NCBI Taxonomy: 56525

Dittrichia viscosa (ncbi_taxid: 56525)

found 192 associated metabolites at species taxonomy rank level.

Ancestor: Dittrichia

Child Taxonomies: none taxonomy data.

Isoalantolactone

Naphtho(2,3-b)furan-2(3H)-one, decahydro-8a-methyl-3,5-bis(methylene)-, (3aR-(3a alpha,4a alpha,8a beta,9a alpha))-

C15H20O2 (232.1463)


Isoalantolactone is a sesquiterpene lactone of the eudesmanolide group. It has been isolated from Inula helenium. It has a role as an apoptosis inducer, an antifungal agent and a plant metabolite. It is a sesquiterpene lactone and a eudesmane sesquiterpenoid. Isoalantolactone is a natural product found in Eupatorium cannabinum, Critonia quadrangularis, and other organisms with data available. Isoalantolactone is found in herbs and spices. Isoalantolactone is a constituent of the essential oil of Inula helenium (elecampane) Constituent of the essential oil of Inula helenium (elecampane). Isoalantolactone is found in herbs and spices. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.0477)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Genkwanin

5-Hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one

C16H12O5 (284.0685)


Genkwanin, also known as 5,4-dihydroxy-7-methoxyflavone or 7-methylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, genkwanin is considered to be a flavonoid lipid molecule. Genkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Genkwanin is a bitter tasting compound and can be found in a number of food items such as winter savory, sweet basil, rosemary, and common sage, which makes genkwanin a potential biomarker for the consumption of these food products. Genkwanin is an O-methylated flavone, a type of flavonoid. It can be found in the seeds of Alnus glutinosa, and the leaves of the ferns Notholaena bryopoda and Asplenium normale . Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Coniferaldehyde

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enal

C10H10O3 (178.063)


Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Eriodictyol, also known as 3,4,5,7-tetrahydroxyflavanone or 2,3-dihydroluteolin, belongs to the class of organic compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, eriodictyol is considered to be a flavonoid lipid molecule. Outside of the human body, eriodictyol has been detected, but not quantified in, several different foods, such as common oregano, common thymes, parsley, sweet basils, and tarragons. This could make eriodictyol a potential biomarker for the consumption of these foods. Eriodictyol is a compound isolated from Eriodictyon californicum and can be used in medicine as an expectorant. BioTransformer predicts that eriodictiol is a product of luteolin metabolism via a flavonoid-c-ring-reduction reaction catalyzed by an unspecified-gut microbiota enzyme (PMID: 30612223). Eriodictyol, also known as 5735-tetrahydroxyflavanone, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Eriodictyol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eriodictyol can be found in a number of food items such as rowal, grape, cardamom, and lemon balm, which makes eriodictyol a potential biomarker for the consumption of these food products. Eriodictyol is a bitter-masking flavanone, a flavonoid extracted from yerba santa (Eriodictyon californicum), a plant native to North America. Eriodictyol is one of the four flavanones identified in this plant as having taste-modifying properties, the other three being homoeriodictyol, its sodium salt, and sterubin . Eriodictyol is a tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. It is a tetrahydroxyflavanone and a member of 3-hydroxyflavanones. Eriodictyol is a natural product found in Eupatorium album, Eupatorium hyssopifolium, and other organisms with data available. A tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. Acquisition and generation of the data is financially supported in part by CREST/JST. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

Taxifolin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O7 (304.0583)


Taxifolin, also known as dihydroquercetin or (+)-taxifolin, is a member of the class of compounds known as flavanonols. Flavanonols are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a hydroxyl group and a ketone at the carbon C2 and C3, respectively. Taxifolin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Taxifolin can be found in a number of food items such as sweet rowanberry, arrowroot, evening primrose, and walnut, which makes taxifolin a potential biomarker for the consumption of these food products. Taxifolin is a flavanonol, a type of flavonoid . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.0427)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Tyrosol

4-hydroxy-Benzeneethanol;4-Hydroxyphenylethanol;beta-(4-Hydroxyphenyl)ethanol

C8H10O2 (138.0681)


Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].

   

Alantolactone

Naphtho(2,3-b)furan-2(3H)-one, 3a,5,6,7,8,8a,9,9a-octahydro-5,8a-dimethyl-3-methylene-, (3aR-(3a alpha,5beta,8a beta,9a alpha))-

C15H20O2 (232.1463)


Alantolactone is a sesquiterpene lactone that is 3a,5,6,7,8,8a,9,9a-octahydronaphtho[2,3-b]furan-2-one bearing two methyl substituents at positions 5 and 8a as well as a methylidene substituent at position 3. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a sesquiterpene lactone, a naphthofuran and an olefinic compound. Alantolactone is a natural product found in Eupatorium cannabinum, Pentanema britannicum, and other organisms with data available. Alantolactone is found in herbs and spices. Alantolactone is a constituent of Inula helenium (elecampane) Constituent of Inula helenium (elecampane). Alantolactone is found in herbs and spices. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3]. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3].

   

Sakuranetin

4H-1-Benzopyran-4-one, 2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-, (2S)-

C16H14O5 (286.0841)


Sakuranetin is a flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as an antimycobacterial drug and a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a flavonoid phytoalexin, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Sakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Sakuranetin is found in black walnut. Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae. A flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2]. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.3861)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Chrysoeriol

3 inverted exclamation mark -Methoxy-4 inverted exclamation mark ,5,7-trihydroxyflavone

C16H12O6 (300.0634)


Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Rhamnocitrin

3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxychromen-4-one

C16H12O6 (300.0634)


Rhamnocitrin, also known as 3,4,5-trihydroxy-7-methoxyflavone or 7-methylkaempferol, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, rhamnocitrin is considered to be a flavonoid lipid molecule. Rhamnocitrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Rhamnocitrin can be found in cloves and lemon balm, which makes rhamnocitrin a potential biomarker for the consumption of these food products. Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol. Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2]. Rhamnocitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=569-92-6 (retrieved 2024-12-30) (CAS RN: 569-92-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

(2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents. 2-Bornanol is found in turmeric. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Isorhamnetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-methoxy-

C16H12O7 (316.0583)


3,4,5,7-tetrahydroxy-3-methoxyflavone is a tetrahydroxyflavone having the 4-hydroxy groups located at the 3- 4- 5- and 7-positions as well as a methoxy group at the 2-position. It has a role as a metabolite and an antimicrobial agent. It is a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3-methoxyflavon-7-olate. 3-O-Methylquercetin is a natural product found in Lotus ucrainicus, Wollastonia biflora, and other organisms with data available. See also: Tobacco Leaf (part of). 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1]. 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1].

   

Ayanin

4H-1-BENZOPYRAN-4-ONE, 5-HYDROXY-2-(3-HYDROXY-4-METHOXYPHENYL)-3,7-DIMETHOXY-

C18H16O7 (344.0896)


3,5-dihydroxy-3,4,7-trimethoxyflavone is a trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups. It has a role as a plant metabolite. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,5-dihydroxy-3,4,7-trimethoxyflavone(1-). Ayanin is a natural product found in Psiadia viscosa, Solanum pubescens, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups.

