Phytol (BioDeep_00000000906)
Secondary id: BioDeep_00000400205
natural product human metabolite PANOMIX_OTCML-2023 Endogenous Chemicals and Drugs
代谢物信息卡片
化学式: C20H40O (296.307899)
中文名称: 植醇, 植物醇
谱图信息:
最多检出来源 Homo sapiens(feces) 0.3%
分子结构信息
SMILES: CC(=CCO)CCCC(C)CCCC(C)CCCC(C)C
InChI: InChI=1/C20H40O/c1-17(2)9-6-10-18(3)11-7-12-19(4)13-8-14-20(5)15-16-21/h15,17-19,21H,6-14,16H2,1-5H3/b20-15+/t18-,19-/m1/s1
描述信息
Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane .
Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol.
Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available.
Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR).
Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1.
Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia.
A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15.
C1907 - Drug, Natural Product > C28269 - Phytochemical
Acquisition and generation of the data is financially supported in part by CREST/JST.
Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
同义名列表
32 个代谢物同义名
2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-; 2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, [R-[R*,R*-(E)]]-; 2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (R-(R*,R*-(E)))-; 2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (2E,7R,11R)-; 3,7,11,15-teramethyl-2-hexadecene-1-ol-, (2E,7R,11R)-; 3,7,11,15-Tetramethyl-2-hexadecen-1-ol-, (2E,7R,11R)-; (2E)(7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-ol; 2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (7R,11R)-; (2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-ol; (2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecen-1-ol; (7R,11R,E)-3,7,11,15-Tetramethylhexadec-2-en-1-ol; (E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-ol; (7R,11R)-3,7,11,15-TETRAMETHYLHEXADEC-2-EN-1-OL; 4-01-00-02208 (Beilstein Handbook Reference); 3R,7R,11R,15-tetramethyl-2E-hexadecen-1-ol; 3,7,11,15-Tetramethylhexadec-2-en-1-ol; EF32FF86-42DC-475E-935A-5C0AE6F1CAA0; PHYTOL (CHIRAL NATURAL ISOMER); (7R,11R,2E)-PHYTOL; UNII-MZQ4XE15TP; (E,R,R)-PHYTOL; PHYTOL [INCI]; PHYTOL, (E)-; trans-Phytol; PHYTOL [MI]; MZQ4XE15TP; (E)-Phytol; Phytol, E-; AI3-24344; Phytol; Phytol,mixture of isomers; (E)?-?Phytol
数据库引用编号
39 个数据库交叉引用编号
- ChEBI: CHEBI:17327
- KEGG: C01389
- PubChem: 5280435
- PubChem: 145386
- HMDB: HMDB0002019
- Metlin: METLIN391
- ChEMBL: CHEMBL1644111
- Wikipedia: Phytol
- LipidMAPS: LMPR0104010002
- MeSH: Phytol
- ChemIDplus: 0000150867
- MetaCyc: PHYTOL
- KNApSAcK: C00003467
- foodb: FDB031117
- chemspider: 4444094
- CAS: 7541-49-3 150-86-7
- CAS: 123164-54-5
- CAS: 150-86-7
- MoNA: PS064102
- MoNA: PS009705
- MoNA: PS009706
- MoNA: PS064101
- MoNA: PS009704
- MoNA: PR100055
- MoNA: PS009702
- MoNA: PS009703
- MoNA: PS009701
- MoNA: PS064104
- MoNA: PS064105
- MoNA: PS064103
- medchemexpress: HY-N3075
- PMhub: MS000009912
- MetaboLights: MTBLC17327
- PubChem: 4582
- CAS: 7541-49-3
