7-one is isolated after saponification from Brassica napus (rapeseed) and Glycine max (soyabean) oil Isol. after saponification from Brassica napus (rapeseed) and Glycine max (soyabean) oils. 3-Hydroxystigmast-5-en-7-one is found in brassicas, fats and oils, and pulses.
(S)-Edulinine
(S)-Edulinine is found in pomes. (S)-Edulinine is an alkaloid from the bark of Casimiroa edulis (Mexican apple
Octacosane
Octacosane, also known as ch3-[ch2]26-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, octacosane is considered to be a hydrocarbon lipid molecule. Octacosane can be found in a number of food items such as peach, linden, apple, and carrot, which makes octacosane a potential biomarker for the consumption of these food products. Octacosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Octacosane, also known as CH3-[CH2]26-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Octacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, octacosane is considered to be a hydrocarbon lipid molecule. Octacosane has been detected, but not quantified, in several different foods, such as peachs, coconuts, apples, sweet cherries, and lindens. This could make octacosane a potential biomarker for the consumption of these foods. A straight-chain alkane containing 28 carbon atoms.
Pteleine
Pteleine is found in herbs and spices. Pteleine is an alkaloid tentatively identified in cells of Ruta graveolens (rue) grown in continuous light in liq. medium. Alkaloid tentatively identified in cells of Ruta graveolens (rue) grown in continuous light in liq. medium. Pteleine is found in herbs and spices.
Wharangin
Wharangin is found in green vegetables. Wharangin is isolated from spinach (Spinacia oleracea). Isolated from spinach (Spinacia oleracea). Wharangin is found in green vegetables and spinach.
Eicosane
Eicosane, also known as ch3-[ch2]18-ch3 or octyldodecane, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, eicosane is considered to be a hydrocarbon lipid molecule. Eicosane is an alkane and waxy tasting compound and can be found in a number of food items such as linden, papaya, dill, and lemon balm, which makes eicosane a potential biomarker for the consumption of these food products. Eicosane can be found primarily in feces and saliva. Icosanes size, state or chemical inactivity does not exclude it from the traits its smaller alkane counterparts have. It is a colorless, non-polar molecule, nearly unreactive except when it burns. It is less dense than and insoluble in water. Its non-polar trait means it can only perform weak intermolecular bonding (hydrophobic/van der Waals forces) . Eicosane, also known as CH3-[CH2]18-CH3 or octyldodecane, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Eicosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, eicosane is considered to be a hydrocarbon lipid molecule. Eicosane is an alkane and waxy tasting compound. Eicosane is found, on average, in the highest concentration within lemon balms. Eicosane has also been detected, but not quantified, in several different foods, such as allspices, papaya, coconuts, lindens, and hyssops. This could make eicosane a potential biomarker for the consumption of these foods. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2.
(1R,3As,4S,6aS)-1,4-di(benzo[d][1,3]dioxol-5-yl)hexahydrofuro[3,4-c]furan
Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].
Quercetin pentamethyl ether
3,5,7,3′,4′-Pentamethoxyflavone is a polymethoxyflavonoid that can be extracted from Kaempferia parviflora. 3,5,7,3′,4′-Pentamethoxyflavone can induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation[1]. 3,5,7,3′,4′-Pentamethoxyflavone is a polymethoxyflavonoid that can be extracted from Kaempferia parviflora. 3,5,7,3′,4′-Pentamethoxyflavone can induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation[1].
Retusin
Retusin(ariocarpus), also known as 5-hydroxy-3,7,3,4-tetramethoxyflavone or 3,7,3,4-tetra-O-methylquercetin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, retusin(ariocarpus) is considered to be a flavonoid lipid molecule. Retusin(ariocarpus) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Retusin(ariocarpus) can be found in common oregano and mandarin orange (clementine, tangerine), which makes retusin(ariocarpus) a potential biomarker for the consumption of these food products. Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1]. Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1].
Syringaldehyde
4-hydroxy-3,5-dimethoxybenzaldehyde, also known as sinapaldehyde or 2,6-dimethoxy-4-formylphenol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 4-hydroxy-3,5-dimethoxybenzaldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 4-hydroxy-3,5-dimethoxybenzaldehyde is a mild, sweet, and plastic tasting compound and can be found in a number of food items such as whisky, common grape, garden tomato (variety), and coriander, which makes 4-hydroxy-3,5-dimethoxybenzaldehyde a potential biomarker for the consumption of these food products. 4-hydroxy-3,5-dimethoxybenzaldehyde may be a unique S.cerevisiae (yeast) metabolite. Because it contains many functional groups, it can be classified in many ways - aromatic, aldehyde, phenol. It is a colorless solid (impure samples appear yellowish) that is soluble in alcohol and polar organic solvents. Its refractive index is 1.53 . Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].
Methyl p-coumarate
Methyl p-coumarate, also known as 4-coumaric acid methyl ester, is a member of the class of compounds known as coumaric acid esters. Coumaric acid esters are aromatic compounds containing an ester derivative of coumaric acid. Methyl p-coumarate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Methyl p-coumarate can be found in bamboo shoots and garden onion, which makes methyl p-coumarate a potential biomarker for the consumption of these food products. Methyl p-coumarate (Methyl 4-hydroxycinnamate), an esterified derivative of p-Coumaric acid (pCA), is isolated from the flower of Trixis michuacana var longifolia. Methyl p-coumarate could inhibit the melanin formation in B16 mouse melanoma cells. Methyl p-coumarate also has strong in vitro inhibitory effect on A. alternata and other pathogens[1][2]. Methyl p-coumarate (Methyl 4-hydroxycinnamate), an esterified derivative of p-Coumaric acid (pCA), is isolated from the flower of Trixis michuacana var longifolia. Methyl p-coumarate could inhibit the melanin formation in B16 mouse melanoma cells. Methyl p-coumarate also has strong in vitro inhibitory effect on A. alternata and other pathogens[1][2].
Oleate
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
sesamin
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].
Xanthoxylin
obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree). Xanthoxylin is found in many foods, some of which are herbs and spices, german camomile, fats and oils, and pomegranate. Xanthoxylin is a carboxylic ester. It is functionally related to a phloroglucinol. Xanthoxylin is a natural product found in Euphorbia portulacoides, Pulicaria incisa, and other organisms with data available. Xanthoxylin is found in fats and oils. Xanthoxylin is obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2]. Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2].
asarinin
Episesamin is a natural product found in Zanthoxylum acanthopodium, Zanthoxylum beecheyanum, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1].
Sequoyitol
1D-5-O-methyl-myo-inositol is a member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3r,4R,5S,6r-stereoisomer). It has a role as a plant metabolite. Sequoyitol is a natural product found in Podocarpus sellowii, Aristolochia gigantea, and other organisms with data available. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1]. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1].