NCBI Taxonomy: 403666
Zygophyllales (ncbi_taxid: 403666)
found 500 associated metabolites at order taxonomy rank level.
Ancestor: fabids
Child Taxonomies: Zygophyllaceae, Krameriaceae
Harman
Harman is an indole alkaloid fundamental parent with a structure of 9H-beta-carboline carrying a methyl substituent at C-1. It has been isolated from the bark of Sickingia rubra, Symplocus racemosa, Passiflora incarnata, Peganum harmala, Banisteriopsis caapi and Tribulus terrestris, as well as from tobacco smoke. It is a specific, reversible inhibitor of monoamine oxidase A. It has a role as an anti-HIV agent, a plant metabolite and an EC 1.4.3.4 (monoamine oxidase) inhibitor. It is an indole alkaloid, an indole alkaloid fundamental parent and a harmala alkaloid.
Harman is a natural product found in Ophiopogon, Strychnos johnsonii, and other organisms with data available.
An indole alkaloid fundamental parent with a structure of 9H-beta-carboline carrying a methyl substituent at C-1. It has been isolated from the bark of Sickingia rubra, Symplocus racemosa, Passiflora incarnata, Peganum harmala, Banisteriopsis caapi and Tribulus terrestris, as well as from tobacco smoke. It is a specific, reversible inhibitor of monoamine oxidase A.
Isolated from roots of Panax ginseng and Codonopsis lanceolata (todok). Struct. has now been shown to be identical with 1-Acetyl-b-carboline
Marmesin
Marmesin is a member of psoralens and a tertiary alcohol. 2-(2-Hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one is a natural product found in Zanthoxylum beecheyanum, Zanthoxylum arnottianum, and other organisms with data available. Nodakenetin is found in wild celery. Nodakenetin is a constituent of Angelica species Constituent of Angelica subspecies Nodakenetin is found in wild celery. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. (+)-Marmesin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13849-08-6 (retrieved 2024-09-04) (CAS RN: 13849-08-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Vanillic acid
Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
Vanillin
Vanillin, also known as vanillaldehyde or lioxin, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is used by the food industry as well as ethylvanillin. Vanillin exists in all living species, ranging from bacteria to humans. Vanillin is a sweet, chocolate, and creamy tasting compound. Vanillin is found, on average, in the highest concentration within a few different foods, such as corns, ryes, and sherries and in a lower concentration in beers, rums, and oats. Vanillin has also been detected, but not quantified, in several different foods, such as gooseberries, other bread, brazil nuts, shea tree, and ohelo berries. This could make vanillin a potential biomarker for the consumption of these foods. Vanillin is a potentially toxic compound. Synthetic vanillin, instead of natural Vanillin extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. Vanillin is the primary component of the extract of the Vanillin bean. Because of the scarcity and expense of natural Vanillin extract, there has long been interest in the synthetic preparation of its predominant component. Artificial Vanillin flavoring is a solution of pure vanillin, usually of synthetic origin. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Vanillin appears as white or very slightly yellow needles. Vanillin is a member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, a flavouring agent, an antioxidant and an anticonvulsant. It is a member of phenols, a monomethoxybenzene and a member of benzaldehydes. Vanillin is a natural product found in Ficus erecta var. beecheyana, Pandanus utilis, and other organisms with data available. Vanillin is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. It is used by the food industry as well as ethylvanillin.Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. (Wiki). Vanillin is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of vanilla (Vanilla subspecies) and many other plants, e.g. Peru balsam, clove bud oil. Widely used flavouring agent especies in cocoa products. obtained from spent wood-pulp liquors. Vanillin is found in many foods, some of which are pomes, elderberry, common cabbage, and dock. A member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; ML_ID 59 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.
Sucrose
Sucrose is a nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane (Saccharum officinarum), sugar beet (Beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is derived by crushing and extracting sugarcane with water or by extracting sugar beet with water, evaporating, and purifying with lime, carbon, and various liquids. Sucrose is also obtainable from sorghum. Sucrose occurs in low percentages in honey and maple syrup. Sucrose is used as a sweetener in foods and soft drinks, in the manufacture of syrups, in invert sugar, confectionery, preserves and jams, demulcent, pharmaceutical products, and caramel. Sucrose is also a chemical intermediate for detergents, emulsifying agents, and other sucrose derivatives. Sucrose is widespread in the seeds, leaves, fruits, flowers, and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynthesis. The annual world production of sucrose is in excess of 90 million tons mainly from the juice of sugar cane (20\\\%) and sugar beet (17\\\%). In addition to its use as a sweetener, sucrose is used in food products as a preservative, antioxidant, moisture control agent, stabilizer, and thickening agent. BioTransformer predicts that sucrose is a product of 6-O-sinapoyl sucrose metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). Sucrose appears as white odorless crystalline or powdery solid. Denser than water. Sucrose is a glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. It has a role as an osmolyte, a sweetening agent, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. A nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane, sugar beet (beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Sucrose is a natural product found in Haplophyllum ramosissimum, Cyperus esculentus, and other organisms with data available. Sucrose is a metabolite found in or produced by Saccharomyces cerevisiae. A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. See also: Anise; ferrous disulfide; sucrose (component of); Phosphoric acid; sucrose (component of); Sucrose caramel (related) ... View More ... In chemistry, sugar loosely refers to a number of carbohydrates, such as monosaccharides, disaccharides, or oligosaccharides. In food, sugar refers to a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose characterized by a sweet flavor. Other sugars are used in industrial food preparation, but are usually known by more specific names - glucose, fructose or fruit sugar, high fructose corn syrup, etc. Sugars is found in many foods, some of which are ucuhuba, butternut squash, common walnut, and miso. A glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula C 12H 22O 11. For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet. Sugar is often an added ingredient in food production and recipes. About 185 million tonnes of sugar were produced worldwide in 2017.[6] Sucrose is particularly dangerous as a risk factor for tooth decay because Streptococcus mutans bacteria convert it into a sticky, extracellular, dextran-based polysaccharide that allows them to cohere, forming plaque. Sucrose is the only sugar that bacteria can use to form this sticky polysaccharide.[7] Sucrose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8030-20-4 (retrieved 2024-06-29) (CAS RN: 57-50-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Diosgenin
Diosgenin is a sapogenin that is spirostan which is substituted by a hydroxy group at the 3beta position, contains a double bond at the 5-6 position, and has R- configuration at position 25. A natural product found in Dioscorea (wild yam) species, it is used as the starting point for the commercial synthesis of a number of steroids, including cortisone, pregnenolone and progesterone. It has a role as an apoptosis inducer, an antiviral agent, an antineoplastic agent and a metabolite. It is a 3beta-sterol, a spiroketal, a hexacyclic triterpenoid and a sapogenin. It derives from a hydride of a spirostan. Diosgenin is a natural product found in Ophiopogon intermedius, Dracaena draco, and other organisms with data available. A spirostan found in DIOSCOREA and other plants. The 25S isomer is called yamogenin. Solasodine is a natural derivative formed by replacing the spiro-ring with a nitrogen, which can rearrange to SOLANINE. See also: Fenugreek seed (part of); Dioscorea polystachya tuber (part of). A sapogenin that is spirostan which is substituted by a hydroxy group at the 3beta position, contains a double bond at the 5-6 position, and has R- configuration at position 25. A natural product found in Dioscorea (wild yam) species, it is used as the starting point for the commercial synthesis of a number of steroids, including cortisone, pregnenolone and progesterone. Diosgenin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Diosgenin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Diosgenin can be found in a number of food items such as carrot, wild carrot, yam, and bitter gourd, which makes diosgenin a potential biomarker for the consumption of these food products. Diosgenin, a phytosteroid sapogenin, is the product of hydrolysis by acids, strong bases, or enzymes of saponins, extracted from the tubers of Dioscorea wild yam, such as the Kokoro. The sugar-free (aglycone) product of such hydrolysis, diosgenin is used for the commercial synthesis of cortisone, pregnenolone, progesterone, and other steroid products . Bottle Name:Diosgenin; Origin: Plant; Formula(Parent): C27H42O3; PRIME Parent Name:Diosgenin; PRIME in-house No.:T0108; SubCategory_DNP: The sterols, Cholestanes Origin: Plant; Formula(Parent): C27H42O3; Bottle Name:Diosgenin; PRIME Parent Name:Diosgenin; PRIME in-house No.:T0108; SubCategory_DNP: The sterols, Cholestanes CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2260 Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5]. Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5].
Protodioscin
Protodioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. It has a role as a metabolite. It is a steroid saponin, a trisaccharide derivative, a beta-D-glucoside, a pentacyclic triterpenoid and a cyclic hemiketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Protodioscin is a natural product found in Dracaena draco, Borassus flabellifer, and other organisms with data available. See also: Fenugreek seed (part of). Asparasaponin I is found in fenugreek. Asparasaponin I is a bitter principle from white asparagus shoots (Asparagus officinalis) and fenugreek (Trigonella foenum-graecum From Asparagus officinalis (asparagus) Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties.
Ursolic acid
Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.
Ruscogenin
Ruscogenin is a triterpenoid. Ruscogenin is a natural product found in Cordyline rubra, Cordyline banksii, and other organisms with data available. Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities. Ruscogenin has orally bioactivity[1][2]. Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities. Ruscogenin has orally bioactivity[1][2].
Kaempferol
Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].
Ferulic acid
trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.
Bergapten
Bergapten, also known as O-methylbergaptol or heraclin, belongs to the class of organic compounds known as 5-methoxypsoralens. These are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Bergapten is found, on average, in the highest concentration within a few different foods, such as anises, figs, and parsnips and in a lower concentration in carrots, fennels, and celery stalks. Bergapten has also been detected, but not quantified, in several different foods, such as coconuts, pepper (c. frutescens), corianders, sesbania flowers, and cardamoms. This could make bergapten a potential biomarker for the consumption of these foods. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. Bergapten is a potentially toxic compound. Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, especially the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Bergapten was under investigation in clinical trial NCT00533195 "Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis". Grayish-white microcrystalline powder or yellow fluffy solid. (NTP, 1992) 5-methoxypsoralen is a 5-methoxyfurocoumarin that is psoralen substituted by a methoxy group at position 5. It has a role as a hepatoprotective agent and a plant metabolite. It is a member of psoralens, a 5-methoxyfurocoumarin and an organic heterotricyclic compound. It is functionally related to a psoralen. Bergapten is under investigation in clinical trial NCT00533195 (Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis). Bergapten is a natural product found in Ficus auriculata, Ficus virens, and other organisms with data available. A linear furanocoumarin that has phototoxic and anti-inflammatory properties, with effects similar to METHOXSALEN. It is used in PUVA THERAPY for the treatment of PSORIASIS. See also: Parsley (part of); Anise (part of); Angelica archangelica root (part of) ... View More ... Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, esp. the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8020; ORIGINAL_PRECURSOR_SCAN_NO 8017 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8000 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7968; ORIGINAL_PRECURSOR_SCAN_NO 7967 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8005; ORIGINAL_PRECURSOR_SCAN_NO 8002 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8376; ORIGINAL_PRECURSOR_SCAN_NO 8372 [Raw Data] CBA84_Bergapten_pos_20eV.txt [Raw Data] CBA84_Bergapten_pos_10eV.txt [Raw Data] CBA84_Bergapten_pos_30eV.txt [Raw Data] CBA84_Bergapten_pos_40eV.txt [Raw Data] CBA84_Bergapten_pos_50eV.txt Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.