- 3DMET: B01446
- NIKKAJI: J541.931J
- NIKKAJI: J6.120D
- RefMet: Phytol
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
360 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(11)
- menaquinol-4 biosynthesis II:
H+ + NADH + menadione ⟶ NAD+ + menadiol
- phytol degradation:
H+ + NADPH + phytenoyl-CoA ⟶ NADP+ + phytanoyl-CoA
- phytol degradation:
NAD+ + phytol ⟶ H+ + NADH + phytenal
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation III:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- menaquinol-4 biosynthesis II:
H2O + phylloquinone ⟶ menadione + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(347)
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation III:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation III:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- phytol salvage pathway:
CTP + phytol ⟶ CDP + H+ + phytyl monophosphate
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation I:
H+ + H2O + pheophorbide a ⟶ CO2 + MeOH + pyropheophorbide a
- chlorophyll a degradation II:
H2O + pheophytin a ⟶ H+ + pheophorbide a + phytol
- chlorophyll a degradation II:
H+ + chlorophyll a ⟶ Mg2+ + pheophytin a
- phytol salvage pathway:
a nucleoside triphosphate + phytyl monophosphate ⟶ a nucleoside diphosphate + phytyl diphosphate
- chlorophyll a degradation I:
H+ + chlorophyllide a ⟶ Mg2+ + pheophorbide a
- phytol salvage pathway:
a nucleoside triphosphate + phytyl monophosphate ⟶ a nucleoside diphosphate + phytyl diphosphate
COVID-19 Disease Map(0)
PathBank(2)
- Chlorophyll a Degradation II:
Water + pheophytin a ⟶ Hydrogen Ion + Phytol + pheophorbide a
- Chlorophyll a Degradation I:
Hydrogen Ion + Water + pheophorbide a ⟶ Carbon dioxide + Methanol + Pyrophaeophorbide a
PharmGKB(0)
274 个相关的物种来源信息
- 342581 - Abies spectabilis: 10.1248/CPB.58.1646
- 260130 - Acca sellowiana: 10.3390/MOLECULES24112053
- 282714 - Achillea abrotanoides: 10.1016/0305-1978(92)90070-T
- 282736 - Achillea filipendulina: 10.1055/S-2007-969446
- 282739 - Achillea grandifolia: 10.1055/S-2006-961401
- 462376 - Acrisione denticulata: 10.1016/0031-9422(88)87031-6
- 41468 - Adenocaulon himalaicum: 10.1055/S-2001-15806
- 39510 - Agave americana: 10.1038/NPLANTS.2016.178
- 49984 - Ajuga chamaepitys: 10.1080/10412905.1999.9701111
- 58508 - Alibertia edulis: 10.1016/S0031-9422(00)89654-5
- 4678 - Allium: 10.1016/J.PHYTOCHEM.2015.02.003
- 204585 - Alsophila podophylla: 10.1248/CPB.51.1311
- 1343630 - Anchietea pyrifolia: 10.1248/CPB.47.890
- 459890 - Anchietea salutaris: 10.1248/CPB.47.890
- 158220 - Anthemis cotula: 10.1055/S-2007-969590
- 1175 - Aphanizomenon: 10.1248/YAKUSHI1947.101.9_852
- 13339 - Apocynum cannabinum: 10.1248/CPB.49.845
- 377125 - Apocynum venetum: 10.1248/CPB.49.845
- 304445 - Apopellia endiviifolia: 10.1016/S0031-9422(00)83816-9
- 3702 - Arabidopsis thaliana:
- 54796 - Argemone mexicana: 10.1515/ZNC-2003-7-813
- 143780 - Aristolochia elegans: 10.1021/NP990483O