   

Thymol

Thymol, Pharmaceutical Secondary Standard; Certified Reference Material

C10H14O (150.1045)


Thymol is a phenol that is a natural monoterpene derivative of cymene. It has a role as a volatile oil component. It is a member of phenols and a monoterpenoid. It derives from a hydride of a p-cymene. A phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. (Dorland, 28th ed) Thymol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A phenol obtained from thyme oil or other volatile oils used as a stabilizer in pharmaceutical preparations, and as an antiseptic (antibacterial or antifungal) agent. See also: Paeonia lactiflora root (part of); Elymus repens root (part of); Eucalyptol; thymol (component of) ... View More ... Thymol is a phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. Thymol is a monoterpene phenol derivative of cymene, C10H13OH, isomeric with carvacrol, found in oil of thyme, and extracted as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. It is also called "hydroxy cymene". In a 1994 report released by five top cigarette companies, thymol is one of the 599 additives to cigarettes. Its use or purpose, however, is unknown, like most cigarette additives. Found in many essential oils. Especies found in the Labiatae. Rich sources are thyme oil, seed oil of Ptychotis ajowan and oils of horsemint (Monarda punctata) and Ocimum subspecies Flavouring ingredient C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A phenol that is a natural monoterpene derivative of cymene. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].

   

Tomentosin

(3aR,7S,8aR)-7-methyl-3-methylidene-6-(3-oxobutyl)-4,7,8,8a-tetrahydro-3aH-cyclohepta[b]furan-2-one

C15H20O3 (248.1412)


Tomentosin is a sesquiterpene lactone. Tomentosin is a natural product found in Apalochlamys spectabilis, Leucophyta brownii, and other organisms with data available.

   

Isorhamnetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-

C16H12O7 (316.0583)


Isorhamnetin is the methylated metabolite of quercetin. Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. Isorhamnetin prevents endothelial cell injuries from oxidized LDL via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin. Isorhamnetin prevents endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II. Isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells. (PMID: 15493462, 17368593, 17374653, 16963021). Isorhamnetin is a monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, an anticoagulant and a metabolite. It is a 7-hydroxyflavonol, a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of an isorhamnetin(1-). Isorhamnetin is a natural product found in Lotus ucrainicus, Strychnos pseudoquina, and other organisms with data available. Isorhamnetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Peumus boldus leaf (part of). Widespread flavonol found especially in bee pollen, chives, corn poppy leaves, garden cress, fennel, hartwort, red onions, pears, dillweed, parsley and tarragon. Isorhamnetin is found in many foods, some of which are italian sweet red pepper, carrot, yellow wax bean, and lemon balm. A monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. Acquisition and generation of the data is financially supported in part by CREST/JST. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.

   

Rhamnetin

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxychromen-4-one

C16H12O7 (316.0583)


Acquisition and generation of the data is financially supported in part by CREST/JST. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].

   

3-O-Methylkaempferol

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

C16H12O6 (300.0634)


3-o-methylkaempferol, also known as 5,7,4-trihydroxy-3-methoxyflavone or isokaempferide, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 3-o-methylkaempferol is considered to be a flavonoid lipid molecule. 3-o-methylkaempferol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-methylkaempferol can be found in common bean and coriander, which makes 3-o-methylkaempferol a potential biomarker for the consumption of these food products.

   

gamma-Humulene

(1E,6Z)-1,8,8-trimethyl-5-methylidenecycloundeca-1,6-diene (1E,6Z)-humula-1(11),4(13),5-triene

C15H24 (204.1878)


   

Methane

Methane in gaseus STate

CH4 (16.0313)


Methane (CH4), is a gas produced by a group of colonic anaerobes, absorbed from the colon and excreted in expired air. As a result, breath CH4 excretion can be used as an indicator of the in situ activity of the methanogenic flora. All CH4 produced in human beings is a metabolic product of intestinal bacteria, and about 50\\% of CH4 produced in the gut is absorbed and excreted in expired air. Because there appears to be no catabolism of this gas by other colonic organisms or host cells, breath CH4 measurements provide a rapid, simple means of semi quantitatively assessing the ongoing in situ metabolism of the methanogenic flora. It could seem likely that the intracolonic activity of a variety of bacteria similarly might be assessed quantitatively via analysis of expired air. However, the application of this methodology has been confounded by the rapid catabolism of many volatile bacterial products by other bacteria or human tissue. A striking aspect of the studies of breath CH4 measurements is the enormous individual variations in the excretion of this gas. Virtually all children under 5 years of age and 66\\% of the adult population do not exhale appreciable quantities of CH4. The remaining 34\\% of the adult population has appreciable breath methane concentrations of up to 80 ppm (mean, 15.2 ppm; median, 11.8 ppm). On this basis the population can be divided into CH4 producers or nonproducers, although a more accurate term would be to define subjects as being low or high CH4 producers. The primary methanogen present in the human colon, Methanobrevibacter smithii, produces methane via a reaction that relies entirely on H2 produced by other organisms to reduce CO2 to CH4. Thus, breath CH4 concentrations might be expected to mirror breath H2 concentrations; however, the high levels of CH4 observed in the fasting state may result from H2 derived from endogenous rather than dietary substrates. A diverse assortment of conditions has been associated with a high prevalence of methane producers including diverticulosis, cystic fibrosis, high fasting serum cholesterol levels, encopresis in children, and aorto-iliac vascular disease, whereas obesity (measured as skin-fold thickness) was related inversely to methane production. The challenge that remains is to determine to what extent methanogens actively influence body physiology vs. simply serve as passive indicators of colonic function. (PMID: 16469670, Clinical Gastroenterology and Hepatology Volume 4, Issue 2, February 2006, Pages 123-129). Methane can be found in Desulfovibrio, Methanobacterium, Methanobrevibacter, Methanococcus, Methanocorpusculum, Methanoculleus, Methanoflorens, Methanofollis, Methanogenium, Methanomicrobium, Methanopyrus, Methanoregula, Methanosaeta, Methanosarcina, Methanosphaera, Methanospirillium, Methanothermobacter (Wikipedia). Methane (CH4), is a gas produced by a group of colonic anaerobes, absorbed from the colon and excreted in expired air. As a result, breath CH4 excretion can be used as an indicator of the in situ activity of the methanogenic flora. All CH4 produced in human beings is a metabolic product of intestinal bacteria, and about 50\\% of CH4 produced in the gut is absorbed and excreted in expired air. Because there appears to be no catabolism of this gas by other colonic organisms or host cells, breath CH4 measurements provide a rapid, simple means of semi quantitatively assessing the ongoing in situ metabolism of the methanogenic flora. It could seem likely that the intracolonic activity of a variety of bacteria similarly might be assessed quantitatively via analysis of expired air. However, the application of this methodology has been confounded by the rapid catabolism of many volatile bacterial products by other bacteria or human tissue. A striking aspect of the studies of breath CH4 measurements is the enormous individual variations in the excretion of this gas. Virtually all children under 5 years of age and 66\\% of the adult population do not exhale appreciable quantities of CH4. The remaining 34\\% of the adult population has appreciable breath methane concentrations of up to 80 ppm (mean, 15.2 ppm; median, 11.8 ppm). On this basis the population can be divided into CH4 producers or nonproducers, although a more accurate term would be to define subjects as being low or high CH4 producers. The primary methanogen present in the human colon, Methanobrevibacter smithii, produces methane via a reaction that relies entirely on H2 produced by other organisms to reduce CO2 to CH4. Thus, breath CH4 concentrations might be expected to mirror breath H2 concentrations; however, the high levels of CH4 observed in the fasting state may result from H2 derived from endogenous rather than dietary substrates. A diverse assortment of conditions has been associated with a high prevalence of methane producers including diverticulosis, cystic fibrosis, high fasting serum cholesterol levels, encopresis in children, and aorto-iliac vascular disease, whereas obesity (measured as skin-fold thickness) was related inversely to methane production. The challenge that remains is to determine to what extent methanogens actively influence body physiology vs. simply serve as passive indicators of colonic function. (PMID: 16469670, Clinical Gastroenterology and Hepatology Volume 4, Issue 2, February 2006, Pages 123-129) [HMDB]