4-Hydroxybenzoic acid
4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), at relatively high concetrations (892±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843).
Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid
Quercetin
Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
D-Pinitol
Widely distributed in plants. Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-Pinitol is found in many foods, some of which are ginkgo nuts, carob, soy bean, and common pea. D-Pinitol is found in carob. D-Pinitol is widely distributed in plants.Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. (Wikipedia). D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
Sakuranetin
Sakuranetin is a flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as an antimycobacterial drug and a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a flavonoid phytoalexin, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Sakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Sakuranetin is found in black walnut. Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae. A flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2]. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].
Stigmasterol
Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol
tigogenin
Tigogenin is a widely used steroidal sapogenin isolated from several plant species and used for synthesizing steroid drugs. It has a role as a gout suppressant and a plant metabolite. Tigogenin is a natural product found in Cordyline australis, Yucca gloriosa, and other organisms with data available. A widely used steroidal sapogenin isolated from several plant species and used for synthesizing steroid drugs. Tigogenin, also known as sarsasapogenin, (3beta,5alpha,25s)-isomer or smilagenin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, tigogenin is considered to be a sterol lipid molecule. Tigogenin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Tigogenin can be found in fenugreek, which makes tigogenin a potential biomarker for the consumption of this food product. Tigogenin, one of steroidal sapogenins, is widely used for synthesizing steroid agents. Tigogenin inhibits adipocytic differentiation and induces osteoblastic differentiation in mouse bone marrow stromal cells[1]. Tigogenin, one of steroidal sapogenins, is widely used for synthesizing steroid agents. Tigogenin inhibits adipocytic differentiation and induces osteoblastic differentiation in mouse bone marrow stromal cells[1].
Lupeol
Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].
Betulin
Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28 Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane. Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available. A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. Constituent of Corylus avellana (filbert) and Vicia faba Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
Betulinic acid
Betulinic acid is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an anti-HIV agent, an antimalarial, an anti-inflammatory agent, an antineoplastic agent and a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of a lupane. Betulinic Acid has been used in trials studying the treatment of Dysplastic Nevus Syndrome. Betulinic acid is a natural product found in Ficus auriculata, Gladiolus italicus, and other organisms with data available. Betulinic Acid is a pentacyclic lupane-type triterpene derivative of betulin (isolated from the bark of Betula alba, the common white birch) with antiinflammatory, anti-HIV and antineoplastic activities. Betulinic acid induces apoptosis through induction of changes in mitochondrial membrane potential, production of reactive oxygen species, and opening of mitochondrial permeability transition pores, resulting in the release of mitochondrial apogenic factors, activation of caspases, and DNA fragmentation. Although originally thought to exhibit specific cytotoxicity against melanoma cells, this agent has been found to be cytotoxic against non-melanoma tumor cell types including neuroectodermal and brain tumor cells. A lupane-type triterpene derivative of betulin which was originally isolated from BETULA or birch tree. It has anti-inflammatory, anti-HIV and antineoplastic activities. See also: Jujube fruit (part of); Paeonia lactiflora root (part of). Betulinic acid is found in abiyuch. Betulinic acid is a naturally occurring pentacyclic triterpenoid which has anti-retroviral, anti-malarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch (Betula pubescens) from which it gets its name, but also the Ber tree (Ziziphus mauritiana), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas a member of the persimmon family, Tetracera boiviniana, the jambul (Syzygium formosanum), flowering quince (Chaenomeles sinensis), Rosemary, and Pulsatilla chinensis. Controversial is a role of p53 in betulinic acid-induced apoptosis. Fulda suggested p53-independent mechanism of the apoptosis, basing on fact of no accumulation of wild-type p53 detected upon treatment with the betulinic acid, whereas wild-type p53 protein strongly increased after treatment with doxorubicin. The suggestion is supported by study of Raisova. On the other hand Rieber suggested that betulinic acid exerts its inhibitory effect on human metastatic melanoma partly by increasing p53 A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Epibetulinic acid exhibits potent inhibitory effects on NO and prostaglandin E2 (PGE2) production in mouse macrophages (RAW 264.7) stimulated with bacterial endotoxin with IC50s of 0.7 and 0.6 μM, respectively. Anti-inflammatory activity[1].
Oleanolic acid
Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.
Yamogenintetroside B
Methylprotodioscin is a steroid saponin. Methylprotodioscin is a natural product found in Dracaena draco, Smilax menispermoidea, and other organisms with data available. Methylprotodioscin is found in herbs and spices. Methylprotodioscin is isolated from seeds of Trigonella caerulea (sweet trefoil) and Asparagus officinalis (asparagus). Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].
Isorhamnetin
3,4,5,7-tetrahydroxy-3-methoxyflavone is a tetrahydroxyflavone having the 4-hydroxy groups located at the 3- 4- 5- and 7-positions as well as a methoxy group at the 2-position. It has a role as a metabolite and an antimicrobial agent. It is a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3-methoxyflavon-7-olate. 3-O-Methylquercetin is a natural product found in Lotus ucrainicus, Wollastonia biflora, and other organisms with data available. See also: Tobacco Leaf (part of). 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1]. 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1].
Ayanin
3,5-dihydroxy-3,4,7-trimethoxyflavone is a trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups. It has a role as a plant metabolite. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,5-dihydroxy-3,4,7-trimethoxyflavone(1-). Ayanin is a natural product found in Psiadia viscosa, Solanum pubescens, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups.
Cycloartenol
Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)
Dioctyl phthalate
Di(n-octyl) phthalate, also known as dioctyl 1,2-benzenedicarboxylate or dehp, is a member of the class of compounds known as benzoic acid esters. Benzoic acid esters are ester derivatives of benzoic acid. Di(n-octyl) phthalate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Di(n-octyl) phthalate can be found in kohlrabi, which makes di(n-octyl) phthalate a potential biomarker for the consumption of this food product. Di(n-octyl) phthalate is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phthalate esters are endocrine disruptors. Animal studies have shown that they disrupt reproductive development and can cause a number of malformations in affected young, such as reduced anogenital distance (AGD), cryptorchidism, hypospadias, and reduced fertility. The combination of effects associated with phthalates is called phthalate syndrome’ (A2883) (T3DB). CONFIDENCE standard compound; INTERNAL_ID 198 D010968 - Plasticizers DEHP (Bis(2-ethylhexyl) phthalate) is an endogenous metabolite. DEHP (Bis(2-ethylhexyl) phthalate) is an endogenous metabolite.
Isorhamnetin
Isorhamnetin is the methylated metabolite of quercetin. Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. Isorhamnetin prevents endothelial cell injuries from oxidized LDL via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin. Isorhamnetin prevents endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II. Isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells. (PMID: 15493462, 17368593, 17374653, 16963021). Isorhamnetin is a monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, an anticoagulant and a metabolite. It is a 7-hydroxyflavonol, a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of an isorhamnetin(1-). Isorhamnetin is a natural product found in Lotus ucrainicus, Strychnos pseudoquina, and other organisms with data available. Isorhamnetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Peumus boldus leaf (part of). Widespread flavonol found especially in bee pollen, chives, corn poppy leaves, garden cress, fennel, hartwort, red onions, pears, dillweed, parsley and tarragon. Isorhamnetin is found in many foods, some of which are italian sweet red pepper, carrot, yellow wax bean, and lemon balm. A monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. Acquisition and generation of the data is financially supported in part by CREST/JST. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.
Emodin
Emodin appears as orange needles or powder. (NTP, 1992) Emodin is a trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. It has a role as a tyrosine kinase inhibitor, an antineoplastic agent, a laxative and a plant metabolite. It is functionally related to an emodin anthrone. It is a conjugate acid of an emodin(1-). Emodin has been investigated for the treatment of Polycystic Kidney. Emodin is a natural product found in Rumex dentatus, Rhamnus davurica, and other organisms with data available. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia) Emodin has been shown to exhibit anti-inflammatory, signalling, antibiotic, muscle building and anti-angiogenic functions (A3049, A7853, A7854, A7855, A7857). Purgative anthraquinone found in several plants, especially RHAMNUS PURSHIANA. It was formerly used as a laxative, but is now used mainly as a tool in toxicity studies. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics Present in Cascara sagrada CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 ORIGINAL_PRECURSOR_SCAN_NO 5094; CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 [Raw Data] CB029_Emodin_pos_50eV_CB000015.txt [Raw Data] CB029_Emodin_pos_10eV_CB000015.txt [Raw Data] CB029_Emodin_pos_20eV_CB000015.txt [Raw Data] CB029_Emodin_pos_30eV_CB000015.txt [Raw Data] CB029_Emodin_pos_40eV_CB000015.txt [Raw Data] CB029_Emodin_neg_50eV_000008.txt [Raw Data] CB029_Emodin_neg_20eV_000008.txt [Raw Data] CB029_Emodin_neg_40eV_000008.txt [Raw Data] CB029_Emodin_neg_30eV_000008.txt [Raw Data] CB029_Emodin_neg_10eV_000008.txt CONFIDENCE standard compound; ML_ID 38 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].