- 325095 - Aristolochia littoralis: 10.1021/NP990483O
- 16727 - Aristolochiaceae: 10.1590/S0103-50531999000200009
- 225832 - Artabotrys: 10.1248/CPB.55.1597
- 225833 - Artabotrys hexapetalus: 10.1248/CPB.55.1597
- 35608 - Artemisia annua:
- 262982 - Artemisia apiacea: 10.1007/S11418-007-0175-2
- 259893 - Artemisia argyi Lévl.et Vant.: -
- 72337 - Artemisia campestris: 10.1016/0031-9422(83)80171-X
- 265783 - Artemisia capillaris: 10.1007/S11418-007-0175-2
- 496566 - Artemisia carvifolia: 10.1007/S11418-007-0175-2
- 72339 - Artemisia chamaemelifolia: 10.1016/0031-9422(86)80022-X
- 72341 - Artemisia dracunculus: 10.1016/S0031-9422(00)83171-4
- 401898 - Artemisia gmelinii: 10.1016/0031-9422(86)80022-X
- 72344 - Artemisia inculta: 10.4268/CJCMM20142423
- 637481 - Artemisia keiskeana: 10.1080/10412905.1999.9701189
- 205376 - Artemisia santolinifolia: 10.1016/0031-9422(86)80022-X
- 4220 - Artemisia vulgaris: 10.1080/10412905.1999.9701189
- 52823 - Asclepias curassavica: 10.1021/NP0501740
- 385370 - Aster scaber: 10.1021/JF00034A033
- 76974 - Atalantia buxifolia: 10.1080/10412905.1994.9698400
- 16901 - Aucuba japonica: 10.1248/BPB.17.665
- 1715998 - Baccharis genistelloides: 10.1016/S0031-9422(00)94778-2
- 1654448 - Baccharis sagittalis: 10.1016/S0031-9422(00)94778-2
- 194200 - Ballota nigra: 10.1007/BF00563844
- 3589 - Basella alba: 10.1016/0889-1575(91)90017-Z
- 41492 - Bellis perennis: 10.1016/0031-9422(95)00183-8
- 3504 - Betula: 10.1007/BF02236421
- 42337 - Bidens pilosa: 10.1002/JCCS.200000152
- 1205696 - Blainvillea acmella:
- 427792 - Boerhavia repens: 10.1016/0031-9422(90)80156-B
- 1226055 - Bouchardatia neurococca: 10.1080/10412905.1994.9698435
- 1475377 - Brickellia diffusa: 10.1016/0031-9422(82)83167-1
- 53845 - Caesalpinia: 10.1248/CPB.51.1208
- 53846 - Caesalpinia pulcherrima:
- 1125166 - Calea jamaicensis: 10.1021/NP50035A008
- 54798 - Calocedrus formosana: 10.1016/0031-9422(89)80203-1
- 4443 - Camellia japonica: 10.1007/S11745-999-0466-5
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 2558930 - Carpesium faberi: 10.1016/J.BMCL.2010.10.138
- 167387 - Castanopsis fissa: 10.1016/J.PHYTOCHEM.2011.07.007
- 76317 - Caulerpa racemosa: 10.1016/J.BMC.2014.11.031
- 1472306 - Cecropia pachystachya: 10.1055/S-2008-1034301
- 41511 - Centaurea calcitrapa: 10.1055/S-2007-969197
- 397370 - Centipeda minima:
- 694349 - Chaiturus marrubiastrum: 10.1007/BF00567827
- 187461 - Chamaecyparis formosensis: 10.1016/S0031-9422(99)00074-6
- 48093 - Chengiopanax sciadophylloides: 10.1248/YAKUSHI1947.109.3_188
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 197322 - Chondrophycus papillosus: 10.1007/S10600-011-0022-2
- 317272 - Cineraria parvifolia: 10.1016/0031-9422(82)85251-5
- 1132458 - Cinnamomum kotoense: 10.1021/NP0580210
- 119266 - Cinnamomum sieboldii: 10.1248/YAKUSHI1947.106.1_17
- 558547 - Citrus deliciosa: 10.3390/MOLECULES21060814
- 76966 - Citrus japonica: 10.3390/MOLECULES21060814
