NCBI Taxonomy: 43874
Nitraria (ncbi_taxid: 43874)
found 95 associated metabolites at genus taxonomy rank level.
Ancestor: Nitrariaceae
Child Taxonomies: Nitraria retusa, Nitraria sibirica, Nitraria praevisa, Nitraria schoberi, Nitraria komarovii, Nitraria tangutorum, Nitraria roborowskii, Nitraria sphaerocarpa, Nitraria billardierei, unclassified Nitraria
Tryptamine
Tryptamine, also known as TrpN, is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine. Both Clostridium sp. and Ruminococcus sp. have been found to convert tryptophan into tryptamine (PMID: 30120222). Tryptamine is a monoamine compound that is a common precursor molecule to many hormones and neurotransmitters. Biosynthesis generally proceeds from the amino acid tryptophan, with tryptamine acting as a precursor for other compounds. Substitutions to the tryptamine molecule give rise to a group of compounds collectively known as tryptamines. The most well-known tryptamines are serotonin, an important neurotransmitter, and melatonin, a hormone involved in regulating the sleep-wake cycle. Tryptamine has been detected, but not quantified in, several different foods, such as onion-family vegetables, acerola, Japanese walnuts, custard apples, and green zucchinis. This could make tryptamine a potential biomarker for the consumption of these foods. Tryptamine is an aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an aminoalkylindole, an indole alkaloid, an aralkylamino compound and a member of tryptamines. It is a conjugate base of a tryptaminium. Tryptamine is a natural product found in Mus musculus, Prosopis glandulosa, and other organisms with data available. Occurs widely in plants, especies Lens esculenta (lentil) and the fungi Coprinus micaceus (glistening ink cap) An aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. KEIO_ID T031
Isorhamnetin
3,4,5,7-tetrahydroxy-3-methoxyflavone is a tetrahydroxyflavone having the 4-hydroxy groups located at the 3- 4- 5- and 7-positions as well as a methoxy group at the 2-position. It has a role as a metabolite and an antimicrobial agent. It is a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3-methoxyflavon-7-olate. 3-O-Methylquercetin is a natural product found in Lotus ucrainicus, Wollastonia biflora, and other organisms with data available. See also: Tobacco Leaf (part of). 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1]. 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1].
Serotonin
Serotonin or 5-hydroxytryptamine (5-HT) is a molecule that belongs to the class of compounds known as indoleamines. An indoleamine consists of an indole ring that bears an amino group or an alkyl amino group attached to the indole ring. Serotonin has an aminoethyl at position 2 and a hydroxyl group at position 5 of the indole ring. Serotonin exists in all living organisms, ranging from bacteria to plants to humans. In mammals, serotonin functions as a monoamine neurotransmitter, a biochemical messenger and regulator. It is synthesized from the essential amino acid L-Tryptophan. Approximately 90\\\\% of the human bodys total serotonin is located in the enterochromaffin cells in the GI tract, where it regulates intestinal movements. About 8\\\\% is found in platelets and 1–2\\\\% in the CNS. Serotonin in the nervous system acts as a local transmitter at synapses, and as a paracrine or hormonal modulator of circuits upon diffusion, allowing a wide variety of "state-dependent" behavioral responses to different stimuli. Serotonin is widely distributed in the nervous system of vertebrates and invertebrates and some of its behavioral effects have been preserved along evolution. Such is the case of aggressive behavior and rhythmic motor patterns, including those responsible for feeding. In vertebrates, which display a wider and much more sophisticated behavioral repertoire, serotonin also modulates sleep, the arousal state, sexual behavior, and others. Deficiencies of the serotonergic system causes disorders such as depression, obsessive-compulsive disorder, phobias, posttraumatic stress disorder, epilepsy, and generalized anxiety disorder. Serotonin has three different modes of action in the nervous system: as transmitter, acting locally at synaptic boutons; upon diffusion