Syringic acid
Syringic acid, also known as syringate or cedar acid, belongs to the class of organic compounds known as gallic acid and derivatives. Gallic acid and derivatives are compounds containing a 3,4,5-trihydroxybenzoic acid moiety. Outside of the human body, Syringic acid is found, on average, in the highest concentration within a few different foods, such as common walnuts, swiss chards, and olives and in a lower concentration in apples, tarragons, and peanuts. Syringic acid has also been detected, but not quantified in several different foods, such as sweet marjorams, silver lindens, bulgurs, annual wild rices, and barley. This could make syringic acid a potential biomarker for the consumption of these foods. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Research suggests that phenolics from wine may play a positive role against oxidation of low-density lipoprotein (LDL), which is a key step in the development of atherosclerosis. Syringic acid is a phenol present in some distilled alcohol beverages. It is also a product of microbial (gut) metabolism of anthocyanins and other polyphenols that have been consumed (in fruits and alcoholic beverages - PMID:18767860). Syringic acid is also a microbial metabolite that can be found in Bifidobacterium (PMID:24958563). Syringic acid is a dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. It has a role as a plant metabolite. It is a member of benzoic acids, a dimethoxybenzene and a member of phenols. It is functionally related to a gallic acid. It is a conjugate acid of a syringate. Syringic acid is a natural product found in Visnea mocanera, Pittosporum illicioides, and other organisms with data available. Syringic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Present in various plants free and combined, e.g. principal phenolic constituent of soyabean meal (Glycine max) A dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID S018 Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.
Xanthosine
C10H12N4O6 (284.07568119999996)
Xanthosine, also known as xanthine riboside, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine exists in all living species, ranging from bacteria to plants to humans. In plants xanthosine is the biosynthetic precursor to 7-methylxanthosine which is produced by the action of the enzyme known as 7-methylxanthosine synthase. 7-Methylxanthosine in turn is the precursor to theobromine (the active alkaloid in chocolate), which in turn is the precursor to caffeine, the active alkaloid in coffee and tea. Within humans, xanthosine participates in a number of enzymatic reactions. In particular, xanthosine can be biosynthesized from xanthylic acid; which is catalyzed by the enzyme cytosolic purine 5-nucleotidase. In addition, xanthosine can be converted into xanthine and ribose 1-phosphate; which is mediated by the enzyme purine nucleoside phosphorylase. Xanthosine monophosphate (XMP) is an intermediate in purine metabolism, formed from IMP (inosine monophosphate). Biological Source: Production by guanine-free mutants of bacteria e.g. Bacillus subtilis, Aerobacter aerogenesand is also reported from seeds of Trifolium alexandrinum Physical Description: Prismatic cryst. (H2O) (Chemnetbase) The deamination product of guanosine; Xanthosine monophosphate is an intermediate in purine metabolism, formed from IMP, and forming GMP.; Xanthylic acid can be used in quantitative measurements of the Inosine monophosphate dehydrogenase enzyme activities in purine metabolism, as recommended to ensure optimal thiopurine therapy for children with acute lymphoblastic leukaemia (ALL). (PMID: 16725387). Xanthosine is found in many foods, some of which are calabash, rambutan, apricot, and pecan nut. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 126 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1].
Trihexyphenidyl
Trihexyphenidyl is only found in individuals that have used or taken this drug. It is one of the centrally acting muscarinic antagonists used for treatment of parkinsonian disorders and drug-induced extrapyramidal movement disorders and as an antispasmodic. [PubChem]Trihexyphenidyl is a selective M1 muscarinic acetylcholine receptor antagonist. It is able to discriminate between the M1 (cortical or neuronal) and the peripheral muscarinic subtypes (cardiac and glandular). Trihexyphenidyl partially blocks cholinergic activity in the CNS, which is responsible for the symptoms of Parkinsons disease. It is also thought to increase the availability of dopamine, a brain chemical that is critical in the initiation and smooth control of voluntary muscle movement. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent
3-O-Methylkaempferol
3-o-methylkaempferol, also known as 5,7,4-trihydroxy-3-methoxyflavone or isokaempferide, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 3-o-methylkaempferol is considered to be a flavonoid lipid molecule. 3-o-methylkaempferol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-methylkaempferol can be found in common bean and coriander, which makes 3-o-methylkaempferol a potential biomarker for the consumption of these food products.
Astragalin
Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].
Masoprocol
Masoprocol is the meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. It has a role as an antineoplastic agent, a lipoxygenase inhibitor, a hypoglycemic agent and a metabolite. Masoprocol is a natural product found in Larrea divaricata, Schisandra chinensis, and Larrea tridentata with data available. Masoprocol is a naturally occurring antioxidant dicatechol originally derived from the creosote bush Larrea divaricatta with antipromoter, anti-inflammatory, and antineoplastic activities. Masoprocol directly inhibits activation of two receptor tyrosine kinases (RTKs), the insulin-like growth factor receptor (IGF-1R) and the c-erbB2/HER2/neu receptor, resulting in decreased proliferation of susceptible tumor cell populations. This agent may induce apoptosis in susceptible tumor cell populations as a result of disruption of the actin cytoskeleton in association with the activation of stress activated protein kinases (SAPKs). In addition, masoprocol inhibits arachidonic acid 5-lipoxygenase (5LOX), resulting in diminished synthesis of inflammatory mediators such as prostaglandins and leukotrienes. It may prevent leukocyte infiltration into tissues and the release of reactive oxygen species. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. Masoprocol, also known as actinex or meso-ndga, belongs to the class of organic compounds known as dibenzylbutane lignans. These are lignan compounds containing a 2,3-dibenzylbutane moiety. Symptoms of overdose or allergic reaction include bluish coloration of skin, dizziness, or feeling faint, wheezing or trouble in breathing. Masoprocol also inhibits prostaglandins but the significance of this action is not yet known. Masoprocol is a drug which is used for the treatment of actinic keratoses (precancerous skin growths that can become malignant if left untreated). It also serves as an antioxidant in fats and oils. Masoprocol is a potentially toxic compound. It is not known exactly how masoprocol works. Although the exact mechanism of action is not known, studies have shown that masoprocol is a potent 5-lipoxygenase inhibitor and has antiproliferative activity against keratinocytes in tissue culture, but the relationship between this activity and its effectiveness in actinic keratoses is unknown. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4658; ORIGINAL_PRECURSOR_SCAN_NO 4657 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4580; ORIGINAL_PRECURSOR_SCAN_NO 4576 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4551; ORIGINAL_PRECURSOR_SCAN_NO 4548 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4643; ORIGINAL_PRECURSOR_SCAN_NO 4642 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4651; ORIGINAL_PRECURSOR_SCAN_NO 4650 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4591; ORIGINAL_PRECURSOR_SCAN_NO 4587 Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.
Spinasaponin A
Constituent of Spinacia oleracea (spinach). Spinasaponin A is found in green vegetables and spinach. Calenduloside G is a constituent of Calendula officinalis (pot marigold).
Harmalol
C12H12N2O (200.09495819999998)
Harmalol is found in fruits. Harmalol is an alkaloid from Passiflora incarnata (maypops). Harmaline is a reversible inhibitor of MAO-A (RIMA). Harmine is a reversible inhibitor of MAO-A (RIMA). It is important to note that unlike synthetic pharmaceutical MAOIs such as phenelzine, harmine is reversible and selective meaning it does not have nearly as high a risk for the "cheese syndrome" caused by consuming tyramine-containing foods, which is a risk associated with monoamine oxidase A inhibitors, but not monoamine oxidase B inhibitors. Several alkaloids that function as monoamine oxidase inhibitors (MAOIs) are found in the seeds of Peganum harmala (also known as Harmal or Syrian Rue), including harmine, harmaline, and harmalol, which are members of a group of substances with a similar chemical structure collectively known as harmala alkaloids. These alkaloids are of interest for their use in Amazonian shamanism, where they are derived from other plants. The harmala alkaloid harmine which was once known as Telepathine and Banisterine is a naturally occurring beta-carboline alkaloid that is structurally related to harmaline, and also found in the vine Banisteriopsis caapi. Tetrahydroharmine is also found in B. caapi, but not P. harmala. Dr. Alexander Shulgin has suggesed that harmaline may be a breakdown product of harmine. Harmine and harmaline are reversible MAOIs of the MAO-A isoform of the enzyme, and can stimulate the central nervous system by inhibiting the metabolism of monoamine compounds such as serotonin and norepinephrine. The harmala alkaloids occur in Peganum harmala in concentrations of roughly 3\\%, though tests have documented anywhere from 2-7\\%, as natural sources tend to vary widely in chemical makeup. Harmala alkaloids are also found in the Banisteriopsis caapi vine, the key plant ingredient in the sacramental beverage Ayahuasca, in concentrations that range between 0.31-8.43\\% for harmine, 0.03-0.83\\% for harmaline and 0.05-2.94\\% for tetrahydroharmine. Other psychoactive plants are often added to Ayahuasca to achieve visionary states of consciousness; for example leaves from Psychotria viridis, which is a source of dimethyltryptamine (DMT). The harmala alkaloids serve to potentiate these brewed compounds by preventing their breakdown in the digestive tract. The harmala alkaloids are not especially psychoactive on their own, even at high dosages, when vomiting and diarrhea become the main effect Alkaloid from Passiflora incarnata (maypops)
gitonin
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides
Perlolyrine
Alkaloid from Korean ginseng and Japanese soy sauce. Perlolyrine is found in saffron, soy bean, and herbs and spices. Perlolyrine is found in herbs and spices. Perlolyrine is an alkaloid from Korean ginseng and Japanese soy sauc
Pachypodol
Pachypodol is a trimethoxyflavone that is quercetin in which the hydroxy groups at position 3, 7 and 3 are replaced by methoxy groups. It has been isolated from Combretum quadrangulare and Euodia elleryana. It has a role as a plant metabolite and an antiemetic. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. Pachypodol is a natural product found in Larrea cuneifolia, Macaranga triloba, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at position 3, 7 and 3 are replaced by methoxy groups. It has been isolated from Combretum quadrangulare and Euodia elleryana. Pachypodol exerts antioxidant and cytoprotective effects in HepG2 cells[1].Pachypodol inhibits the growth of CaCo 2 colon cancer cell line in vitro(IC50 = 185.6 mM)[2]. Pachypodol exerts antioxidant and cytoprotective effects in HepG2 cells[1].Pachypodol inhibits the growth of CaCo 2 colon cancer cell line in vitro(IC50 = 185.6 mM)[2].
LICARIN A
(-)-Licarin A is a natural product found in Magnolia dodecapetala, Magnolia kachirachirai, and other organisms with data available. Dehydrodiisoeugenol is a natural product found in Myristica fragrans with data available. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1].