- 200542 - Citrus limettioides: 10.3390/MOLECULES21060814
- 37334 - Citrus maxima: 10.3390/MOLECULES21060814
- 171251 - Citrus medica: 10.3390/MOLECULES21060814
- 85571 - Citrus reticulata: 10.3390/MOLECULES21060814
- 237574 - Citrus sunki: 10.3390/MOLECULES21060814
- 37690 - Citrus trifoliata: 10.3390/MOLECULES21060814
- 159034 - Clausena anisata: 10.1002/HLCA.200390259
- 1224754 - Clausena dunniana: 10.1002/HLCA.200390259
- 306377 - Clinopodium acinos: 10.1007/BF00563844
- 204222 - Clinopodium vulgare: 10.1007/BF00563844
- 41839 - Conocephalum conicum: 10.1006/ABBI.1998.0666
- 741633 - Conyza aegyptiaca: 10.1515/ZNB-1989-1219
- 210143 - Corchorus capsularis: 10.3136/FSTR.8.239
- 93759 - Corchorus olitorius: 10.3136/FSTR.8.239
- 1238147 - Corydalis bungeana Turcz.: -
- 158232 - Cota triumfettii: 10.1007/S10600-007-0179-X
- 2815093 - Croton tetradenius: 10.1002/HLCA.200900201
- 3369 - Cryptomeria japonica: 10.1016/0031-9422(95)00417-3
- 1256168 - Curcuma pierreana: 10.1080/10412905.1995.9698516
- 4610 - Cyperus: 10.3390/MOLECULES14082909
- 1423382 - Cyperus conglomeratus: 10.1002/CHIN.200052207
- 512623 - Cyperus rotundus: 10.3390/MOLECULES14082909
- 257571 - Cystoclonium purpureum: 10.1016/S0031-9422(00)85526-0
- 329675 - Daphne odora: 10.1271/BBB1961.47.483
- 2715869 - Daphne papyracea: 10.1271/BBB1961.47.483
- 62298 - Desmarestia aculeata: 10.1016/S0031-9422(00)83559-1
- 1179221 - Desmos chinensis: 10.1016/J.TET.2011.05.070
- 499621 - Dictyota spiralis: 10.1016/J.TET.2009.10.081
- 56917 - Dumortiera hirsuta:
- 91052 - Durvillaea potatorum: 10.1016/S0031-9422(00)90336-4
- 100364 - Elodea canadensis: 10.1016/S0031-9422(00)82564-9
- 1078594 - Erucaria microcarpa: 10.1002/(SICI)1099-1573(199906)13:4<329::AID-PTR458>3.0.CO;2-U
- 102769 - Eupatorium altissimum: 10.1016/S0031-9422(00)81232-7
- 212925 - Euphorbia lathyris: 10.3390/MOLECULES24234322
- 210332 - Euscaphis japonica: 10.1055/S-2007-981551
- 2054263 - Excoecaria acerifolia: 10.3390/MOLECULES15042178
- 46397 - Fatsia japonica: 10.1016/0031-9422(74)80345-6
- 52153 - Festuca rubra: 10.1016/0031-9422(91)84185-U
- 464312 - Fossombronia alaskana: 10.1016/S0031-9422(01)00359-4
- 49266 - Fucus vesiculosus: 10.1016/S0031-9422(00)85865-3
- 1548571 - Geigeria brevifolia: 10.1016/S0031-9422(82)85040-1
- 1548572 - Geigeria burkei: 10.1016/S0031-9422(82)85040-1
- 358560 - Geitlerinema splendidum: 10.1248/YAKUSHI1947.101.9_852
- 49826 - Genista tricuspidata: 10.1007/S10600-011-9903-7
- 99038 - Glebionis coronaria: 10.1271/BBB1961.48.1367
- 672819 - Glechoma hirsuta: 10.1007/BF00563844
- 72940 - Grangea maderaspatana:
- 155637 - Guarea guidonia: 10.1016/S0031-9422(02)00089-4
- 413573 - Guizotia scabra: 10.1016/0031-9422(91)84212-B
- 138603 - Gunnera perpensa: 10.1016/J.PHYTOCHEM.2005.05.024
- 671128 - Gymnodinium nagasakiense: 10.1016/0031-9422(92)80160-G
- 4397 - Hamamelis virginiana: 10.1055/S-2006-957420