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aS,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.3861)


Constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants. Taraxasterol is found in many foods, some of which are soy bean, chicory, evening primrose, and common grape. Taraxasterol is found in alcoholic beverages. Taraxasterol is a constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

Axillarin

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0689)


   

(3R,6E)-nerolidol

(3R,6E)-nerolidol

C15H26O (222.1984)


A (6E)-nerolidol in which the hydroxy group at positon 3 adopts an R-configuration. It is a fertility-related volatile compound secreted by the queens of higher termites from the subfamily Syntermitinae. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

Genkwanin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Genkwanin is a monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. It has a role as a metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a genkwanin(1-). Genkwanin is a natural product found in Odontites viscosus, Eupatorium capillifolium, and other organisms with data available. A monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Casticin

5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,6,7-trimethoxy-4H-benzopyran-4-one, 9CI

C19H18O8 (374.1002)


Casticin is a tetramethoxyflavone that consists of quercetagetin in which the hydroxy groups at positions 3, 6, 7 and 4 have been replaced by methoxy groups. It has been isolated from Eremophila mitchellii. It has a role as an apoptosis inducer and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Casticin is a natural product found in Psiadia viscosa, Psiadia dentata, and other organisms with data available. See also: Chaste tree fruit (part of). A tetramethoxyflavone that consists of quercetagetin in which the hydroxy groups at positions 3, 6, 7 and 4 have been replaced by methoxy groups. It has been isolated from Eremophila mitchellii. Casticin is found in fruits. Casticin is a constituent of Vitex agnus-castus (agnus castus) seeds Casticin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=479-91-4 (retrieved 2024-07-01) (CAS RN: 479-91-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3. Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3.

   

Naringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0685)


Naringenin is a trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. 5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one is a natural product found in Prunus mume, Helichrysum cephaloideum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists A trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Nerolidol

[S-(E)]-3,7,11-trimethyldodeca-1,6,10-trien-3-ol

C15H26O (222.1984)


A component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Flavouring agent. Nerolidol is found in many foods, some of which are coriander, sweet basil, roman camomile, and sweet orange. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

Spinacetin

3,5,7-Trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-1-benzopyran-4-one, 9ci

C17H14O8 (346.0689)


Isolated from spinach (Spinacia oleracea). Spinacetin is found in german camomile, green vegetables, and spinach. Spinacetin is found in german camomile. Spinacetin is isolated from spinach (Spinacia oleracea

   

Quercimeritrin

Quercetin 7-O-beta-D-glucoside

C21H20O12 (464.0955)


Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

Thymol

[5-methyl-2-(propan-2-yl)phenyl]oxidanesulfonic acid

C10H14O (150.1045)


Thymol Sulfate is also known as Thymol sulfuric acid. Thymol Sulfate is considered to be practically insoluble (in water) and acidic. Thymol (also known as 2-isopropyl-5-methylphenol, IPMP), C10H14O, is a natural monoterpenoid phenol derivative of p-Cymene, isomeric with carvacrol, found in oil of thyme, and extracted from Thymus vulgaris (common thyme), ajwain,[4] and various other plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol is only slightly soluble in water at neutral pH, but it is extremely soluble in alcohols and other organic solvents. It is also soluble in strongly alkaline aqueous solutions due to deprotonation of the phenol. Its dissociation constant (pKa) is 10.59±0.10.[5] Thymol absorbs maximum UV radiation at 274 nm.[6] Ancient Egyptians used thyme for embalming.[9] The ancient Greeks used it in their baths and burned it as incense in their temples, believing it was a source of courage. The spread of thyme throughout Europe was thought to be due to the Romans, as they used it to purify their rooms and to "give an aromatic flavour to cheese and liqueurs".[10] In the European Middle Ages, the herb was placed beneath pillows to aid sleep and ward off nightmares.[11] In this period, women also often gave knights and warriors gifts that included thyme leaves, because it was believed to bring courage to the bearer. Thyme was also used as incense and placed on coffins during funerals, because it was supposed to ensure passage into the next life.[12] The bee balms Monarda fistulosa and Monarda didyma, North American wildflowers, are natural sources of thymol. The Blackfoot Native Americans recognized these plants' strong antiseptic action and used poultices of the plants for skin infections and minor wounds. A tisane made from them was also used to treat mouth and throat infections caused by dental caries and gingivitis.[13] Thymol was first isolated by German chemist Caspar Neumann in 1719.[14] In 1853, French chemist Alexandre Lallemand[15] (1816-1886) named thymol and determined its empirical formula.[16] Thymol was first synthesized by Swedish chemist Oskar Widman[17] (1852-1930) in 1882.[18]

   

Friedelin

4,4a,6b,8a,11,11,12b,14a-octamethyl-docosahydropicen-3-one

C30H50O (426.3861)


Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as apple, pear, mammee apple, and sugar apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Parthenium

7-methyl-3-methylidene-6-(3-oxobutyl)-2H,3H,3aH,4H,7H,8H,8aH-cyclohepta[b]furan-2-one

C15H20O3 (248.1412)


   

Aromadendrin 7-methyl ether

3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-3,4-dihydro-2H-1-benzopyran-4-one

C16H14O6 (302.079)


Aromadendrin 7-methyl ether, also known as 7-methoxy-aromadendrin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Aromadendrin 7-methyl ether is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Aromadendrin 7-methyl ether can be found in sweet cherry, which makes aromadendrin 7-methyl ether a potential biomarker for the consumption of this food product.

   

Taraxasterol acetate

4,4,6a,6b,8a,12,14b-Heptamethyl-11-methylidene-docosahydropicen-3-yl acetic acid

C32H52O2 (468.3967)


Taraxasterol acetate, also known as urs-20(30)-en-3-ol acetate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Taraxasterol acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Taraxasterol acetate can be found in burdock, which makes taraxasterol acetate a potential biomarker for the consumption of this food product.

