Trifolin (BioDeep_00000014695)

 

Secondary id: BioDeep_00000270769

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one

化学式: C21H20O11 (448.1006)
中文名称: 三叶豆苷
谱图信息: 最多检出来源 Viridiplantae(plant) 34.77%

分子结构信息

SMILES: c1(cc(c2c(c1)oc(c(c2=O)O[C@H]1[C@@H]([C@@H]([C@H]([C@H](O1)CO)O)O)O)c1ccc(cc1)O)O)O
InChI: InChI=1S/C21H20O11/c22-7-13-15(26)17(28)18(29)21(31-13)32-20-16(27)14-11(25)5-10(24)6-12(14)30-19(20)8-1-3-9(23)4-2-8/h1-6,13,15,17-18,21-26,28-29H,7H2/t13-,15+,17+,18-,21+/m1/s1

描述信息

Kaempferol 3-o-beta-d-galactopyranoside, also known as trifolin or trifolioside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-o-beta-d-galactopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-d-galactopyranoside can be found in horseradish, which makes kaempferol 3-o-beta-d-galactopyranoside a potential biomarker for the consumption of this food product.
Kaempferol 3-O-beta-D-galactoside is a beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position. It has a role as a plant metabolite and an antifungal agent. It is a beta-D-galactoside, a monosaccharide derivative, a glycosyloxyflavone and a trihydroxyflavone. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferol 3-O-beta-D-galactoside(1-).
Trifolin is a natural product found in Lotus ucrainicus, Saxifraga tricuspidata, and other organisms with data available.
Isoastragalin is found in fats and oils. Isoastragalin is isolated from Gossypium hirsutum (cotton) and other plant species.
A beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position.

同义名列表

42 个代谢物同义名

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one; 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one; 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; 5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-3-((2S,3R,4S,5R,6R)-3,4,5-TRIHYDROXY-6-(HYDROXYMETHYL)OXAN-2-YL)OXYCHROMEN-4-ONE; 4H-1-BENZOPYRAN-4-ONE, 3-(.BETA.-D-GALACTOPYRANOSYLOXY)-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-; 3-(.BETA.-D-GALACTOPYRANOSYLOXY)-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-4H-1-BENZOPYRAN-4-ONE; 4H-1-Benzopyran-4-one, 3-(beta-D-galactopyranosyloxy)-5,7-dihydroxy-2-(4-hydroxyphenyl)-; 5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl beta-D-galactopyranoside; 3-O-b-D-Galactopyranosyloxy-4,5,7-trihydroxyflavone; KAEMPFEROL 3-O-.BETA.-D-GALACTOPYRANOSIDE; KAEMPFEROL 3-.BETA.-D-GALACTOPYRANOSIDE; Kaempferol 3-O-beta-D-galactopyranoside; Kaempferol 3-O-|A-D-galactopyranoside; Kaempferol 3-beta-D-galactopyranoside; kaempferol-3-o-beta-galactopyranoside; Kaempferol 3-O-b-D-galactopyranoside; Kaempferol 3-O-β-D-galactopyranoside; KAEMPFEROL-3-O-D-GALACTOPYRANOSIDE; Kaempferol 3-β-D-galactopyranoside; Kaempferol 3-O-beta-D-galactoside; KAEMPFEROL 3-.BETA.-D-GALACTOSIDE; KAEMPFEROL 3-O-.BETA.-GALACTOSIDE; Kaempferol-3-O-beta-D-galactoside; KAEMPFEROL 3-O-GALACTOPYRANOSIDE; Kaempferol 3-beta-D-galactoside; Kaempferol 3-O-beta-galactoside; Kaempferol 3-O-b-D-galactoside; Kaempferol 3-O-β-D-galactoside; KAEMPFEROL 3-O-D-GALACTOSIDE; Kaempferol 3-O-β-galactoside; Kaempferol 3-β-D-galactoside; kaempferol-3-O-galactoside; KAEMPFEROL 3-O-GALACTOSIDE; Kaempferol 3-galactoside; MEGxp0_000499; Trifolioside; ACon1_000322; 7CKD5ET5SP; trifoliin; Trifolin; Kaempferol 3-O-β-D-galactoside; Kaempferol-3-O-galactoside