(+)-Larreatricin
An antiviral lignan isolated from the creosote bush, Larrea tridentata, which consists of a 3,4-dimethyltetrahydrofuran skeleton substituted by 4-hydroxyphenyl groups at positions 2 and 5 (the 2R,3R,4S,5R stereoisomer).
Trifolin
Kaempferol 3-o-beta-d-galactopyranoside, also known as trifolin or trifolioside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-o-beta-d-galactopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-d-galactopyranoside can be found in horseradish, which makes kaempferol 3-o-beta-d-galactopyranoside a potential biomarker for the consumption of this food product. Kaempferol 3-O-beta-D-galactoside is a beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position. It has a role as a plant metabolite and an antifungal agent. It is a beta-D-galactoside, a monosaccharide derivative, a glycosyloxyflavone and a trihydroxyflavone. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferol 3-O-beta-D-galactoside(1-). Trifolin is a natural product found in Lotus ucrainicus, Saxifraga tricuspidata, and other organisms with data available. Isoastragalin is found in fats and oils. Isoastragalin is isolated from Gossypium hirsutum (cotton) and other plant species. A beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position.
Methyl linoleate
Methyl linoleate is a fatty acid methyl ester of linoleic acid. It has been isolated from Neolitsea daibuensis. It has a role as a plant metabolite. It is functionally related to a linoleic acid. Methyl linoleate is a natural product found in Tussilago farfara, Azadirachta indica, and other organisms with data available. Methyl linoleate belongs to the class of organic compounds known as lineolic acids and derivatives. These are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. A fatty acid methyl ester of linoleic acid. It has been isolated from Neolitsea daibuensis. Methyl linoleate, a major active constituent of Sageretia thea?fruit (HFSF), is a major anti-melanogenic compound. Methyl linoleate downregulates microphthalmia-associated transcription factor (MITF)?and tyrosinase-related proteins[1]. Methyl linoleate, a major active constituent of Sageretia thea?fruit (HFSF), is a major anti-melanogenic compound. Methyl linoleate downregulates microphthalmia-associated transcription factor (MITF)?and tyrosinase-related proteins[1].
Pinitol
D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol. Methylinositol has been used in trials studying the treatment of Dementia and Alzheimers Disease. D-Pinitol is a natural product found in Aegialitis annulata, Senna macranthera var. micans, and other organisms with data available. A member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3S,4S,5S,6S-isomer). D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
Keioside
Isorhamnetin 3-rutinoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Isorhamnetin 3-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isorhamnetin 3-rutinoside can be found in common bean, ginkgo nuts, sea-buckthornberry, and swede, which makes isorhamnetin 3-rutinoside a potential biomarker for the consumption of these food products. Isorhamnetin 3-robinobioside is found in pear. Isorhamnetin 3-robinobioside is isolated from Pyrus communis (pear). Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1]. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1].
Harmol
Alkaloid from Elaeagnus angustifolia (Russian olive) and Passiflora incarnata (maypops). Harmol is found in sea-buckthornberry, herbs and spices, and fruits. Harmol is found in fruits. Harmol is an alkaloid from Elaeagnus angustifolia (Russian olive) and Passiflora incarnata (maypops). Harmol categorized as a β-carboline alkaloid. Harmol is a potent MAO inhibitor used as an analytical reference standard[1]. Harmol categorized as a β-carboline alkaloid. Harmol is a potent MAO inhibitor used as an analytical reference standard[1].
Tomatoside A
Tomatoside A is found in garden tomato. Tomatoside A is a constituent of Lycopersicon esculentum (tomato). Constituent of Lycopersicon esculentum (tomato). Tomatoside A is found in garden tomato.
Moracetin
Consit. of Morus alba (white mulberry). Moracetin is found in fruits. Moracetin is found in fruits. Consit. of Morus alba (white mulberry).
Quinoside D
Constituent of quinoa grains (Chenopodium quinoa), and root of Chinese cucumber (Momordica cochinchinensis). Quinoside D is found in cereals and cereal products, green vegetables, and malabar spinach. Hemsloside Ma 1 is found in bitter gourd. Hemsloside Ma 1 is a constituent of Chinese cucumber (Momordica cochinchinensis). Momordin IIc (Quinoside D) is a triterpenoid glycoside isolated from Bougainvillea glabra[1].
Dihydroisorhamnetin
Dihydroisorhamnetin is found in beverages. Dihydroisorhamnetin is isolated from Dillenia indica (elephant apple). Isolated from Dillenia indica (elephant apple). Dihydroisorhamnetin is found in beverages and fruits.
Balanitoside
Balanitoside is found in fruits. Balanitoside is a constituent of the fruit of soapberry tree Balanites aegyptiaca. Constituent of the fruit of soapberry tree Balanites aegyptiaca. Balanitoside is found in fruits.
Oryzanol A
Oryzanol A is found in cereals and cereal products. Oryzanol A is from rice bran oil (Oryza sativa
Balanitesin
Balanitesin is found in fruits. Balanitesin is a constituent of soapberry tree fruits (Balanites aegyptiaca). Constituent of soapberry tree fruits (Balanites aegyptiaca). Balanitesin is found in fruits.
Neotigogenin
Neotigogenin is found in fenugreek. Neotigogenin is a constituent of currant tomato (Lycopersicon pimpinellifolium)
Diosgenin
Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5]. Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5].
Kaempferol 7-O-glucoside
Isorhamnetin 3-gentiobioside
7-Glucosyl-luteolin
C21H20O12 (464.09547200000003)
D-Iditol
Permitted bulk sweetener for foods. Sweetening agent. Food additive, used as anticaking agent, lubricant, for stabiliser and thickener, and for other uses in food processing
Dehydrodiisoeugenol
Hederagenin
Hederagenin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Hederagenin is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Hederagenin can be found in a number of food items such as rye, dill, european cranberry, and black salsify, which makes hederagenin a potential biomarker for the consumption of these food products. Hederagenin is the aglycone part of numerous saponins found in Hedera helix (common ivy). The most prevalent of these being hederacoside C and alpha-hederin. It is also one of three primary triterpenoids extracted from the Chenopodium quinoa plant categorized by the EPA as a biopesticide. HeadsUp Plant Protectant is made up of approximately equal ratios of the saponin aglycones oleanolic acid, hederagenin, and phytolaccagenic acid and is intended for use as a seed treatment on tuber (e.g. potato seed pieces), legume, and cereal seeds or as a pre-plant root dip for roots of transplants, at planting, to prevent fungal growth, bacterial growth, and viral plant diseases .
Lupeol acetate
Retusin
Retusin(ariocarpus), also known as 5-hydroxy-3,7,3,4-tetramethoxyflavone or 3,7,3,4-tetra-O-methylquercetin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, retusin(ariocarpus) is considered to be a flavonoid lipid molecule. Retusin(ariocarpus) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Retusin(ariocarpus) can be found in common oregano and mandarin orange (clementine, tangerine), which makes retusin(ariocarpus) a potential biomarker for the consumption of these food products. Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1]. Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1].
Ruscogenin
Neogitogenin
Gitogenin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Gitogenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Gitogenin can be found in fenugreek, which makes gitogenin a potential biomarker for the consumption of this food product.
Gitonin
F-gitonin is a member of the class of compounds known as steroidal saponins. Steroidal saponins are saponins in which the aglycone moiety is a steroid. The steroidal aglycone is usually a spirostane, furostane, spirosolane, solanidane, or curcubitacin derivative. F-gitonin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). F-gitonin can be found in soft-necked garlic, which makes F-gitonin a potential biomarker for the consumption of this food product.
Isorhamnetin 3-O-(beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside)
Isorhamnetin 3-o-(beta-d-glucopyranosyl-(1->6)-beta-d-glucopyranoside) is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Isorhamnetin 3-o-(beta-d-glucopyranosyl-(1->6)-beta-d-glucopyranoside) is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isorhamnetin 3-o-(beta-d-glucopyranosyl-(1->6)-beta-d-glucopyranoside) can be found in red beetroot, which makes isorhamnetin 3-o-(beta-d-glucopyranosyl-(1->6)-beta-d-glucopyranoside) a potential biomarker for the consumption of this food product.
Kaempferol 3-rhamno-glucoside
Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.
Quercetin 3-triglucoside
Quercetin 3-triglucoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Quercetin 3-triglucoside is soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 3-triglucoside can be found in common pea and okra, which makes quercetin 3-triglucoside a potential biomarker for the consumption of these food products.
Quercetin 3-galactosyl-(1->6)-glucoside
Quercetin 3-galactosyl-(1->6)-glucoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Quercetin 3-galactosyl-(1->6)-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 3-galactosyl-(1->6)-glucoside can be found in broad bean, which makes quercetin 3-galactosyl-(1->6)-glucoside a potential biomarker for the consumption of this food product.
Kaempferol 7-glucoside
Kaempferol 7-glucoside is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 7-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 7-glucoside can be found in a number of food items such as flaxseed, ginkgo nuts, white cabbage, and saffron, which makes kaempferol 7-glucoside a potential biomarker for the consumption of these food products.
Kaempferol 3-gentiobioside
Kaempferol 3-gentiobioside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-gentiobioside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-gentiobioside can be found in soy bean, which makes kaempferol 3-gentiobioside a potential biomarker for the consumption of this food product.
D-ononitol
D-ononitol is a member of the class of compounds known as cyclohexanols. Cyclohexanols are compounds containing an alcohol group attached to a cyclohexane ring. D-ononitol is soluble (in water) and a very weakly acidic compound (based on its pKa). D-ononitol can be found in a number of food items such as blackcurrant, sour cherry, strawberry guava, and epazote, which makes D-ononitol a potential biomarker for the consumption of these food products. D-ononitol is a cyclitol. It is a 4-O-methyl-myo-inositol and is a constituent of Medicago sativa .
meso-Dihydroguaiaretic acid
Meso-dihydroguaiaretic acid is a lignan that is 2,3-dimethylbutane substituted by 2-methoxyphenol groups at positions 1 and 4 respectively. It has been isolated from the bark of Machilus robusta. It has a role as a plant metabolite. It is a lignan and a member of guaiacols. Meso-dihydroguaiaretic acid is a natural product found in Kadsura angustifolia, Kadsura heteroclita, and other organisms with data available. See also: Larrea tridentata whole (part of). A lignan that is 2,3-dimethylbutane substituted by 2-methoxyphenol groups at positions 1 and 4 respectively. It has been isolated from the bark of Machilus robusta. Dihydroguaiaretic acid, is isolated from the fruits of Saururus chinensis with an anti-cancer activty[1]. Dihydroguaiaretic acid, is isolated from the fruits of Saururus chinensis with an anti-cancer activty[1].
