Flavanone

2-phenyl-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O2 (224.0837)


Flavonoids (or bioflavonoids) (from the Latin word flavus meaning yellow), also collectively known as Vitamin P and citrin, are a class of plant secondary metabolites or yellow pigments having a structure similar to that of flavones. Flavonoids is found in many foods, some of which are blackcurrant, wild celery, rose hip, and turmeric. Flavanone is a naturally occurring flavone. Flavanone has inhibitory activity for human estrogen synthetase (aromatase)[1]. Flavanone is a naturally occurring flavone. Flavanone has inhibitory activity for human estrogen synthetase (aromatase)[1].

   

Isorhamnetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-methoxy-

C16H12O7 (316.0583)


3,4,5,7-tetrahydroxy-3-methoxyflavone is a tetrahydroxyflavone having the 4-hydroxy groups located at the 3- 4- 5- and 7-positions as well as a methoxy group at the 2-position. It has a role as a metabolite and an antimicrobial agent. It is a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3-methoxyflavon-7-olate. 3-O-Methylquercetin is a natural product found in Lotus ucrainicus, Wollastonia biflora, and other organisms with data available. See also: Tobacco Leaf (part of). 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1]. 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1].

   

chrysoplenol D

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-3,6,7-trimethoxy-

C18H16O8 (360.0845)


3,4,5-trihydroxy-3,6,7-trimethoxyflavone is a trimethoxyflavone that is the 3,6,7-trimethyl ether derivative of quercetagetin. It has a role as an antineoplastic agent and a metabolite. It is a trihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetagetin. Chrysosplenol D is a natural product found in Psiadia viscosa, Chrysosplenium oppositifolium, and other organisms with data available. See also: Vitex negundo fruit (part of). Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4]. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4].

   

Isorhamnetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-

C16H12O7 (316.0583)


Isorhamnetin is the methylated metabolite of quercetin. Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. Isorhamnetin prevents endothelial cell injuries from oxidized LDL via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin. Isorhamnetin prevents endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II. Isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells. (PMID: 15493462, 17368593, 17374653, 16963021). Isorhamnetin is a monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, an anticoagulant and a metabolite. It is a 7-hydroxyflavonol, a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of an isorhamnetin(1-). Isorhamnetin is a natural product found in Lotus ucrainicus, Strychnos pseudoquina, and other organisms with data available. Isorhamnetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Peumus boldus leaf (part of). Widespread flavonol found especially in bee pollen, chives, corn poppy leaves, garden cress, fennel, hartwort, red onions, pears, dillweed, parsley and tarragon. Isorhamnetin is found in many foods, some of which are italian sweet red pepper, carrot, yellow wax bean, and lemon balm. A monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. Acquisition and generation of the data is financially supported in part by CREST/JST. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.

   

3-O-Methylkaempferol

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

C16H12O6 (300.0634)


3-o-methylkaempferol, also known as 5,7,4-trihydroxy-3-methoxyflavone or isokaempferide, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 3-o-methylkaempferol is considered to be a flavonoid lipid molecule. 3-o-methylkaempferol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-methylkaempferol can be found in common bean and coriander, which makes 3-o-methylkaempferol a potential biomarker for the consumption of these food products.

   

Santin

2- (4-Methoxyphenyl) -5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0896)


A trimethoxyflavone that is flavone substituted by methoxy groups at positions 3, 6 and 4 and hydroxy groups at positions 5 and 7 respectively.

   

Eupatoriopicrin

[(3aR,4R,6E,10E,11aR)-6,10-dimethyl-3-methylidene-2-oxo-3a,4,5,8,9,11a-hexahydrocyclodeca[b]furan-4-yl] (E)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

C20H26O6 (362.1729)


Eupatoriopicrin is a germacranolide. Eupatoriopicrin has been reported in Disynaphia multicrenulata, Perityle vaseyi

   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.1878)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Jaceidin

5,7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6-dimethoxy-4H-1-benzopyran-4-one, 9CI

C18H16O8 (360.0845)


Jaceidin is an ether and a member of flavonoids. Jaceidin is a natural product found in Centaurea bracteata, Pentanema britannicum, and other organisms with data available. Jaceidin is found in fruits. Jaceidin is found in buds of Prunus avium (wild cherry). Found in buds of Prunus avium (wild cherry)

   

6-Hydroxykaempferol 3,6-dimethylether

5,7-dihydroxy-2-(4-hydroxyphenyl)-3,6-dimethoxy-4H-chromen-4-one

C17H14O7 (330.0739)


6-hydroxykaempferol 3,6-dimethylether, also known as 4,5,7-trihydroxy-3,6-dimethoxyflavone, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-hydroxykaempferol 3,6-dimethylether is considered to be a flavonoid lipid molecule. 6-hydroxykaempferol 3,6-dimethylether is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-hydroxykaempferol 3,6-dimethylether can be found in sweet cherry, which makes 6-hydroxykaempferol 3,6-dimethylether a potential biomarker for the consumption of this food product.