   

Nerolidol

(E)-3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol, trans-3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol

C15H26O (222.1984)


Nerolidol is a farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. It has a role as a flavouring agent, a cosmetic, a pheromone, a neuroprotective agent, an antifungal agent, an anti-inflammatory agent, an antihypertensive agent, an antioxidant, a volatile oil component, an insect attractant and a herbicide. It is a farnesane sesquiterpenoid, a tertiary allylic alcohol and a volatile organic compound. Nerolidol is a natural product found in Xylopia sericea, Rhododendron calostrotum, and other organisms with data available. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent. Nerolidol has been shown to exhibit anti-fungal function (A7933).Nerolidol belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units. A nerolidol in which the double bond at position 6 adopts a trans-configuration. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

Hispidulin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

nepetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-methoxy- (9CI)

C16H12O7 (316.0583)


Eupafolin, also known as 6-methoxy 5 or 734-tetrahydroxyflavone, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, eupafolin is considered to be a flavonoid lipid molecule. Eupafolin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eupafolin can be found in common sage, lemon verbena, rosemary, and sesame, which makes eupafolin a potential biomarker for the consumption of these food products. 6-Methoxyluteolin is a natural product found in Eupatorium album, Eupatorium altissimum, and other organisms with data available. See also: Arnica montana Flower (has part). Nepetin (6-Methoxyluteolin) is a natural flavonoid isolated from Eupatorium ballotaefolium HBK with potent anti-inflammatory activities. Nepetin inhibits IL-6, IL-8 and MCP-1 secretion with IC50 values of 4.43 μM, 3.42 μM and 4.17 μM, respectively in ARPE-19 cells[1][2]. Nepetin (6-Methoxyluteolin) is a natural flavonoid isolated from Eupatorium ballotaefolium HBK with potent anti-inflammatory activities. Nepetin inhibits IL-6, IL-8 and MCP-1 secretion with IC50 values of 4.43 μM, 3.42 μM and 4.17 μM, respectively in ARPE-19 cells[1][2].

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.3861)


Taraxasterol is a pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. It has a role as a metabolite and an anti-inflammatory agent. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of a taraxastane. Taraxasterol is a natural product found in Eupatorium altissimum, Eupatorium perfoliatum, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

Quercimeritrin

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 7-O-beta-D-glucoside is a quercetin O-glucoside in which a glucosyl residue is attached at position 7 of quercetin via a beta-glycosidic linkage. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of flavonols, a tetrahydroxyflavone and a quercetin O-glucoside. Quercimeritrin is a natural product found in Salix atrocinerea, Dendroviguiera sphaerocephala, and other organisms with data available. See also: Chamomile (part of). Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

Sternbin

5,3,4-Trihydroxy-7-methoxyflavanone

C16H14O6 (302.079)


   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Jaceosidin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-

C17H14O7 (330.0739)


Jaceosidin, also known as 4,5,7-trihydroxy-3,6-dimethoxyflavone, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, jaceosidin is considered to be a flavonoid lipid molecule. Jaceosidin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Jaceosidin can be found in lemon verbena, which makes jaceosidin a potential biomarker for the consumption of this food product. Jaceosidin is a flavonoid isolated from Artemisia vestita, induces apoptosis in cancer cells, activates Bax and down-regulates Mcl-1 and c-FLIP expression[1]. Jaceosidin exhibits anti-cancer[2], anti-inflammatory activities, decreases leves of inflammatory markers, and suppresses COX-2 expression and NF-κB activation[3]. Jaceosidin is a flavonoid isolated from Artemisia vestita, induces apoptosis in cancer cells, activates Bax and down-regulates Mcl-1 and c-FLIP expression[1]. Jaceosidin exhibits anti-cancer[2], anti-inflammatory activities, decreases leves of inflammatory markers, and suppresses COX-2 expression and NF-κB activation[3].

   

Axillarin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-

C17H14O8 (346.0689)


A dimethoxyflavone that is the 3,6-dimethyl ether derivative of quercetagetin. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one, also known as 3,4,5,7-tetrahydroxy-3,6-dimethoxyflavone or 3,6-dimethoxyquercetagetin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one can be found in german camomile, which makes 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one a potential biomarker for the consumption of this food product.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.0477)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Spinacetin

3,5,7-Trihydroxy-2- (4-hydroxy-3-methoxyphenyl) -6-methoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0689)


   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Constituent of the leaves and branches of Phyllanthus emblica (emblic). Eriodictyol 7-(6-coumaroylglucoside) is found in fruits. Annotation level-1 Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

Genkwanin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Rhamnocitrin

4H-1-Benzopyran-4-one, 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O6 (300.0634)


Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol. Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. A monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2].

   

6-methoxykaempferol

3,5,7-Trihydroxy-2- (4-hydroxyphenyl) -6-methoxy-4H-1-benzopyran-4-one

C16H12O7 (316.0583)


   

Casticin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


[Raw Data] CB178_Casticin_pos_50eV_CB000067.txt [Raw Data] CB178_Casticin_pos_40eV_CB000067.txt [Raw Data] CB178_Casticin_pos_30eV_CB000067.txt [Raw Data] CB178_Casticin_pos_20eV_CB000067.txt [Raw Data] CB178_Casticin_pos_10eV_CB000067.txt Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3. Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3.

   

Sakuranetin

(S) -2,3-Dihydro-5-hydroxy-2- (4-hydroxyphenyl) -7-methoxy-4H-1-benzopyran-4-one

C16H14O5 (286.0841)


Annotation level-1 Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2]. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.0427)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Isorhamnetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)- (9CI)

C16H12O7 (316.0583)


Glucoside present in the leaves of Peumus boldus (boldo). Isorhamnetin 3-dirhamnoside is found in fruits. Annotation level-1 Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.

   

neryl isovalerate

neryl isovalerate

C15H26O2 (238.1933)


   

Quercetin 3-methyl ether

Quercetin 3-methyl ether

C16H12O7 (316.0583)


   

Inuviscolide

(3aR,4aR,5R,7aS,9aS)-5-hydroxy-5-methyl-3,8-dimethylidenedecahydroazuleno[6,5-b]furan-2(3H)-one

C15H20O3 (248.1412)


Inuviscolide is a sesquiterpene lactone that is decahydroazuleno[6,5-b]furan-2(3H)-one substituted by a hydroxy group at position 5, a methyl group at position 5 and methylidene groups at positions 3 and 8 (the 3aR,4aR,5R,7aS,9aS stereoisomer). Isolated from the aerial parts of Inula hupehensis, it exhibits anti-inflammatory activity. It has a role as an anti-inflammatory agent and a plant metabolite. It is a gamma-lactone, an organic heterotricyclic compound, a sesquiterpene lactone and a tertiary alcohol. Inuviscolide is a natural product found in Helichrysum dasyanthum, Pulicaria incisa, and other organisms with data available. A sesquiterpene lactone that is decahydroazuleno[6,5-b]furan-2(3H)-one substituted by a hydroxy group at position 5, a methyl group at position 5 and methylidene groups at positions 3 and 8 (the 3aR,4aR,5R,7aS,9aS stereoisomer). Isolated from the aerial parts of Inula hupehensis, it exhibits anti-inflammatory activity.

   

Sterubin

4H-1-BENZOPYRAN-4-ONE, 2-(3,4-DIHYDROXYPHENYL)-2,3-DIHYDRO-5-HYDROXY-7-METHOXY-, (2S)-

C16H14O6 (302.079)


7-O-Methyleriodictyol is a natural product found in Artemisia halodendron, Traversia baccharoides, and other organisms with data available.