Hederagenin
Hederagenin is a sapogenin that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 3 and 23 (the 3beta stereoisomer). It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a dihydroxy monocarboxylic acid and a sapogenin. It is functionally related to an oleanolic acid. It is a conjugate acid of a hederagenin(1-). It derives from a hydride of an oleanane. Hederagenin is a natural product found in Zygophyllum obliquum, Sapindus emarginatus, and other organisms with data available. See also: Paeonia lactiflora root (part of); Caulophyllum robustum Root (part of); Medicago sativa whole (part of). A sapogenin that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 3 and 23 (the 3beta stereoisomer). Hederagenin is a triterpenoid saponin that can inhibit the expression of iNOS, COX-2, and NF-κB in cells caused by LPS stimulation. Hederagenin is a triterpenoid saponin that can inhibit the expression of iNOS, COX-2, and NF-κB in cells caused by LPS stimulation.
Harmol
Harmol is a 9H-beta-carboline carrying a methyl substituent at C-1 and a hydroxy group at C-7; major microspecies at pH 7.3. It has a role as an antifungal agent, an apoptosis inducer and an autophagy inducer. It is a harmala alkaloid and an indole alkaloid. It is functionally related to a beta-carboline. Harmol is a natural product found in Fontinalis squamosa, Passiflora foetida, and other organisms with data available. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.454 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.443 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.442 Harmol categorized as a β-carboline alkaloid. Harmol is a potent MAO inhibitor used as an analytical reference standard[1]. Harmol categorized as a β-carboline alkaloid. Harmol is a potent MAO inhibitor used as an analytical reference standard[1].
Astragalin
Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].
Ursolic Acid
Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.
β-Amyrin
Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].
Herbacetin 8-rutinoside
Lupeol acetate
Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].
Rhamnazin
Rhamnacene is a dimethoxyflavone that is quercetin in which the hydroxy groups at the 3 and 7 positions have been replaced by methoxy groups. It has a role as a plant metabolite and an antineoplastic agent. It is a dimethoxyflavone, a trihydroxyflavone, an aromatic ether and a member of phenols. It is functionally related to a quercetin. It is a conjugate acid of a rhamnacene-3-olate. Rhamnazin is a natural product found in Ammi visnaga, Nymphoides indica, and other organisms with data available. A dimethoxyflavone that is quercetin in which the hydroxy groups at the 3 and 7 positions have been replaced by methoxy groups. Rhamnazin, also known as 3,7-dimethylquercetin or 3,5,4-trihydroxy-7,3-dimethoxyflavone, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, rhamnazin is considered to be a flavonoid lipid molecule. Rhamnazin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Rhamnazin can be synthesized from quercetin. Rhamnazin can also be synthesized into viscumneoside VII and viscumneoside IV. Rhamnazin can be found in lemon balm, which makes rhamnazin a potential biomarker for the consumption of this food product. Rhamnazin is an O-methylated flavonol, a type of chemical compound. It can be found in Rhamnus petiolaris, a buckthorn plant endemic to Sri Lanka .
sitosterol
A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
Tiliroside
Acquisition and generation of the data is financially supported in part by CREST/JST. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
physcion
Physcion, also known as emodin monomethyl ether or parienin, is a member of the class of compounds known as anthraquinones. Anthraquinones are organic compounds containing either anthracene-9,10-quinone, 1,4-anthraquinone, or 1,2-anthraquinone. Physcion is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Physcion can be synthesized from 2-methylanthraquinone. Physcion can also be synthesized into torososide B and physcion 8-gentiobioside. Physcion can be found in common sage, garden rhubarb, and sorrel, which makes physcion a potential biomarker for the consumption of these food products. Physcion has also been shown to protect lichens against UV-B light, at high altitudes in Alpine regions. The UV-B light stimulates production of parietin and the parietin protects the lichens from damage. Lichens in arctic regions such as Svarlbard retain this capability though they do not encounter damaging levels of UV-B, a capability that could help protect the lichens in case of Ozone layer thinning .
Methyl linolenate
Methyl linolenate prevents the oxidation or pre-oxidation of unsaturated fatty acid methyl esters. Methyl linolenate prevents the oxidation or pre-oxidation of unsaturated fatty acid methyl esters.
Vanillin
CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3578 D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3566; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3549; ORIGINAL_PRECURSOR_SCAN_NO 3546 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3560; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3573; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3575 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.504 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.503 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.500 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.
Stigmasterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.
Isorhamnetin 3-glucoside
Isorhamnetin-3-O-glucoside, a natural compound widely contained in many vegetables and rice, could be metabolized in intestinal microbiota after digestion[1]. Isorhamnetin-3-O-glucoside, a natural compound widely contained in many vegetables and rice, could be metabolized in intestinal microbiota after digestion[1].
Sakuranetin
Annotation level-1 Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2]. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].
Quercetin
Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
Isorhamnetin
Glucoside present in the leaves of Peumus boldus (boldo). Isorhamnetin 3-dirhamnoside is found in fruits. Annotation level-1 Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.
Trifolin
Isolated from Gossypium hirsutum (cotton) and other plant subspecies Isoastragalin is found in fats and oils. Isolated from liquorice (Glycyrrhiza glabra). Acetylastragalin is found in herbs and spices. Widespread occurrence in plant world, e.g. Pinus sylvestris (Scotch pine) and fruits of Scolymus hispanicus (Spanish salsify). Kaempferol 3-galactoside is found in many foods, some of which are horseradish, almond, peach, and tea.
Isoquercetin
C21H20O12 (464.09547200000003)
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.
lupeol
D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].
betulinic acid
Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].
Retusin
Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1]. Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1].
5-hydroxy-2-(4-hydroxyphenyl)-3,7-dimethylchromen-4-one
Hyperoside
C21H20O12 (464.09547200000003)
[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
Harmane
Annotation level-1 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2281; CONFIDENCE confident structure IPB_RECORD: 2961; CONFIDENCE confident structure
Norharmane
D009676 - Noxae > D009498 - Neurotoxins D009676 - Noxae > D009153 - Mutagens IPB_RECORD: 2981; CONFIDENCE confident structure Norharmane (Norharman), a β-carboline alkaloid, is a potent and reversible monoamine oxidase inhibitor, with IC50 values of 6.5 and 4.7 μM for MAO-A and MAO-B, respectively. Norharmane causes antidepressant responses. Norharmane is also a prospective anti-cancer photosensitizer. Norharmane alters polar auxin transport (PAT) by inhibiting PIN2, PIN3 and PIN7 transport proteins, thus causing a significant inhibitory effect on the growth of Arabidopsis thaliana seedlings[1][2][3][4][5][6]. Norharmane (Norharman), a β-carboline alkaloid, is a potent and reversible monoamine oxidase inhibitor, with IC50 values of 6.5 and 4.7 μM for MAO-A and MAO-B, respectively. Norharmane causes antidepressant responses. Norharmane is also a prospective anti-cancer photosensitizer. Norharmane alters polar auxin transport (PAT) by inhibiting PIN2, PIN3 and PIN7 transport proteins, thus causing a significant inhibitory effect on the growth of Arabidopsis thaliana seedlings[1][2][3][4][5][6].
Bergapten
D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.998 D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.995 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2841; CONFIDENCE confident structure Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.
Nordihydroguaiaretic Acid
A tetrol that is butane which is substituted at positions 2 and 3 by 3,4-dihydroxybenzyl groups. Masoprocol, the meso-form found in the leaves of the creosote bush (Larrea divaricata), is a potent lipoxygenase inhibitor. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 1.073 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.074 Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.
Emodin
C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics CONFIDENCE isolated standard relative retention time with respect to 9-anthracene Carboxylic Acid is 1.288 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.291 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.286 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.293 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].
Xanthosine
C10H12N4O6 (284.07568119999996)
A purine nucleoside in which xanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1]. Xanthosine is a nucleoside derived from xanthine and ribose. Xanthosine can increase mammary stem cell population and milk production in cattle and goats[1].
4-hydroxybenzoate
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
Sucrose
C12H22O11 (342.11620619999997)
D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Ferulic acid
(E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.
Vanillic Acid
Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
Herbacetin
Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). A pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].
p-Hydroxybenzoic acid
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
Betulin
Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
Syringic acid
Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.
Neotigogenin
Origin: Plant; SubCategory_DNP: The sterols, Cholestanes
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one
Jyperin
C21H20O12 (464.09547200000003)
Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
pinitol
D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
Oryzanol A
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D009676 - Noxae > D000963 - Antimetabolites From rice bran oil (Oryza sativa). Oryzanol A is found in cereals and cereal products, rice, and fats and oils. γ-Oryzanol is a potent DNA methyltransferases (DNMTs) inhibitor in the striatum of mice. γ-Oryzanol significantly inhibits the activities of DNMT1 (IC50=3.2 μM), DNMT3a (IC50=22.3 μM).
Keioside
Methyl linoleate
D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
Mixture with
4-{5-[(1E)-prop-1-en-1-yl]-1-benzofuran-2-yl}benzene-1,3-diol
Rataniaphenol I
A member of the class of benzofurans that is 1-benzofuran substituted by a 2-hydroxy-4-methoxyphenyl group at position 2 and a prop-1-en-1-yl group at position 5. It is a lignan derivative isolated from the roots of Krameria lappacea.
Masoprocol
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].
Vanillate
Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
Marmesin
Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. A marmesin with R-configuration. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.
Perlolyrine
Lupeol acetate
Lupeyl acetate, also known as lupeyl acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Lupeyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Lupeyl acetate can be found in burdock, date, and fig, which makes lupeyl acetate a potential biomarker for the consumption of these food products. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].
Rataniaphenol III
A member of the class of benzofurans that is 1-benzofuran substituted by a 2-methoxy-4-hydroxyphenyl group at position 2 and a prop-1-en-1-yl group at position 5. It is a lignan derivative isolated from the roots of Krameria lappacea.
(-)-Larreatricin
A lignan that consists of a 3,4-dimethyloxolane ring substituted by 4-hydroxyphenyl groups at positions 2 and 5 respectively (the 2S,3R,4S,5S-stereoisomer). Isolated from the roots of Krameria lappacea, it exhibits anti-inflammatory activity.
Protodioscin
Protodioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. It has a role as a metabolite. It is a steroid saponin, a trisaccharide derivative, a beta-D-glucoside, a pentacyclic triterpenoid and a cyclic hemiketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Protodioscin is a natural product found in Dracaena draco, Borassus flabellifer, and other organisms with data available. See also: Fenugreek seed (part of). A spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties.