at a distance from its release sites, producing paracrine (also called volume) effects, and by circulating in the blood stream, producing hormonal effects. The three modes can affect a single neuronal circuit. (PMID: 16047543). Serotonin is also a microbial metabolite that can be found in the feces and urine of mammals. Urinary serotonin is produced by Candida, Streptococcus, Escherichia, and Enterococcus (PMID: 24621061). In plants, serotonin was first found and reported in a legume called Mucuna pruriens. The greatest concentration of serotonin in plants has been found in walnuts and hickory. In pineapples, banana, kiwi fruit, plums and tomatoes the concentration of serotonin is around 3 to 30 mg/kg. Isolated from bananas and other fruitsand is also from cotton (Gossypium hirsutum) [DFC]. Serotonin is found in many foods, some of which are common pea, eggplant, swiss chard, and dill. Serotonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-67-9 (retrieved 2024-07-01) (CAS RN: 50-67-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Isorhamnetin
Isorhamnetin is the methylated metabolite of quercetin. Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. Isorhamnetin prevents endothelial cell injuries from oxidized LDL via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin. Isorhamnetin prevents endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II. Isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells. (PMID: 15493462, 17368593, 17374653, 16963021). Isorhamnetin is a monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, an anticoagulant and a metabolite. It is a 7-hydroxyflavonol, a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of an isorhamnetin(1-). Isorhamnetin is a natural product found in Lotus ucrainicus, Strychnos pseudoquina, and other organisms with data available. Isorhamnetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Peumus boldus leaf (part of). Widespread flavonol found especially in bee pollen, chives, corn poppy leaves, garden cress, fennel, hartwort, red onions, pears, dillweed, parsley and tarragon. Isorhamnetin is found in many foods, some of which are italian sweet red pepper, carrot, yellow wax bean, and lemon balm. A monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. Acquisition and generation of the data is financially supported in part by CREST/JST. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.
Vasicine
C11H12N2O (188.09495819999998)
Annotation level-1 (±)-Vasicine is the racemate of Vasicine. Vasicine (Peganine) significantly inhibits H+-K+-ATPase activity?in vitro?with an IC50 of 73.47?μg/mL. Anti-ulcer activity. Vasicine shows significant anti-secretory, antioxidant and?cytoprotective?effect[1].
Vasicine
C11H12N2O (188.09495819999998)
1,2,3,9-Tetrahydropyrrolo[2,1-b]quinazolin-3-ol is a member of quinazolines. (±)-Vasicine is the racemate of Vasicine. Vasicine (Peganine) significantly inhibits H+-K+-ATPase activity?in vitro?with an IC50 of 73.47?μg/mL. Anti-ulcer activity. Vasicine shows significant anti-secretory, antioxidant and?cytoprotective?effect[1].
Keioside
Isorhamnetin 3-rutinoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Isorhamnetin 3-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isorhamnetin 3-rutinoside can be found in common bean, ginkgo nuts, sea-buckthornberry, and swede, which makes isorhamnetin 3-rutinoside a potential biomarker for the consumption of these food products. Isorhamnetin 3-robinobioside is found in pear. Isorhamnetin 3-robinobioside is isolated from Pyrus communis (pear). Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1]. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1].
Serotonin
C10H12N2O (176.09495819999998)
D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists
Isorhamnetin 3-robinobioside
Isorhamnetin
Glucoside present in the leaves of Peumus boldus (boldo). Isorhamnetin 3-dirhamnoside is found in fruits. Annotation level-1 Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.
4-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)butan-1-amine
Deoxypeganin
Deoxypeganine is a member of quinazolines. Deoxypeganine is a natural product found in Nitraria komarovii, Peganum harmala, and Peganum nigellastrum with data available.