   

Rhamnetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy- (9CI)

C16H12O7 (316.0583)


Rhamnetin is a monomethoxyflavone that is quercetin methylated at position 7. It has a role as a metabolite, an antioxidant and an anti-inflammatory agent. It is a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a rhamnetin-3-olate. Rhamnetin is a natural product found in Ageratina altissima, Ammannia auriculata, and other organisms with data available. A monomethoxyflavone that is quercetin methylated at position 7. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one, also known as 7-methoxyquercetin or quercetin 7-methyl ether, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one can be found in a number of food items such as tea, apple, sweet orange, and parsley, which makes 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one a potential biomarker for the consumption of these food products. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].

   

Chrysoeriol

Chrysoeriol (Luteolin 3-methyl ether)

C16H12O6 (300.0634)


Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Isoalantolactone

(3aR,4aS,8aR,9aR)-8a-methyl-3,5-dimethylidene-3a,4,4a,6,7,8,9,9a-octahydrobenzo[f][1]benzofuran-2-one

C15H20O2 (232.1463)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.234 Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.

   

Thymol

InChI=1\C10H14O\c1-7(2)9-5-4-8(3)6-10(9)11\h4-7,11H,1-3H

C10H14O (150.1045)


Thymol, also known as 1-hydroxy-5-methyl-2-isopropylbenzene or 2-isopropyl-5-methylphenol, is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. Thus, thymol is considered to be an isoprenoid lipid molecule. Thymol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Thymol can be synthesized from p-cymene. Thymol can also be synthesized into thymol sulfate and thymol sulfate(1-). Thymol is a camphor, herbal, and medicinal tasting compound and can be found in a number of food items such as anise, common oregano, caraway, and highbush blueberry, which makes thymol a potential biomarker for the consumption of these food products. Thymol can be found primarily in saliva and urine, as well as in human liver and skeletal muscle tissues. Thymol exists in all eukaryotes, ranging from yeast to humans. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].

   

Isokaempferide

5,7,4-trihydroxy-3-methoxyflavone

C16H12O6 (300.0634)


   

coniferaldehyde

coniferaldehyde

C10H10O3 (178.063)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 13

   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

C16H12O6 (300.0634)


   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Asahina

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0685)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

geranyl isovalerate

(2Z)-3,7-dimethylocta-2,6-dien-1-yl 3-methylbutanoate

C15H26O2 (238.1933)


   

MESTRANOL BICARBONATE

(2-{4-methyl-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl)methyl 2-methylpropanoate

C18H24O5 (320.1624)


   

Faradiol myristate

8-hydroxy-4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-icosahydropicen-3-yl tetradecanoate

C44H76O3 (652.5794)


   

Faradiol palmitate

8-hydroxy-4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-icosahydropicen-3-yl hexadecanoate

C46H80O3 (680.6107)


   

borneol

1,7,7-Trimethyl-(1R,2S,4R)-rel-bicyclo[2.2.1]heptan-2-ol

C10H18O (154.1358)


Flavouring agent. (±)-Borneol is found in many foods, some of which are pot marjoram, pepper (spice), saffron, and german camomile. Constituent of Curcuma aromatica and other plants. (+)-Borneol is found in nutmeg, herbs and spices, and ginger. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Costic acid

2-(4a-methyl-8-methylidene-decahydronaphthalen-2-yl)prop-2-enoic acid

C15H22O2 (234.162)


   

Psi-taraxasterol acetate

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

Nadic

3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-3,4-dihydro-2H-1-benzopyran-4-one

C16H14O6 (302.079)


   

DGDG 34:3

1-hexadecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-3-O-(alpha-D-galactosyl-1-6-beta-D-galactosyl)-sn-glycerol

C49H86O15 (914.5966)


   

nerolidol

(±)-trans-Nerolidol

C15H26O (222.1984)


A farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

2-[(2R,4aR,8R,8aR)-8-hydroxy-4a,8-dimethyl-1,2,3,4,5,6,7,8a-octahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2R,4aR,8S,8aR)-8-hydroxy-4a,8-dimethyl-1,2,3,4,5,6,7,8a-octahydronaphthalen-2-yl]prop-2-enoic acid

C15H24O3 (252.1725)


   

Ferulaldehyde

InChI=1\C10H10O3\c1-13-10-7-8(3-2-6-11)4-5-9(10)12\h2-7,12H,1H3\b3-2

C10H10O3 (178.063)


Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].

   

Tyrosol

InChI=1\C8H10O2\c9-6-5-7-1-3-8(10)4-2-7\h1-4,9-10H,5-6H

C8H10O2 (138.0681)


Tyrosol, also known as 4-hydroxyphenylethanol or 4-(2-hydroxyethyl)phenol, is a member of the class of compounds known as tyrosols. Tyrosols are organic aromatic compounds containing a phenethyl alcohol moiety that carries a hydroxyl group at the 4-position of the benzene group. Tyrosol is soluble (in water) and a very weakly acidic compound (based on its pKa). Tyrosol can be synthesized from 2-phenylethanol. Tyrosol is also a parent compound for other transformation products, including but not limited to, hydroxytyrosol, crosatoside B, and oleocanthal. Tyrosol is a mild, sweet, and floral tasting compound and can be found in a number of food items such as breadnut tree seed, sparkleberry, loquat, and savoy cabbage, which makes tyrosol a potential biomarker for the consumption of these food products. Tyrosol can be found primarily in feces and urine, as well as in human prostate tissue. Tyrosol exists in all eukaryotes, ranging from yeast to humans. Tyrosol present in wine is also shown to be cardioprotective. Samson et al. has shown that tyrosol-treated animals showed significant increase in the phosphorylation of Akt, eNOS and FOXO3a. In addition, tyrosol also induced the expression of longevity protein SIRT1 in the heart after myocardial infarction in a rat MI model. Hence tyrosols SIRT1, Akt and eNOS activating power adds another dimension to the wine research, because it adds a great link to the French paradox. In conclusion these findings suggest that tyrosol induces myocardial protection against ischemia related stress by inducing survival and longevity proteins that may be considered as anti-aging therapy for the heart . D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].

   

8-Epiinuviscolide

8-Epiinuviscolide

C15H20O3 (248.1412)


A sesquiterpene lactone that is the C-8 epimer of inuviscolide. It has been isolated from the aerial parts of Inula hupehensis.

   

Borneol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. A bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

methane

carbane-13

CH4 (16.0313)


A one-carbon compound in which the carbon is attached by single bonds to four hydrogen atoms. It is a colourless, odourless, non-toxic but flammable gas (b.p. -161degreeC).