   

Ermanin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.079)


3,4-dimethylkaempferol is a dimethoxyflavone that is kaempferol in which the hydroxy groups at position 3 and 4 have been replaced by methoxy groups. It is a component of bee glue and isolated from several plant species including Tanacetum microphyllum. It has a role as an anti-inflammatory agent, an antimycobacterial drug, an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a dihydroxyflavone and a dimethoxyflavone. It is functionally related to a kaempferol. Ermanin is a natural product found in Grindelia glutinosa, Grindelia hirsutula, and other organisms with data available. A dimethoxyflavone that is kaempferol in which the hydroxy groups at position 3 and 4 have been replaced by methoxy groups. It is a component of bee glue and isolated from several plant species including Tanacetum microphyllum.

   

Penduletin

5-Hydroxy-2- (4-hydroxyphenyl) -3,6,7-trimethoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0896)


   

Chrysosplenol D

2-(3,4-Dihydroxyphenyl)-5-hydroxy-3,6,7-trimethoxy-4H-1-benzopyran-4-one

C18H16O8 (360.0845)


Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4]. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4].

   

Bonanzin

2- (3,4-Dimethoxyphenyl) -5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C19H18O8 (374.1002)


   

Isorhamnetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)- (9CI)

C16H12O7 (316.0583)


Glucoside present in the leaves of Peumus boldus (boldo). Isorhamnetin 3-dirhamnoside is found in fruits. Annotation level-1 Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.

   

2-(2-Hydroxy-4-methylphenyl)propane-1,2,3-triol

2-(2-Hydroxy-4-methylphenyl)propane-1,2,3-triol

C10H14O4 (198.0892)


   

Isokaempferide

5,7,4-trihydroxy-3-methoxyflavone

C16H12O6 (300.0634)


   

Jaceidin

5,7,4-Trihydroxy-3,6,3-trimethoxyflavone

C18H16O8 (360.0845)


   

5-hydroxy-3,6,7-trimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

5-hydroxy-3,6,7-trimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

C19H18O7 (358.1052)


   

2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-chromen-4-one

2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-chromen-4-one

C19H18O8 (374.1002)


   

5,7-dihydroxy-3,6-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

5,7-dihydroxy-3,6-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

C18H16O7 (344.0896)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3,6-dimethoxy-4H-chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3,6-dimethoxy-4H-chromen-4-one

C17H14O7 (330.0739)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

C16H12O6 (300.0634)


   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

chrysoplenol D

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5-hydroxy-3,6,7-trimethoxy-

C18H16O8 (360.0845)


3,4,5-trihydroxy-3,6,7-trimethoxyflavone is a trimethoxyflavone that is the 3,6,7-trimethyl ether derivative of quercetagetin. It has a role as an antineoplastic agent and a metabolite. It is a trihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetagetin. Chrysosplenol D is a natural product found in Psiadia viscosa, Chrysosplenium oppositifolium, and other organisms with data available. See also: Vitex negundo fruit (part of). A trimethoxyflavone that is the 3,6,7-trimethyl ether derivative of quercetagetin. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4]. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4].

   

(2S)-Flavanone

(2S)-Flavanone

C15H12O2 (224.0837)


The (S)-enantiomer of flavanone.

   

eupatoriopicrin

eupatoriopicrin

C20H26O6 (362.1729)


   

(2r)-2-[4-methyl-2-(2-methylpropoxy)phenyl]-2-[(2-methylpropoxy)methyl]oxirane

(2r)-2-[4-methyl-2-(2-methylpropoxy)phenyl]-2-[(2-methylpropoxy)methyl]oxirane

C18H28O3 (292.2038)


   

2-(2-hydroxy-4-methylphenyl)propane-1,3-diol

2-(2-hydroxy-4-methylphenyl)propane-1,3-diol

C10H14O3 (182.0943)


   

(2r)-5-hydroxy-7-methoxy-2-(4-methoxyphenyl)-2,3-dihydro-1-benzopyran-4-one

(2r)-5-hydroxy-7-methoxy-2-(4-methoxyphenyl)-2,3-dihydro-1-benzopyran-4-one

C17H16O5 (300.0998)


   

[(2z,4ar,4br,8ar)-4b,8,8-trimethyl-3,4,4a,5,6,7,8a,9-octahydro-1h-phenanthren-2-ylidene]acetic acid