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1315 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Lei Peng, Ming Zhao, Huan Li. Method Development and Validation for Simultaneous Determination of Six Flavonoids in Rat Eyes after Oral Administration of Diospyros kaki Leaves Extract by UPLC-MS/MS. Chemical & pharmaceutical bulletin. 2021 Feb; 69(2):218-221. doi: 10.1248/cpb.c20-00562. [PMID: 33268666]
  • Linfeng Xie, Yunlin Cao, Zhikang Zhao, Chuanhong Ren, Mengyun Xing, Boping Wu, Bo Zhang, Changjie Xu, Kunsong Chen, Xian Li. Involvement of MdUGT75B1 and MdUGT71B1 in flavonol galactoside/glucoside biosynthesis in apple fruit. Food chemistry. 2020 May; 312(?):126124. doi: 10.1016/j.foodchem.2019.126124. [PMID: 31926461]
  • Katarzyna Szewczyk, Serhat Sezai Cicek, Christian Zidorn, Sebastian Granica. Phenolic constituents of the aerial parts of Impatiens glandulifera Royle (Balsaminaceae) and their antioxidant activities. Natural product research. 2019 Oct; 33(19):2851-2855. doi: 10.1080/14786419.2018.1499644. [PMID: 30175924]
  • Da-Wool Jeong, Chi Heung Cho, Jong Suk Lee, Seung Hwan Lee, Taewan Kim, Dae-Ok Kim. Deastringent Peel Extracts of Persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) Protect Neuronal PC-12 and SH-SY5Y Cells against Oxidative Stress. Journal of microbiology and biotechnology. 2018 Jul; 28(7):1094-1104. doi: 10.4014/jmb.1801.01013. [PMID: 29975999]
  • Ilina Krasteva, Viktor Bratkov, Franz Bucar, Olaf Kunert, Manfred Kollroser, Magdalena Kondeva-Burdina, Iliana Ionkova. Flavoalkaloids and Flavonoids from Astragalus monspessulanus. Journal of natural products. 2015 Nov; 78(11):2565-71. doi: 10.1021/acs.jnatprod.5b00502. [PMID: 26558405]
  • Agnieszka Kicel, Maria Wolbiś. Study on the phenolic constituents of the flowers and leaves of Trifolium repens L. Natural product research. 2012 Nov; 26(21):2050-4. doi: 10.1080/14786419.2011.637217. [PMID: 22117193]
  • Md Maniruzzaman Manir, Jeong Kee Kim, Byeong-Gon Lee, Surk-Sik Moon. Tea catechins and flavonoids from the leaves of Camellia sinensis inhibit yeast alcohol dehydrogenase. Bioorganic & medicinal chemistry. 2012 Apr; 20(7):2376-81. doi: 10.1016/j.bmc.2012.02.002. [PMID: 22377672]
  • Jia-ming Sun, Bo Zhang, Ren-long Chang, Dou-dan Ye, Hui Zhang. [Study on the chemical constituents of aerial part of Ligusticum jeholense]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2011 Jul; 34(7):1057-9. doi: . [PMID: 22066398]
  • Xin Zhou, Xiuhai Gang, Xiaojian Gong, Chao Zhao, Huaguo Chen. [Glycosides from Periploca forrestii]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Mar; 35(5):610-2. doi: 10.4268/cjcmm20100515. [PMID: 20506822]
  • Qing-Hua Zhang, Ling Zhang, Li-Xia Shang, Cheng-Lei Shao, Yong-Xia Wu. [Studies on the chemical constituents of flowers of Prunus mume]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2008 Nov; 31(11):1666-8. doi: ". [PMID: 19260276]
  • I Orhan, E Küpeli, S Terzioğlu, E Yesilada. Bioassay-guided isolation of kaempferol-3-O-beta-D-galactoside with anti-inflammatory and antinociceptive activity from the aerial part of Calluna vulgaris L. Journal of ethnopharmacology. 2007 Oct; 114(1):32-7. doi: 10.1016/j.jep.2007.06.017. [PMID: 17765419]
  • M S Marzouk, F M Soliman, I A Shehata, M Rabee, G A Fawzy. Flavonoids and biological activities of Jussiaea repens. Natural product research. 2007 May; 21(5):436-43. doi: 10.1080/14786410600943288. [PMID: 17487615]
  • Monica Rosa Loizzo, Ataa Said, Rosa Tundis, Khaled Rashed, Giancarlo Antonio Statti, Antje Hufner, Francesco Menichini. Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytotherapy research : PTR. 2007 Jan; 21(1):32-6. doi: 10.1002/ptr.2008. [PMID: 17072829]
  • Feng Wei, Shuang-Cheng Ma, Lin-Yun Ma, Paul Pui-Hay But, Rui-Chao Lin, Ikhlas A Khan. Antiviral flavonoids from the seeds of Aesculus chinensis. Journal of natural products. 2004 Apr; 67(4):650-3. doi: 10.1021/np030470h. [PMID: 15104496]
  • Tian-Shung Wu, Meei-Yu Hsu, Ping-Chung Kuo, B Sreenivasulu, A G Damu, Chung-Ren Su, Chia-Ying Li, Hsien-Chang Chang. Constituents from the leaves of Phellodendron amurense var. wilsonii and their bioactivity. Journal of natural products. 2003 Sep; 66(9):1207-11. doi: 10.1021/np030034v. [PMID: 14510598]
  • X Wang, Q Zhang. [Studies of the chemical constituents of Ardisia pusilla A. DC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1990 Mar; 15(3):166-7, 191. doi: ". [PMID: 2085404]