   

2-[(2r,4as,8s,8ar)-8-hydroxy-4a,8-dimethyl-1,2,3,4,5,8a-hexahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2r,4as,8s,8ar)-8-hydroxy-4a,8-dimethyl-1,2,3,4,5,8a-hexahydronaphthalen-2-yl]prop-2-enoic acid

C15H22O3 (250.1569)


   

2-(7,8-dihydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl)prop-2-enoic acid

2-(7,8-dihydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl)prop-2-enoic acid

C15H24O4 (268.1675)


   

2-(7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl)prop-2-enoic acid

2-(7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl)prop-2-enoic acid

C15H22O3 (250.1569)


   

1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl 2-methylbutanoate

1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl 2-methylbutanoate

C20H30O5 (350.2093)


   

(3ar,4ar,5r,7ar,9ar)-5-hydroxy-5-methyl-3,8-dimethylidene-octahydroazuleno[6,5-b]furan-2-one

(3ar,4ar,5r,7ar,9ar)-5-hydroxy-5-methyl-3,8-dimethylidene-octahydroazuleno[6,5-b]furan-2-one

C15H20O3 (248.1412)


   

(3s,3ar,4ar,5r,7as,9as)-5-hydroxy-3,5-dimethyl-8-methylidene-octahydro-3h-azuleno[6,5-b]furan-2-one

(3s,3ar,4ar,5r,7as,9as)-5-hydroxy-3,5-dimethyl-8-methylidene-octahydro-3h-azuleno[6,5-b]furan-2-one

C15H22O3 (250.1569)


   

2-(8-hydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl)prop-2-enoic acid

2-(8-hydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl)prop-2-enoic acid

C15H24O3 (252.1725)


   

2-(6-hydroxy-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl)prop-2-enoic acid

2-(6-hydroxy-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl)prop-2-enoic acid

C15H22O3 (250.1569)


   

(1r,3r,7e)-3,7-dimethyl-14,16-dioxatricyclo[8.6.0.0¹¹,¹⁵]hexadeca-7,11(15)-dien-6-one

(1r,3r,7e)-3,7-dimethyl-14,16-dioxatricyclo[8.6.0.0¹¹,¹⁵]hexadeca-7,11(15)-dien-6-one

C16H22O3 (262.1569)


   

(2s,3s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

(2s,3s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

C18H16O8 (360.0845)


   

(3as,5ar)-1-[(4e)-5,6-dimethylhept-4-en-2-yl]-3a,3b,6,6,9a-pentamethyl-2h,3h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

(3as,5ar)-1-[(4e)-5,6-dimethylhept-4-en-2-yl]-3a,3b,6,6,9a-pentamethyl-2h,3h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

C33H54O2 (482.4124)


   

5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

C15H20O3 (248.1412)


   

(3as,4s,6s,10r,11s,11ar)-4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 2-methylpropanoate

(3as,4s,6s,10r,11s,11ar)-4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 2-methylpropanoate

C19H28O7 (368.1835)


   

methyl 2-(6-hydroxy-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl)prop-2-enoate

methyl 2-(6-hydroxy-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl)prop-2-enoate

C16H24O3 (264.1725)


   

(1r,3s,4s,5r,7r)-5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

(1r,3s,4s,5r,7r)-5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

C15H20O3 (248.1412)


   

2-[(2r,4as,7r,8s,8ar)-7,8-dihydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2r,4as,7r,8s,8ar)-7,8-dihydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl]prop-2-enoic acid

C15H24O4 (268.1675)


   

2-(4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl)prop-2-enoic acid

2-(4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl)prop-2-enoic acid

C15H22O2 (234.162)


   

2-[(3s,3ar,5r,7as)-3a-acetyl-3-hydroxy-7a-methyl-hexahydro-1h-inden-5-yl]prop-2-enoic acid

2-[(3s,3ar,5r,7as)-3a-acetyl-3-hydroxy-7a-methyl-hexahydro-1h-inden-5-yl]prop-2-enoic acid

C15H22O4 (266.1518)


   

(3s,4as,6ar,6bs,8as,12s,12as,12br,14as,14bs)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl acetate

(3s,4as,6ar,6bs,8as,12s,12as,12br,14as,14bs)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl acetate

C32H52O2 (468.3967)


   

(4s)-5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

(4s)-5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

C15H20O3 (248.1412)


   

2-[(1ar,3as,6s,7ar,7bs)-3a,7b-dimethyl-octahydronaphtho[1,2-b]oxiren-6-yl]prop-2-enoic acid

2-[(1ar,3as,6s,7ar,7bs)-3a,7b-dimethyl-octahydronaphtho[1,2-b]oxiren-6-yl]prop-2-enoic acid

C15H22O3 (250.1569)


   

6,10-dimethyl-3-methylidene-3ah,4h,8h,9h,10h,11h,11ah-cyclodeca[b]furan-2,7-dione

6,10-dimethyl-3-methylidene-3ah,4h,8h,9h,10h,11h,11ah-cyclodeca[b]furan-2,7-dione

C15H20O3 (248.1412)


   

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

C18H16O7 (344.0896)


   

1-(5-hydroxy-6-methylhepta-1,6-dien-2-yl)-3a,3b,9a-trimethyl-tetradecahydrocyclopenta[a]phenanthren-7-yl acetate

1-(5-hydroxy-6-methylhepta-1,6-dien-2-yl)-3a,3b,9a-trimethyl-tetradecahydrocyclopenta[a]phenanthren-7-yl acetate

C30H48O3 (456.3603)


   

(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-2,3-dihydro-1-benzopyran-4-one

(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-2,3-dihydro-1-benzopyran-4-one

C16H14O7 (318.0739)


   

(2s)-1-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-1-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

C49H86O15 (914.5966)


   

(1r,2s,3r,7r,9r,10s)-1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl 2-methylpropanoate

(1r,2s,3r,7r,9r,10s)-1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl 2-methylpropanoate

C19H28O5 (336.1937)


   

(3ar,4ar,5r,7ar,9as)-5-hydroxy-5-methyl-3,8-dimethylidene-octahydroazuleno[6,5-b]furan-2-one

(3ar,4ar,5r,7ar,9as)-5-hydroxy-5-methyl-3,8-dimethylidene-octahydroazuleno[6,5-b]furan-2-one

C15H20O3 (248.1412)


   

3,3'-di-o-methylquercetin

3,3'-di-o-methylquercetin

C17H14O7 (330.0739)


   

(3as,10r,11as)-6,10-dimethyl-3-methylidene-3ah,4h,8h,9h,10h,11h,11ah-cyclodeca[b]furan-2,7-dione

(3as,10r,11as)-6,10-dimethyl-3-methylidene-3ah,4h,8h,9h,10h,11h,11ah-cyclodeca[b]furan-2,7-dione

C15H20O3 (248.1412)


   

3,7-dimethylocta-2,6-dien-1-yl 3-methylbutanoate

3,7-dimethylocta-2,6-dien-1-yl 3-methylbutanoate

C15H26O2 (238.1933)


   

2-{3a,7b-dimethyl-octahydronaphtho[1,2-b]oxiren-6-yl}prop-2-enoic acid

2-{3a,7b-dimethyl-octahydronaphtho[1,2-b]oxiren-6-yl}prop-2-enoic acid

C15H22O3 (250.1569)


   

2-(4a,8-dimethyl-6-oxo-1,2,3,4,5,8a-hexahydronaphthalen-2-yl)prop-2-enoic acid

2-(4a,8-dimethyl-6-oxo-1,2,3,4,5,8a-hexahydronaphthalen-2-yl)prop-2-enoic acid

C15H20O3 (248.1412)


   

2-[(8ar)-2,4a-dimethyl-8-methylidene-hexahydro-1h-naphthalen-2-yl]prop-2-enoic acid

2-[(8ar)-2,4a-dimethyl-8-methylidene-hexahydro-1h-naphthalen-2-yl]prop-2-enoic acid

C16H24O2 (248.1776)


   

2-[(2r,4as,6r,8ar)-6-hydroxy-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl]prop-2-enoic acid