[(2z,4ar,4br,8ar)-4b,8,8-trimethyl-3,4,4a,5,6,7,8a,9-octahydro-1h-phenanthren-2-ylidene]acetic acid

C19H28O2 (288.2089)


   

(2s)-2,3-dihydroxy-2-(2-hydroxy-4-methylphenyl)propyl acetate

(2s)-2,3-dihydroxy-2-(2-hydroxy-4-methylphenyl)propyl acetate

C12H16O5 (240.0998)


   

[(2z,4ar,4br,8ar)-4b,8,8-trimethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-ylidene]acetic acid

[(2z,4ar,4br,8ar)-4b,8,8-trimethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-ylidene]acetic acid

C19H28O2 (288.2089)


   

8-hydroxy-3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-methylbut-2-enoate

8-hydroxy-3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-methylbut-2-enoate

C20H28O5 (348.1937)


   

(2s)-7-hydroxy-5-methoxy-2-(4-methoxyphenyl)-2,3-dihydro-1-benzopyran-4-one

(2s)-7-hydroxy-5-methoxy-2-(4-methoxyphenyl)-2,3-dihydro-1-benzopyran-4-one

C17H16O5 (300.0998)


   

3-({6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl}oxy)-2-(2-hydroxyethylidene)-3-oxopropyl 4-hydroxy-2-methylbut-2-enoate

3-({6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl}oxy)-2-(2-hydroxyethylidene)-3-oxopropyl 4-hydroxy-2-methylbut-2-enoate

C25H32O8 (460.2097)


   

(3s,3ar,4r,11ar)-3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

(3s,3ar,4r,11ar)-3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

C20H28O6 (364.1886)


   

(3ar,4r,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-4-hydroxy-2-{[(4-hydroxy-2-methylidenebutanoyl)oxy]methyl}but-2-enoate

(3ar,4r,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-4-hydroxy-2-{[(4-hydroxy-2-methylidenebutanoyl)oxy]methyl}but-2-enoate

C25H32O8 (460.2097)


   

(4b,8,8-trimethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-ylidene)acetic acid

(4b,8,8-trimethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-ylidene)acetic acid

C19H28O2 (288.2089)


   

4-methyl-2-(2-methylpropoxy)-1-[3-(2-methylpropoxy)prop-1-en-2-yl]benzene

4-methyl-2-(2-methylpropoxy)-1-[3-(2-methylpropoxy)prop-1-en-2-yl]benzene

C18H28O2 (276.2089)


   

(3ar,4r,8r,11ar)-8-hydroxy-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2r)-2-methylbutanoate

(3ar,4r,8r,11ar)-8-hydroxy-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2r)-2-methylbutanoate

C20H28O5 (348.1937)


   

(3ar,4r,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-4-hydroxy-2-({[(2e)-2-methylbut-2-enoyl]oxy}methyl)but-2-enoate

(3ar,4r,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-4-hydroxy-2-({[(2e)-2-methylbut-2-enoyl]oxy}methyl)but-2-enoate

C25H32O7 (444.2148)


   

(2e)-3-{[(3ar,4r,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl]oxy}-2-(2-hydroxyethylidene)-3-oxopropyl (2e)-4-hydroxy-2-methylbut-2-enoate

(2e)-3-{[(3ar,4r,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl]oxy}-2-(2-hydroxyethylidene)-3-oxopropyl (2e)-4-hydroxy-2-methylbut-2-enoate

C25H32O8 (460.2097)


   

(3s,3ar,4r,8r,11ar)-8-hydroxy-3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-2-methylbut-2-enoate

(3s,3ar,4r,8r,11ar)-8-hydroxy-3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-2-methylbut-2-enoate

C20H28O5 (348.1937)


   

2,3-dihydroxy-2-(2-hydroxy-4-methylphenyl)propyl acetate

2,3-dihydroxy-2-(2-hydroxy-4-methylphenyl)propyl acetate

C12H16O5 (240.0998)


   

(3ar,4r,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-4-hydroxy-2-({[(2e)-2-(hydroxymethyl)but-2-enoyl]oxy}methyl)but-2-enoate

(3ar,4r,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-4-hydroxy-2-({[(2e)-2-(hydroxymethyl)but-2-enoyl]oxy}methyl)but-2-enoate

C25H32O8 (460.2097)


   

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-{[(2-methylbut-2-enoyl)oxy]methyl}but-2-enoate

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-{[(2-methylbut-2-enoyl)oxy]methyl}but-2-enoate

C25H32O7 (444.2148)


   

8-hydroxy-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-methylbutanoate

8-hydroxy-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-methylbutanoate

C20H28O5 (348.1937)