Pegenone
Deoxyvasicinone is a member of quinazolines. Deoxyvasicinone is a natural product found in Justicia adhatoda, Isatis tinctoria, and other organisms with data available.
peganine
C11H12N2O (188.09495819999998)
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053
Serotonin
C10H12N2O (176.09495819999998)
D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists A primary amino compound that is the 5-hydroxy derivative of tryptamine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QZAYGJVTTNCVMB_STSL_0135_Serotonin_8000fmol_180506_S2_LC02_MS02_147; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053
Keioside
5-HTA
C10H12N2O (176.09495819999998)
D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists
(1s,14r,19r)-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicosa-2(10),4,6,8,17-pentaen-17-ylmethanol
C20H24N2O (308.18885339999997)
4-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl}quinoline
3-(3-{9h-pyrido[3,4-b]indol-1-yl}phenyl)prop-2-en-1-amine
(2r,16s,21r)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-3(11),5,7,9-tetraene
6-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl}quinoline
4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10,12,17,19-octaene
(1s,15r,16r,21s)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10,12-hexaene
(3r)-3-hydroxy-1h,2h,3h-pyrrolo[2,1-b]quinazolin-9-one
C11H10N2O2 (202.07422400000002)
(2z)-3-(3-{9h-pyrido[3,4-b]indol-1-yl}phenyl)prop-2-en-1-amine
(1s,15s,20s)-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,18-pentaen-19-ylmethanol
C20H24N2O (308.18885339999997)
5-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl}quinoline
(1s,2r,7s,12r,15r)-14-oxa-6,8-diazapentacyclo[10.6.0.0²,⁷.0²,¹⁵.0⁸,¹³]octadecane
C15H24N2O (248.18885339999997)
3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicosa-2(10),4,6,8,17-pentaen-17-ylmethanol
C20H24N2O (308.18885339999997)
4-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl}butan-1-amine
20-(prop-2-en-1-yl)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10,12-hexaene
(1s,6s)-6',7'-dihydro-5'h-spiro[cyclohexane-1,8'-imidazo[1,2-a]pyridin]-6-ol
5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[(3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one
(1r,6r)-6',7'-dihydro-5'h-spiro[cyclohexane-1,8'-imidazo[1,2-a]pyridin]-6-ol
(2s,9s,13s,17r)-1,7-diazatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadecane
(1s,15r,16r,21s)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10-pentaene
4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10,20-hexaene
1,7-diazatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadec-15-ene
3-{[(2s,3s,4r,5s,6s)-6-({[(2r,3r,4r,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)chromen-4-one
6',7'-dihydro-5'h-spiro[cyclohexane-1,8'-imidazo[1,2-a]pyridin]-6-ol
(1s,2s,15r,16r,21s)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-3(11),5,7,9-tetraene
6-[(1r)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl]quinoline
1-[(1r)-1-propyl-1h,3h,4h,9h-pyrido[3,4-b]indol-2-yl]ethanone
(1r,14r,19r)-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicosa-2(10),4,6,8,17-pentaen-17-ylmethanol
C20H24N2O (308.18885339999997)
3-{[(2s,5r)-6-({[(2r,4r,5r)-3,4-dihydroxy-6-methyl-5-{[(2s,4s,5r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)chromen-4-one
(1r,15s,16s,21s)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10,12,17,19-octaene
2-[(1r)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl]quinoline
(1s,2r,15r,16r,21s)-4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-3(11),5,7,9-tetraene
2-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl}quinoline
1-{1-propyl-1h,3h,4h,9h-pyrido[3,4-b]indol-2-yl}ethanone
4,14,20-triazahexacyclo[13.6.2.0²,¹⁴.0³,¹¹.0⁵,¹⁰.0¹⁶,²¹]tricosa-2,4,6,8,10,12-hexaen-20-ol
5-[(1r)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl]quinoline
4-[(1r)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl]quinoline
(2s,9s,13s,17r)-1,7-diazatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadec-15-ene
3-{[(2s,3s,4r,5r,6s)-6-({[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-methyl-5-{[(2s,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)chromen-4-one
8-methyl-7-oxa-9-azatricyclo[7.3.1.0¹,⁶]tridecan-9-ium-9-olate
C12H21NO2 (211.15722060000002)