2-[(2r,4as,6r,8ar)-6-hydroxy-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl]prop-2-enoic acid

C15H22O3 (250.1569)


   

(2r)-1-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2r)-1-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

C49H86O15 (914.5966)


   

10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl propanoate

10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl propanoate

C18H30O3 (294.2195)


   

(3as,4s,6s,10r,11s,11ar)-4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl (2z)-2-methylbut-2-enoate

(3as,4s,6s,10r,11s,11ar)-4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl (2z)-2-methylbut-2-enoate

C20H28O7 (380.1835)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.0955)


   

(1s,3r,5r,7r)-5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

(1s,3r,5r,7r)-5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

C15H20O3 (248.1412)


   

2-[(4ar,8r,8ar)-8-hydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl]prop-2-enoic acid

2-[(4ar,8r,8ar)-8-hydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl]prop-2-enoic acid

C15H24O3 (252.1725)


   

2-(3a-acetyl-3-hydroxy-7a-methyl-hexahydro-1h-inden-5-yl)prop-2-enoic acid

2-(3a-acetyl-3-hydroxy-7a-methyl-hexahydro-1h-inden-5-yl)prop-2-enoic acid

C15H22O4 (266.1518)


   

2-[(2r,4as,8ar)-4a,8-dimethyl-6-oxo-1,2,3,4,5,8a-hexahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2r,4as,8ar)-4a,8-dimethyl-6-oxo-1,2,3,4,5,8a-hexahydronaphthalen-2-yl]prop-2-enoic acid

C15H20O3 (248.1412)


   

(3as,10s,11as)-6,10-dimethyl-3-methylidene-3ah,4h,8h,9h,10h,11h,11ah-cyclodeca[b]furan-2,7-dione

(3as,10s,11as)-6,10-dimethyl-3-methylidene-3ah,4h,8h,9h,10h,11h,11ah-cyclodeca[b]furan-2,7-dione

C15H20O3 (248.1412)


   

4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 2-methylbut-2-enoate

4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 2-methylbut-2-enoate

C20H28O7 (380.1835)


   

(4s,6e,10s)-10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl (2r)-2-methylbutanoate

(4s,6e,10s)-10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl (2r)-2-methylbutanoate

C20H34O3 (322.2508)


   

(6ar,6br,8ar,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-ol

(6ar,6br,8ar,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-ol

C30H50O (426.3861)


   

dihydroquercetin 3-acetate

dihydroquercetin 3-acetate

C17H14O8 (346.0689)


   

(3as,4s,6s,10r,11s,11ar)-4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl (2r)-2-methylbutanoate

(3as,4s,6s,10r,11s,11ar)-4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl (2r)-2-methylbutanoate

C20H30O7 (382.1991)


   

2-[(2r,4as,6r,8ar)-4a,8-dimethyl-6-[(2-methylpropanoyl)oxy]-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl]prop-2-enoic acid

2-[(2r,4as,6r,8ar)-4a,8-dimethyl-6-[(2-methylpropanoyl)oxy]-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl]prop-2-enoic acid

C19H28O4 (320.1987)


   

2-{4a,8-dimethyl-6-[(2-methylpropanoyl)oxy]-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl}prop-2-enoic acid

2-{4a,8-dimethyl-6-[(2-methylpropanoyl)oxy]-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl}prop-2-enoic acid

C19H28O4 (320.1987)


   

(4ar,6ar,6br,8ar,12as,12bs,14as,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-yl acetate

(4ar,6ar,6br,8ar,12as,12bs,14as,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 3-methylpent-2-enoate

4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 3-methylpent-2-enoate

C21H30O7 (394.1991)


   

(4s,6e,10s)-10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl 2-methylpropanoate

(4s,6e,10s)-10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl 2-methylpropanoate

C19H32O3 (308.2351)


   

(2r,3r,4s,5s,6s)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6s)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

(2s,3r)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

(2s,3r)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

C18H16O7 (344.0896)


   

(2s,3r)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

(2s,3r)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

C17H14O8 (346.0689)


   

6-(3-hydroxybutyl)-7-methyl-3-methylidene-3ah,4h,7h,8h,8ah-cyclohepta[b]furan-2-one

6-(3-hydroxybutyl)-7-methyl-3-methylidene-3ah,4h,7h,8h,8ah-cyclohepta[b]furan-2-one

C15H22O3 (250.1569)


   

(2s,3r)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

(2s,3r)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

C18H16O8 (360.0845)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

(6e,11e)-3,7,13-trimethyltetradeca-1,6,11,13-tetraen-3-ol

(6e,11e)-3,7,13-trimethyltetradeca-1,6,11,13-tetraen-3-ol

C17H28O (248.214)


   

(3as,4s,6s,10r,11s,11ar)-4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl (2e)-3-methylpent-2-enoate

(3as,4s,6s,10r,11s,11ar)-4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl (2e)-3-methylpent-2-enoate

C21H30O7 (394.1991)


   

[(2r)-2-{4-methyl-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl]methyl 2-methylpropanoate

[(2r)-2-{4-methyl-2-[(2-methylpropanoyl)oxy]phenyl}oxiran-2-yl]methyl 2-methylpropanoate

C18H24O5 (320.1624)


   

10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl 2-methylbutanoate

10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl 2-methylbutanoate

C20H34O3 (322.2508)


   

(4-isopropyl-3-methoxyphenyl)methyl 3-methylbutanoate

(4-isopropyl-3-methoxyphenyl)methyl 3-methylbutanoate

C16H24O3 (264.1725)


   

3,4a,8-trimethyl-octahydro-3h-azuleno[6,5-b]furan-2,5-dione

3,4a,8-trimethyl-octahydro-3h-azuleno[6,5-b]furan-2,5-dione

C15H22O3 (250.1569)


   

2-[(4ar)-4a,8-dimethyl-2,3,4,5,6,7-hexahydro-1h-naphthalen-2-yl]prop-2-enoic acid

2-[(4ar)-4a,8-dimethyl-2,3,4,5,6,7-hexahydro-1h-naphthalen-2-yl]prop-2-enoic acid

C15H22O2 (234.162)


   

2-[(2s,4as,7r,8ar)-7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2s,4as,7r,8ar)-7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]prop-2-enoic acid

C15H22O3 (250.1569)


   

10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl 2-methylpropanoate

10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl 2-methylpropanoate

C19H32O3 (308.2351)


   

(3ar,7s,8as)-7-methyl-3-methylidene-6-(3-oxobutyl)-3ah,4h,7h,8h,8ah-cyclohepta[b]furan-2-one

(3ar,7s,8as)-7-methyl-3-methylidene-6-(3-oxobutyl)-3ah,4h,7h,8h,8ah-cyclohepta[b]furan-2-one

C15H20O3 (248.1412)


   

1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl 3-methylbutanoate

1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl 3-methylbutanoate

C20H30O5 (350.2093)


   

1-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

1-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

C49H86O15 (914.5966)


   

2-[(2r,4as,7r,8ar)-7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2r,4as,7r,8ar)-7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]prop-2-enoic acid

C15H22O3 (250.1569)


   

(2r,3r)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

(2r,3r)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

C18H16O8 (360.0845)


   

(3ar,4ar,8ar,9ar)-8a-methyl-3,8-dimethylidene-2-oxo-hexahydro-3ah-naphtho[2,3-b]furan-4a-yl acetate