   

(3ar,4r,8s,11ar)-8-hydroxy-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-2-methylbut-2-enoate

(3ar,4r,8s,11ar)-8-hydroxy-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-2-methylbut-2-enoate

C20H26O5 (346.178)


   

2-(2-hydroxyethylidene)-3-({9-methyl-3,6-dimethylidene-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl}oxy)-3-oxopropyl 4-hydroxy-2-methylbut-2-enoate

2-(2-hydroxyethylidene)-3-({9-methyl-3,6-dimethylidene-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl}oxy)-3-oxopropyl 4-hydroxy-2-methylbut-2-enoate

C25H30O8 (458.1941)


   

(3ar,4r,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-2-({[(3s)-3,4-dihydroxy-2-methylidenebutanoyl]oxy}methyl)-4-hydroxybut-2-enoate

(3ar,4r,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-2-({[(3s)-3,4-dihydroxy-2-methylidenebutanoyl]oxy}methyl)-4-hydroxybut-2-enoate

C25H32O9 (476.2046)


   

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-{[(4-hydroxy-2-methylidenebutanoyl)oxy]methyl}but-2-enoate

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-{[(4-hydroxy-2-methylidenebutanoyl)oxy]methyl}but-2-enoate

C25H32O8 (460.2097)


   

(2e)-3-{[(3ar,4r,6ar,9ar,9br)-9-methyl-3,6-dimethylidene-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl]oxy}-2-(2-hydroxyethylidene)-3-oxopropyl (2e)-4-hydroxy-2-methylbut-2-enoate

(2e)-3-{[(3ar,4r,6ar,9ar,9br)-9-methyl-3,6-dimethylidene-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl]oxy}-2-(2-hydroxyethylidene)-3-oxopropyl (2e)-4-hydroxy-2-methylbut-2-enoate

C25H30O8 (458.1941)


   

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-(hydroxymethyl)but-2-enoate

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-(hydroxymethyl)but-2-enoate

C20H26O6 (362.1729)


   

(4b,8,8-trimethyl-3,4,4a,5,6,7,8a,9-octahydro-1h-phenanthren-2-ylidene)acetic acid

(4b,8,8-trimethyl-3,4,4a,5,6,7,8a,9-octahydro-1h-phenanthren-2-ylidene)acetic acid

C19H28O2 (288.2089)


   

8-hydroxy-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-methylbut-2-enoate

8-hydroxy-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-methylbut-2-enoate

C20H26O5 (346.178)


   

[(2r)-2-[4-methyl-2-(2-methylpropoxy)phenyl]oxiran-2-yl]methyl acetate

[(2r)-2-[4-methyl-2-(2-methylpropoxy)phenyl]oxiran-2-yl]methyl acetate

C16H22O4 (278.1518)


   

{2-[4-methyl-2-(2-methylpropoxy)phenyl]oxiran-2-yl}methyl acetate

{2-[4-methyl-2-(2-methylpropoxy)phenyl]oxiran-2-yl}methyl acetate

C16H22O4 (278.1518)


   

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-({[2-(hydroxymethyl)but-2-enoyl]oxy}methyl)but-2-enoate

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-({[2-(hydroxymethyl)but-2-enoyl]oxy}methyl)but-2-enoate

C25H32O8 (460.2097)


   

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-{[(3,4-dihydroxy-2-methylidenebutanoyl)oxy]methyl}-4-hydroxybut-2-enoate

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-{[(3,4-dihydroxy-2-methylidenebutanoyl)oxy]methyl}-4-hydroxybut-2-enoate

C25H32O9 (476.2046)


   

3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-(hydroxymethyl)but-2-enoate

3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-(hydroxymethyl)but-2-enoate

C20H28O6 (364.1886)


   

(3ar,4r,8r,11ar)-8-hydroxy-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-2-methylbut-2-enoate

(3ar,4r,8r,11ar)-8-hydroxy-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2e)-2-methylbut-2-enoate

C20H26O5 (346.178)


   

naringenin 7,4'-dimethyl ether

naringenin 7,4'-dimethyl ether

C17H16O5 (300.0998)


   

(3as,11as)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-(hydroxymethyl)but-2-enoate

(3as,11as)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-hydroxy-2-(hydroxymethyl)but-2-enoate

C20H26O6 (362.1729)


   

2-[4-methyl-2-(2-methylpropoxy)phenyl]-2-[(2-methylpropoxy)methyl]oxirane

2-[4-methyl-2-(2-methylpropoxy)phenyl]-2-[(2-methylpropoxy)methyl]oxirane

C18H28O3 (292.2038)