Tiliroside
Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
Sexangularetin
A 7-hydroxyflavonol that is kaempferol substituted by a methoxy group at position 8.
rataniaphenol II
A member of the class of benzofurans that is 1-benzofuran substituted by a 4-hydroxyphenyl group at position 2, a methyl group at position 3 and a prop-1-en-1-yl group at position 5. It is a lignan derivative isolated from the roots of Krameria lappacea.
2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy}oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5r,6r)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-6-{[(1r,2s,4s,6r,7s,8r,9s,12s,13s,15r,16r,18s)-6,15-dihydroxy-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
C51H86O25 (1098.5457906000001)
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,15'r,16'r,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy]oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1r,2s,3as,3bs,9ar,9bs,11as)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(2r,3s,4r,5r,6s)-2-{[(2r,3s,4r,5r,6s)-2-{[(2s,3r,4s,5s,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2s,2's,4's,5s,7's,8'r,9'r,12's,13'r,15's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy]oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
(4ar,6as,6br,8as,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3s,4s,5r,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-4-{[(1r,2r,3s,4r,5r)-2,3,4-trihydroxy-5-(hydroxymethyl)cyclohexyl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
4-[(2s,3r)-3-(hydroxymethyl)-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-2-yl]phenol
(2r,3r,4s,5s,6r)-2-{[(1r,6s)-6-hydroxy-3-[(1e,3r)-3-hydroxybut-1-en-1-yl]-2,4,4-trimethylcyclohex-2-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxidanesulfonic acid
(2s,3s,4r,5r,6s)-6-{[5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4-oxochromen-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
2-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)-2-oxoethyl]-5-[(1e)-2-{[2-(4-hydroxyphenyl)ethyl]-c-hydroxycarbonimidoyl}eth-1-en-1-yl]-7-methoxy-2,3-dihydro-1-benzofuran-3-carboximidic acid
5-methoxy-2-[5-(prop-1-en-1-yl)-1-benzofuran-2-yl]phenol
(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-17'-ene-10',16',19'-trione
16-{[5-({4-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl}oxy)-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-10-one
4-[5-(3,4-dihydroxyphenyl)-3,4-dimethyloxolan-2-yl]benzene-1,2-diol
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-(sulfooxy)oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
C42H66O18S (890.3969656000002)
(3s,4r)-2-{[(2s,4s,5r)-2-{[(3r,4r,6r)-6-{[(5as,9as,11as)-1-[(2s,3r,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-2-{[(2s)-3,4,5-trihydroxyoxan-2-yl]oxy}-tetradecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-methoxy-4-[(1r,2's,3s,5r,5'r)-1,2',3-tris(4-hydroxy-3-methoxyphenyl)-4'-methylidene-3,4,6,7-tetrahydro-1h-spiro[2-benzofuran-5,3'-oxolan]-5'-yl]phenol
10-({4,5-dihydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
(1s,2r,6ar,6br,12ar)-10-{[(3r,4s,5r,6r)-3,5-dihydroxy-6-methyl-4-{[(3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
4-{1-hydroxy-2-[4-(prop-1-en-1-yl)phenoxy]propyl}phenol
2-[(2r)-4-[(1s,2s,4s,7s,8r,9s,12s,13r,16s)-16-{[5-hydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
C52H86O23 (1078.5559606000002)
2-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-(3,7-dihydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
2-[(6-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
2-{4-[(1r,2r,4r,6r,8s,9s,12r,13r)-16-{[(2s)-4-hydroxy-6-(hydroxymethyl)-3,5-bis({[(2r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2z)-3-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid
2-(4-{16-[(5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl}-2-methylbutoxy)-6-(hydroxymethyl)oxane-3,4,5-triol
2-[(3,4-dihydroxy-6-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
(1s,2r,6ar,6br,12ar)-1,2,6b,9,9,12a-hexamethyl-10-{[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4a-({[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
(4as,6as,6br,8as,10s,12ar,12br,14bs)-10-hydroxy-2,6a,6b,9,9,12a-hexamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylic acid
5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one
4-[5-(4-hydroxyphenyl)-3,4-dimethyloxolan-2-yl]benzene-1,2-diol
2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
10-hydroxy-2,6a,6b,9,9,12a-hexamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylic acid
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one
2-[(4-hydroxy-6-{[4-hydroxy-6-(4-hydroxy-3-methylbutyl)-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
6-hydroxy-16-{[4-hydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-10-one
2-[5-(prop-1-en-1-yl)-1-benzofuran-2-yl]benzene-1,3,5-triol
2-[5-(3-hydroxyprop-1-en-1-yl)-1-benzofuran-2-yl]-5-methoxyphenol
4-(2-{5-[(2r)-2-hydroxypropyl]-2-methoxyphenyl}prop-2-en-1-yl)phenol
(3ar,5ar,5br,7ar,11ar,11br,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl hexadecanoate
5-hydroxy-2-(4-hydroxy-3-methylphenyl)-3,7-dimethylchromen-4-one
n-(4-{[1-hydroxy-3-(3-methoxy-4-methylphenyl)prop-2-en-1-ylidene]amino}butyl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enimidic acid
(1r,2s,3as,3bs,9ar,9bs,11as)-2-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(2r,3r,4r,5r,6s)-2-{[(2r,3r,4r,5r,6s)-2-{[(3s,4r,5s,6r)-6-{[(2s,3r,4s,5r)-4,5-dihydroxy-2-{[(1s,2s,4s,6s,7s,8r,9s,12s,13r,16r)-6-hydroxy-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}oxan-3-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
4-[(2s,3s,4r,5r)-5-(4-hydroxyphenyl)-3,4-dimethyloxolan-2-yl]phenol
4-[(2r,3r)-7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]phenol
2-(4-methoxyphenyl)-3-methyl-5-(prop-1-en-1-yl)-1-benzofuran
1-acetyl-7-[(5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-9a,11a-dimethyl-11-oxo-tetradecahydrocyclopenta[a]phenanthren-2-yl 4-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentanoate
C51H82O26 (1110.5094072000002)
2-[(4-hydroxy-6-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
C51H86O23 (1066.5559606000002)
4-{5-[(1e)-3-hydroxyprop-1-en-1-yl]-1-benzofuran-2-yl}-3-methoxyphenol
2-({2-[(6-{[1-(3,7-dihydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-2-[(3,4,5-trihydroxyoxan-2-yl)oxy]-tetradecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl)oxy]-5-hydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-4-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6r)-2-{[(2r,3r,4r,5r,6r)-6-{[(1r,2s,3as,3br,5as,7s,9as,9bs,11as)-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-tetradecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
1-ethylidene-2-{[5-hydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-5-{[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
16-{[4-hydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-10-one
10-{[4,5-dihydroxy-3-(sulfooxy)oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
C35H54O12S (698.3335804000001)
2-[(3,5-dihydroxy-2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxan-4-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,4s,5r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,5r)-3,4,5-trihydroxy-6-({[(2r,4s,5s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one
10-({3,5-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
4-[5-(2-hydroxypropyl)-3-methyl-1-benzofuran-2-yl]phenol
(2s,3r,5s)-2-{[(2r,3r,4s)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,9's,13's,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
4-[(2s,3s,4s,5s)-5-(3-hydroxy-4-methoxyphenyl)-3,4-dimethyloxolan-2-yl]benzene-1,2-diol
1-(7-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-8-hydroxy-9a,11a-dimethyl-3h,3ah,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl)ethanone
2-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)-2-oxoethyl]-5-(2-{[2-(4-hydroxyphenyl)ethyl]-c-hydroxycarbonimidoyl}eth-1-en-1-yl)-7-methoxy-2,3-dihydro-1-benzofuran-3-carboximidic acid
2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(1r,2s,4s,6r,7s,8r,9s,12s,13s,15r,16r,18s)-16-{[(2r,3r,4r,5r,6r)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6,15-dihydroxy-7,9,13-trimethyl-6-[(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-10-one
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,15'r,16'r,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy]oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-{[11-hydroxy-9a,11a-dimethyl-1-(6-methylheptan-2-yl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
4-[(2s,3r)-3-(hydroxymethyl)-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]phenol
4-[(2r,3r)-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]phenol
(1r,4r,5r,8r,10s,13r,14r,17r,18r,19r,20s)-10-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo[18.2.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosan-22-one
(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
(1r,2s,4s,6r,7s,8r,9s,12s,13s,16s,18s)-16-{[(2r,3r,4s,5r,6r)-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy})oxan-2-yl]oxy}-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-10-one
5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-17'-en-16'-ol
(2s,3r,4s,5s,6r)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-6-{[(1r,2s,4s,6r,7s,8r,9s,12s,13s,15r,16r,18s)-6,15-dihydroxy-7,9,13-trimethyl-6-[(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-3,8-dimethoxychromen-4-one
2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-{[2-hydroxy-1-(3-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-9-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
10-({4,5-dihydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-1,2,6b,9,9,12a-hexamethyl-4a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
(2e)-3-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)-2-oxoethyl]prop-2-enimidic acid
(3s,4r,6s)-6-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl 3-(4-hydroxyphenyl)prop-2-enoate
2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol
C50H80O21 (1016.5191830000001)
4-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-2-yl]phenol
5-[(1e)-prop-1-en-1-yl]-2-(2,4,6-trimethoxyphenyl)-1-benzofuran
2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,4s,5r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,5s)-3,4,5-trihydroxy-6-({[(2r,4s,5s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one
(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-6-{[(1r,2s,3as,3br,5as,7s,9as,9bs,11s,11as)-11-hydroxy-1-[(2s,3s)-3-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-tetradecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(5r,6r,7r)-5-(4-hydroxyphenyl)-3-methoxy-6,7-dimethyl-5,6,7,8-tetrahydronaphthalen-2-ol
5-(4-hydroxyphenyl)-3-methoxy-6,7-dimethyl-5,6,7,8-tetrahydronaphthalen-2-ol
(2r,3r,4s,5s,6r)-2-{[(1r,3as,3bs,7r,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
1-methoxy-2-[3-(4-methoxyphenyl)prop-1-en-2-yl]-4-(prop-2-en-1-yl)benzene