(3ar,4ar,8ar,9ar)-8a-methyl-3,8-dimethylidene-2-oxo-hexahydro-3ah-naphtho[2,3-b]furan-4a-yl acetate

C17H22O4 (290.1518)


   

(4-isopropyl-3-methoxyphenyl)methyl 2-methylpropanoate

(4-isopropyl-3-methoxyphenyl)methyl 2-methylpropanoate

C15H22O3 (250.1569)


   

(1s,3ar,3br,5as,7s,9as,9br,11ar)-3a,3b,9a-trimethyl-1-(6-methylhepta-1,5-dien-2-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl acetate

(1s,3ar,3br,5as,7s,9as,9br,11ar)-3a,3b,9a-trimethyl-1-(6-methylhepta-1,5-dien-2-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl acetate

C30H48O2 (440.3654)


   

(3as,4s,6s,10r,11s,11ar)-4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 3-methylbutanoate

(3as,4s,6s,10r,11s,11ar)-4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 3-methylbutanoate

C20H30O7 (382.1991)


   

(4s,6e,10s)-10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl propanoate

(4s,6e,10s)-10-hydroxy-2,6,10-trimethyldodeca-2,6,11-trien-4-yl propanoate

C18H30O3 (294.2195)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

C17H14O8 (346.0689)


   

(1r,2s,3r,7r,9r,10s)-1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl 3-methylbutanoate

(1r,2s,3r,7r,9r,10s)-1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl 3-methylbutanoate

C20H30O5 (350.2093)


   

2-[(3r,3ar,5r,7as)-3a-acetyl-3-hydroxy-7a-methyl-hexahydro-1h-inden-5-yl]prop-2-enoic acid

2-[(3r,3ar,5r,7as)-3a-acetyl-3-hydroxy-7a-methyl-hexahydro-1h-inden-5-yl]prop-2-enoic acid

C15H22O4 (266.1518)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

5-hydroxy-5-methyl-3,8-dimethylidene-octahydroazuleno[6,5-b]furan-2-one

5-hydroxy-5-methyl-3,8-dimethylidene-octahydroazuleno[6,5-b]furan-2-one

C15H20O3 (248.1412)


   

(2r,3r)-3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-2,3-dihydro-1-benzopyran-4-one

(2r,3r)-3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-2,3-dihydro-1-benzopyran-4-one

C16H14O6 (302.079)


   

(4ar,6ar,6br,8as,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-ol

(4ar,6ar,6br,8as,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.3861)


   

(2s,3r)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

(2s,3r)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

C17H14O7 (330.0739)


   

1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl 2-methylpropanoate

1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl 2-methylpropanoate

C19H28O5 (336.1937)


   

(3s,3ar,4as,7as,8s,9ar)-3,4a,8-trimethyl-octahydro-3h-azuleno[6,5-b]furan-2,5-dione

(3s,3ar,4as,7as,8s,9ar)-3,4a,8-trimethyl-octahydro-3h-azuleno[6,5-b]furan-2,5-dione

C15H22O3 (250.1569)


   

4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 2-methylbutanoate

4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 2-methylbutanoate

C20H30O7 (382.1991)


   

4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 2-methylpropanoate

4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 2-methylpropanoate

C19H28O7 (368.1835)


   

2-[(2r,4ar,8ar)-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl]prop-2-enoic acid

2-[(2r,4ar,8ar)-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl]prop-2-enoic acid

C15H22O2 (234.162)


   

methyl 2-[(2r,4as,7r,8ar)-7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]prop-2-enoate

methyl 2-[(2r,4as,7r,8ar)-7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]prop-2-enoate

C16H24O3 (264.1725)


   

(1r,2s,3r,7r,9r,10s)-1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl (2r)-2-methylbutanoate

(1r,2s,3r,7r,9r,10s)-1,10-dimethyl-6-methylidene-5-oxo-4,14-dioxatricyclo[7.4.1.0³,⁷]tetradecan-2-yl (2r)-2-methylbutanoate

C20H30O5 (350.2093)


   

(3ar,7s,8ar)-6-[(3s)-3-hydroxybutyl]-7-methyl-3-methylidene-3ah,4h,7h,8h,8ah-cyclohepta[b]furan-2-one

(3ar,7s,8ar)-6-[(3s)-3-hydroxybutyl]-7-methyl-3-methylidene-3ah,4h,7h,8h,8ah-cyclohepta[b]furan-2-one

C15H22O3 (250.1569)


   

3a,3b,9a-trimethyl-1-(6-methylhepta-1,5-dien-2-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl acetate

3a,3b,9a-trimethyl-1-(6-methylhepta-1,5-dien-2-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl acetate

C30H48O2 (440.3654)


   

(3r,4r,4as,6as,6br,8ar,12ar,12bs,14as,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

(3r,4r,4as,6as,6br,8ar,12ar,12bs,14as,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

C30H52O (428.4018)


   

2-(8-hydroxy-4a,8-dimethyl-1,2,3,4,5,8a-hexahydronaphthalen-2-yl)prop-2-enoic acid

2-(8-hydroxy-4a,8-dimethyl-1,2,3,4,5,8a-hexahydronaphthalen-2-yl)prop-2-enoic acid

C15H22O3 (250.1569)


   

2-[(2r,4ar,8r,8ar)-8-hydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2r,4ar,8r,8ar)-8-hydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl]prop-2-enoic acid

C15H24O3 (252.1725)


   

4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 3-methylbutanoate

4,10-dihydroxy-6,10-dimethyl-3-methylidene-2,5-dioxo-octahydrocyclodeca[b]furan-11-yl 3-methylbutanoate

C20H30O7 (382.1991)


   

5-hydroxy-3,5-dimethyl-8-methylidene-octahydro-3h-azuleno[6,5-b]furan-2-one

5-hydroxy-3,5-dimethyl-8-methylidene-octahydro-3h-azuleno[6,5-b]furan-2-one

C15H22O3 (250.1569)


   

(1s,3ar,3br,5as,7s,9as,9br,11ar)-1-[(5r)-5-hydroxy-6-methylhepta-1,6-dien-2-yl]-3a,3b,9a-trimethyl-tetradecahydrocyclopenta[a]phenanthren-7-yl acetate

(1s,3ar,3br,5as,7s,9as,9br,11ar)-1-[(5r)-5-hydroxy-6-methylhepta-1,6-dien-2-yl]-3a,3b,9a-trimethyl-tetradecahydrocyclopenta[a]phenanthren-7-yl acetate

C30H48O3 (456.3603)


   

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-2,3-dihydro-1-benzopyran-4-one

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-2,3-dihydro-1-benzopyran-4-one

C16H14O7 (318.0739)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

C18H16O8 (360.0845)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-3-yl acetate

C17H14O7 (330.0739)


   

methyl 2-[(2r,4as,6r,8ar)-6-hydroxy-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl]prop-2-enoate

methyl 2-[(2r,4as,6r,8ar)-6-hydroxy-4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-2-yl]prop-2-enoate

C16H24O3 (264.1725)


   

methyl 2-(7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl)prop-2-enoate

methyl 2-(7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl)prop-2-enoate

C16H24O3 (264.1725)