2-[(4,5-dihydroxy-2-{[4-hydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
2-{5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}benzene-1,3,5-triol
(4as,6as,6br,8as,10s,12ar,12bs,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3,4-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-4a-yl (2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxane-2-carboxylate
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-(sulfooxy)oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
C35H54O12S (698.3335804000001)
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy})oxan-2-yl]oxy}-6-(hydroxymethyl)-2-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
2-[5-(3-hydroxypropyl)-1-benzofuran-2-yl]-5-methoxyphenol
(2r,3r,4s,5s,6r)-2-{[(1s,2s,3as,3bs,7s,9ar,9bs,11as)-2-hydroxy-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-17'-en-16'-ol
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
[(2r,3s,4s,5r,6r)-4-hydroxy-6-{[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-6-hydroxy-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxidanesulfonic acid
C45H74O21S (982.4443074000001)
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-4-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,15'r,16'r,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy]oxan-3-yl]oxy}-4-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-hydroxy-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-yl acetate
5-[(2s,3r)-4-(3-hydroxy-4-methoxyphenyl)-2,3-dimethylbutyl]-2-methoxyphenol
2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,8's,9's,12'r,13's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(1s,3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
(2r,4ar,6as,6br,8as,10s,12ar,12br,14bs)-2,10-dihydroxy-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r,6r)-3,5-dihydroxy-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
4-[(2r,3r)-5-[(2r)-2-hydroxypropyl]-3-methyl-2,3-dihydro-1-benzofuran-2-yl]phenol
4-[5-(3-hydroxyprop-1-en-1-yl)-1-benzofuran-2-yl]-3-methoxyphenol
5-methoxy-2-{5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}benzene-1,3-diol
2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy}oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(5r,6r,7r)-5-(4-hydroxyphenyl)-6,7-dimethyl-5,6,7,8-tetrahydronaphthalene-2,3-diol
2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-4-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-4a-yl 3,4,5-trihydroxy-6-(hydroxymethyl)oxane-2-carboxylate
(1r,4r,5r,8r,10s,13s,14r,17r,18s,19r,20s)-10-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo[18.2.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosan-22-one
5-(prop-1-en-1-yl)-2-(2,4,6-trimethoxyphenyl)-1-benzofuran
4-{7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}phenol
16'-[(5-{[3,5-dihydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
(3r)-3-hydroxy-1h,2h,3h-pyrrolo[2,1-b]quinazolin-9-one
C11H10N2O2 (202.07422400000002)
(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one
(2r,3s)-2-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]-5-[(1e)-2-{[2-(4-hydroxyphenyl)ethyl]-c-hydroxycarbonimidoyl}eth-1-en-1-yl]-7-methoxy-2,3-dihydro-1-benzofuran-3-carboximidic acid
4-[7-methoxy-5-(prop-1-en-1-yl)-1-benzofuran-2-yl]phenol
2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one
(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
2-(4-methoxyphenyl)-5-[(1e)-prop-1-en-1-yl]-1-benzofuran
2-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-1-(3,7-dihydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-7-one
(1r,2s,3as,3bs,9ar,9bs,10r,11as)-2-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-10-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(2e)-3-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid
1-methoxy-2-[3-(4-methoxyphenyl)prop-1-en-2-yl]-4-[(1e)-prop-1-en-1-yl]benzene
(1r,2s,3as,3br,5as,9as,9bs,11as)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-7-one
4-[5-(2-hydroxypropyl)-3-methyl-2,3-dihydro-1-benzofuran-2-yl]phenol
(2-{9h-pyrido[3,4-b]indol-1-yl}furan-3-yl)methanol
(1r,2s,4s,6s,7s,8r,9s,12s,13s,16s,18s)-6-hydroxy-16-{[(2r,3r,4s,5r,6r)-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy})oxan-2-yl]oxy}-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-10-one
(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1'r,2s,2's,3s,4r,4's,5s,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-3,4-dioloxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1r,2s,4s,6r,7s,8r,9s,12s,13s,16s,18s)-16-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-hydroxy-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-10-one
3-methoxy-4-[5-(prop-1-en-1-yl)-1-benzofuran-2-yl]phenol
[(2r,3r,4s,5r)-6-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-3,5-dihydroxy-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}oxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one
(1z,2s,3as,3br,9ar,9bs,11as)-1-ethylidene-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
2-(4-methoxyphenyl)-3-methyl-5-(prop-2-en-1-yl)-1-benzofuran
(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-17'-ene-10',16'-dione
5-[(2s,3r)-4-(3,4-dimethoxyphenyl)-2,3-dimethylbutyl]-2-methoxyphenol
(5r,6r,7r)-5-(4-hydroxy-3-methoxyphenyl)-3-methoxy-6,7-dimethyl-5,6,7,8-tetrahydronaphthalen-2-ol
10-{[4,5-dihydroxy-6-(hydroxymethyl)-3-(sulfooxy)oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
5-[4-(4-hydroxy-3-methoxyphenyl)-2,3-dimethylbutyl]-2-methoxyphenol
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(3e)-4-(4-hydroxy-2,6,6-trimethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohex-1-en-1-yl)but-3-en-2-one
(1r,2s,9ar,11as)-1-[(2s,3r,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
4-{2-[2-methoxy-5-(prop-2-en-1-yl)phenyl]prop-2-en-1-yl}phenol
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,4as,6ar,6br,8ar,10s,12ar,12br,14ar,14bs)-10-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14,14a,14b-tetradecahydro-1h-picene-4a-carboxylate
5-[(1e)-prop-1-en-1-yl]-2-(2,3,4,6-tetramethoxyphenyl)-1-benzofuran
16-[(5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-6,15-dihydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-10-one
(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-6-{[(1s,2s,4s,6s,7s,8r,9s,12s,13r,16s)-4-hydroxy-6-[(3s)-4-hydroxy-3-methylbutyl]-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
2-(4-methoxyphenyl)-5-(prop-1-en-1-yl)-1-benzofuran
2-(4-{16-[(4-hydroxy-5-{[5-hydroxy-6-(hydroxymethyl)-3,4-bis[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl}-2-methylbutoxy)-6-(hydroxymethyl)oxane-3,4,5-triol
1-methoxy-2-[1-(4-methoxyphenyl)propan-2-yl]-4-(prop-1-en-1-yl)benzene
4-[(2r,3r,4r,5r)-5-(4-hydroxyphenyl)-3,4-dimethyloxolan-2-yl]benzene-1,2-diol
2-methoxy-4-[(1s,2'r,3r,5r,5's)-1,2',3-tris(4-hydroxy-3-methoxyphenyl)-4'-methylidene-3,4,6,7-tetrahydro-1h-spiro[2-benzofuran-5,3'-oxolan]-5'-yl]phenol
(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-16'-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-methyl-3-(sulfooxy)oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-6a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid
C42H66O17S (874.4020506000002)
[8a-(hydroxymethyl)-4,6a,6b,12,14b-pentamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-11-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-4-yl]methoxysulfonic acid
C42H70O17S (878.4333490000001)
(1r,2s,9ar,11s,11as)-2,11-dihydroxy-9a,11a-dimethyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8ar,11r,12as,14ar,14br)-11-(hydroxymethyl)-4,4,6a,6b,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(1r,2s,4s,6r,7s,8r,9s,12s,13s,16s,18s)-16-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-hydroxy-7,9,13-trimethyl-6-[(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-10-one
4-[(2s,5s)-5-(4-hydroxyphenyl)-3,4-dimethyl-2,5-dihydrofuran-2-yl]benzene-1,2-diol
1-(3,7-dihydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-2-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r,6r)-3,5-dihydroxy-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol
1,2,6b,9,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
(2r,3r,4s,5r,6r)-2-{[(1r,2s,3as,3bs,7r,9r,9ar,9bs,11as)-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-2-hydroxy-9a,11a-dimethyl-9-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(6-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-3,5-dihydroxy-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}oxan-2-yl)methyl 3-(4-hydroxyphenyl)prop-2-enoate
(2e)-3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid
(1'r,2r,2's,4's,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4s,5r,6r)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-methyl-3-(sulfooxy)oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
C36H56O12S (712.3492296000001)
16-{[3,4-dihydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-10-one
(2r,3r,4s,5s,6r)-2-[(9's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol
1,2,6b,9,9,12a-hexamethyl-6a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid
5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,8-dimethoxychromen-4-one
2-{[1-(3,7-dihydroxy-6-methylheptan-2-yl)-2-hydroxy-9a,11a-dimethyl-9-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
5-hydroxy-2-(4-hydroxyphenyl)-8-methoxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one
(2r,3r,4s,5s,6r)-2-[(2s)-4-[(1r,2s,4s,8s,9s,12s,13s,16s,18r)-16-{[(2r,3r,4s,5r,6r)-4-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
2-(4-hydroxyphenyl)-7-methoxy-5-[(1e)-prop-1-en-1-yl]-1-benzofuran-3-carbaldehyde
2-[(5-{[3,5-dihydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-4-hydroxy-6-(hydroxymethyl)-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
C50H80O21 (1016.5191830000001)
2-methoxy-4-[(1s,2's,3r,5r,5'r)-1,2',3-tris(4-hydroxy-3-methoxyphenyl)-4'-methylidene-3,4,6,7-tetrahydro-1h-spiro[2-benzofuran-5,3'-oxolan]-5'-yl]phenol
5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one
2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one
C21H20O12 (464.09547200000003)
3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl 10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4r,5r,6r)-5-{[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13',19'-pentamethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-ol
(2s,9ar,11as)-1-[(2s,3r,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-2-{[(2s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
4-(2-{2-methoxy-5-[(1e)-prop-1-en-1-yl]phenyl}prop-2-en-1-yl)phenol
2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one
C21H20O12 (464.09547200000003)
4-[5-(3-hydroxypropyl)-1-benzofuran-2-yl]-5-methoxybenzene-1,3-diol
2-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-(3-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
4-[5-(prop-1-en-1-yl)-1-benzofuran-2-yl]benzene-1,3-diol
(1s,6s)-6',7'-dihydro-5'h-spiro[cyclohexane-1,8'-imidazo[1,2-a]pyridin]-6-ol
(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18's)-16'-hydroxy-4',5,7',9',13'-pentamethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6r)-3-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol
C50H80O21 (1016.5191830000001)
(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
2-[(4-hydroxy-6-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3s,4r,5r,6s)-2-{[(2r,3s,4r,5r,6s)-2-{[(2s,3r,4s,5s,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4'r,5r,7'r,8's,9'r,12's,13'r,16'r,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
5-(prop-1-en-1-yl)-2-(2,3,4,6-tetramethoxyphenyl)-1-benzofuran
(1r,2s,3as,3br,9ar,9bs,11s,11as)-2-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-9a,11a-dimethyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(2r,3r)-3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-2,3-dihydro-1-benzopyran-4-one
(2r,3s,4r,5r,6s)-2-{[(2r,3s,4r,5s,6s)-2-{[(2s,3r,4s,5s,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2s,2's,4's,5s,7's,8'r,9'r,12's,13'r,15's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-15'-oloxy]oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-{[(2r,3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-6-{[(1s,2s,3as,3bs,7s,9ar,9bs,11as)-2-hydroxy-1-[(1s)-1-hydroxyethyl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol
(1z,2s,9ar,11as)-1-ethylidene-2-hydroxy-9a,11a-dimethyl-2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4s,5r,6r)-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy})oxan-2-yl]oxy}-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
4-(2-{5-[(2s)-2-hydroxypropyl]-2-methoxyphenyl}prop-2-en-1-yl)phenol
(1s)-1-[(2s,4as,4br,8as,10as)-2,4a,8,8a-tetramethyl-3,4,4b,5,6,9,10,10a-octahydro-1h-phenanthren-2-yl]ethane-1,2-diol
5,7',9',13'-tetramethyl-16'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
1-methoxy-2-[(2s)-1-(4-methoxyphenyl)propan-2-yl]-4-[(1e)-prop-1-en-1-yl]benzene
6a,6b,9,9,12a-pentamethyl-2-methylidene-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
1,2,6b,9,9,12a-hexamethyl-4a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
2-(2,4-dimethoxyphenyl)-5-[(1e)-prop-1-en-1-yl]-1-benzofuran
5-[(2s,3r)-4-(4-hydroxy-3-methoxyphenyl)-2,3-dimethylbutyl]-2-methoxyphenol
6-hydroxy-16-[(4-hydroxy-5-{[5-hydroxy-6-(hydroxymethyl)-3,4-bis[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-10-one
5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one
[(2r,3s,4s,5r)-6-{[5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4-oxochromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
(2s,3s,4s,5r,6r)-6-{[(2r,3r,4r,4ar,6ar,6bs,8as,12as,14ar,14br)-2-hydroxy-4-(hydroxymethyl)-4,6a,6b,14b-tetramethyl-11-methylidene-8a-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
(1r,2s,3as,3bs,9ar,9bs,11as)-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(2r,3r,4s,5s,6s)-2-[(2r)-4-[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-16-{[(2s,3r,4s,5s,6r)-5-{[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy]-6-methoxyoxane-3,4,5-triol
[(2r,3s,4s,5r,6s)-6-{[(2s,3r,4s,5r)-2-{[(1r,2s,3as,3bs,9ar,9bs,11as)-1-[(2s,3s,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-7-oxo-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-3,5-dihydroxyoxan-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate
(1's,2r,2'r,4's,5r,7's,8'r,9's,12'r,13'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-17'-ene-10',16'-dione
10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(1r,6r)-6',7'-dihydro-5'h-spiro[cyclohexane-1,8'-imidazo[1,2-a]pyridin]-6-ol
(2s,9s,13s,17r)-1,7-diazatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadecane
(2e)-n-(4-{[(2e)-1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enimidic acid
4-{2-hydroxy-2-[2-methoxy-5-(prop-1-en-1-yl)phenyl]propyl}phenol
10-{[4,5-dihydroxy-6-methyl-3-(sulfooxy)oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
C36H56O12S (712.3492296000001)
(1r,2s,3as,3bs,9ar,9bs,11as)-2-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,3s)-3-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
10-{[4,5-dihydroxy-6-(hydroxymethyl)-3-(sulfooxy)oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-4a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
C42H66O18S (890.3969656000002)
(2r,3r,4s,5s,6r)-2-[(2r)-4-[(1r,2s,4s,6r,7s,8r,9s,12s,13s,16s,18s)-16-{[(2r,3r,4s,5r,6r)-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3,4-bis({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy})oxan-2-yl]oxy}-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
2-[(2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2r)-2-{[(6s)-3-hydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2'r,4'r,8's,9's,12'r,13'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
(2r,3r,4s,5s,6r)-2-[(2s)-4-[(1r,2s,4s,8s,9s,12s,13s,16s,18r)-16-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-3,5-bis({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
16'-[(3,4-dihydroxy-5-{[5-hydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-6-(hydroxymethyl)oxan-2-yl)oxy]-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
2-[(4-hydroxy-5-{[5-hydroxy-6-(hydroxymethyl)-3,4-bis[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-2-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol
2-methoxy-4-[(1r,2's,3r,5r,5'r)-1,2',3-tris(4-hydroxy-3-methoxyphenyl)-4'-methylidene-3,4,6,7-tetrahydro-1h-spiro[2-benzofuran-5,3'-oxolan]-5'-yl]phenol
(2s)-n-[(2r)-3-(acetyloxy)-2-benzylpropyl]-2-{[hydroxy(phenyl)methylidene]amino}-3-phenylpropanimidic acid
1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate
(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4s,5r,6r)-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-4-{[(3r,4r,5r,6r)-4,5,6-trihydroxyoxan-3-yl]oxy}oxan-2-yl]oxy}-6-(hydroxymethyl)-3-{[(2r,3r,4r,5r,6r)-3,4,5,6-tetrahydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
C54H86O27 (1166.5356206000001)
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-5-{[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4-hydroxy-6-(hydroxymethyl)-2-[(1's,2r,2's,4's,5s,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
C50H80O21 (1016.5191830000001)
(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-(hydroxymethyl)oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid
(1's,2r,2's,4's,7's,8'r,9's,12's,13'r,16's)-5,7',9',13',19'-pentamethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-16'-ol
5-(prop-1-en-1-yl)-2-(2,4,5-trimethoxyphenyl)-1-benzofuran
3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-5-hydroxy-2-(4-hydroxyphenyl)-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]chromen-4-one
2-methoxy-4-[(2r,3r)-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]phenol
4-{7-methoxy-5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}phenol
4-{2-hydroxy-2-[2-(hydroxymethyl)-5-(prop-1-en-1-yl)phenyl]propyl}phenol
[(3s,4s,4ar,6ar,6br,8ar,12r,12as,12br,14ar,14br)-8a-(hydroxymethyl)-4,6a,6b,12,14b-pentamethyl-11-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-4-yl]methoxysulfonic acid
2,10-dihydroxy-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
5-[4-(3-hydroxy-4-methoxyphenyl)-2,3-dimethylbutyl]-2-methoxyphenol
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5r,6r)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxan-3-yl]oxy}-4-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-17'-ene-10',16'-dione
4-[5-(4-hydroxyphenyl)-3,4-dimethyl-2,5-dihydrofuran-2-yl]benzene-1,2-diol
2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(3r,4r,5r,6r)-4,5,6-trihydroxy-3-{[(5s)-3,4,5-trihydroxy-6-({[(2r,4s,5s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}chromen-4-one
(6r,7s,9s,13s,16s)-6-[(3s)-4-hydroxy-3-methylbutyl]-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,16-diol
[(2r,3r,4s,5s,6r)-2-{[(3s,4ar,6ar,6br,8ar,11r,12s,12ar,14ar,14br)-6b-(hydroxymethyl)-4,4,6a,8a,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-yl]oxy}-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxidanesulfonic acid
(2r,3r,4s,5s,6r)-2-{[(1r,2s,3ar,3br,7s,9ar,9bs,11s,11as)-11-hydroxy-9a,11a-dimethyl-1-[(2r)-6-methylheptan-2-yl]-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
16-[(5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-10-one
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3s,4r,5r,6r)-4,5-dihydroxy-6-{[(1s,2s,4s,6s,7s,8r,9s,12s,13r,16s)-6-hydroxy-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(1r,2s,4s,8r,9s,12s,13s,16s,18r)-16-{[(2r,3r,4r,5s,6r)-5-{[(2s,3r,4s,5r,6r)-4-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-10-one
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
n-[(2s)-1-(acetyloxy)-3-phenylpropan-2-yl]-2-{[hydroxy(phenyl)methylidene]amino}-3-phenylpropanimidic acid
C27H28N2O4 (444.20489680000003)
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3,4-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
2-[4-(16-{[4-hydroxy-6-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-6-yl)-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4-hydroxy-2-{[(1s,2s,4s,6s,7s,8r,9s,12s,13r,16s)-6-hydroxy-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2r,3r,4s,5r,6r)-2-{[(1r,2s,3as,3bs,7r,9r,9ar,9bs,11as)-2-hydroxy-1-[(2s,3s)-3-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-9-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-[(4-{[3,5-dihydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl)oxy]-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one
4-[(1r,2r)-1-hydroxy-2-{4-[(1e)-prop-1-en-1-yl]phenoxy}propyl]phenol
2-({2-[(4,5-dihydroxy-6-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)oxan-3-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13's,16's,18's)-16'-{[(2r,3r,4r,5r,6r)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-10'-one
6',7'-dihydro-5'h-spiro[cyclohexane-1,8'-imidazo[1,2-a]pyridin]-6-ol
(2s,3r,4r,5r,6s)-2-{[(2s,3s,4s,5r,6s)-4-hydroxy-2-(hydroxymethyl)-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
3,5,7-trihydroxy-2-(4-hydroxyphenyl)-8-{[(2s,3r,4r,5s,6s)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one
3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid
(4s)-4-hydroxy-4-[(1e,3s)-3-hydroxy-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]-3,5,5-trimethylcyclohex-2-en-1-one
2-(2,4-dimethoxyphenyl)-5-(prop-1-en-1-yl)-1-benzofuran
7,7,12,16-tetramethyl-15-(6-methylhept-5-en-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-(sulfooxy)oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
2-[4-(16-{[4-hydroxy-6-(hydroxymethyl)-3,5-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosa-6,18-dien-6-yl)-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-2-{[(1r,6s)-6-hydroxy-3-[(1e)-3-hydroxybut-1-en-1-yl]-2,4,4-trimethylcyclohex-2-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8ar,11r,12as,14ar,14br)-11-(hydroxymethyl)-4,4,6a,6b,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
(3r,4s,5r,6r)-2-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
4-[3-methyl-5-(prop-1-en-1-yl)-1-benzofuran-2-yl]phenol
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-(sulfooxy)oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
C41H64O17S (860.3864014000001)