- 1745077 - Hebeclinium macrophyllum: 10.1016/S0031-9422(00)84713-5
- 630305 - Helichrysum glomeratum: 10.1016/S0031-9422(00)82740-5
- 2912032 - Heliopsis buphthalmoides: 10.1055/S-2007-969055
- 46415 - Heptapleurum arboricola: 10.1016/S0031-9422(00)85517-X
- 9606 - Homo sapiens: -
- 4513 - Hordeum vulgare: 10.1515/ZNC-1998-9-1006
- 204228 - Hoslundia opposita: 10.1055/S-2006-962206
- 16752 - Houttuynia cordata: 10.1016/S0944-7113(96)80073-0
- 498914 - Hydrangea chinensis: 10.1021/NP0302394
- 65561 - Hypericum perforatum: 10.1080/1478641031000111552
- 453958 - Inula japonica: 10.1016/S0031-9422(00)90865-3
- 89656 - Ipomoea pes-caprae:
- 1521554 - Jaaginema geminatum: 10.1248/YAKUSHI1947.101.9_852
- 50182 - Juniperus chinensis: 10.1016/0031-9422(93)85043-Q
- 2038528 - Justicia heterocarpa: 10.1248/CPB.52.507
- 225107 - Karenia mikimotoi: 10.1016/0031-9422(92)80160-G
- 1127049 - Koanophyllon albicaule: 10.1016/0031-9422(92)83462-8
- 4236 - Lactuca sativa: 10.1007/BF02976937
- 122810 - Lagerstroemia speciosa: 10.1080/10286020310001596024
- 53160 - Lamium amplexicaule: 10.1007/BF00563844
- 2794974 - Lantana ukambensis: 10.1021/NP50020A013
- 197329 - Laurencia intricata: 10.1021/NP50076A016
- 860636 - Laurencia nipponica: 10.1016/J.PHYTOCHEM.2004.07.005
- 39331 - Lavandula latifolia: 10.1248/CPB.38.2283
- 1231670 - Leiocarpa semicalva: 10.1016/0031-9422(92)83119-J
- 4472 - Lemna minor: 10.1016/0031-9422(84)83111-8
- 153348 - Lepidium meyenii: 10.1016/S0031-9422(02)00208-X
- 483847 - Leucas volkensii: 10.1055/S-2006-957354
- 694369 - Leucosceptrum canum: 10.1002/CHIN.200434198
- 694369 - Leucosceptrum canum: 10.1021/OL040040Y
- 1227319 - Liabum floribundum: 10.1016/S0031-9422(00)83499-8
- 4606 - Lolium arundinaceum: 10.1016/0031-9422(91)84185-U
- 4521 - Lolium multiflorum: 10.3892/IJMM.4.4.377
- 33117 - Mandragora officinarum: 10.1016/J.FITOTE.2010.05.013
- 2291702 - Marrubium parviflorum: 10.1080/10412905.1999.9701138
- 164936 - Melaleuca leucadendra: 10.1021/NP9606052
- 579917 - Melampodium cinereum: 10.1016/S0031-9422(00)98076-2
- 2511164 - Microchloropsis: 10.3389/FPLS.2020.00981
- 1898725 - Microglossa pyrifolia: 10.1515/ZNC-2002-11-1212
- 183052 - Milleria quinqueflora: 10.1016/S0031-9422(00)81748-3
- 2072264 - Mollinedia gilgiana: 10.1016/S0031-9422(00)00294-6
- 166991 - Montanoa hibiscifolia: 10.1021/NP50034A016
- 1081520 - Monteverdia ilicifolia: 10.1016/J.FITOTE.2003.12.006
- 1825850 - Monteverdia truncata: 10.1016/J.FITOTE.2003.12.006
- 43522 - Morinda citrifolia:
- 130278 - Mutisia spinosa: 10.1016/S0031-9422(00)85512-0
- 16614 - Myrsinaceae: 10.1016/0031-9422(92)80271-F
- 4431 - Nelumbo lutea: 10.1080/10412905.1991.9697932
- 4432 - Nelumbo nucifera: 10.5650/JOS1956.32.48
- 1609885 - Neolitsea hiiranensis: 10.1016/J.PHYTOCHEM.2011.01.006
- 39349 - Nepeta tuberosa: 10.1016/0031-9422(88)83133-9
- 152892 - Nervilia aragoana: 10.1248/CPB.29.2073
- 2806780 - Nervilia concolor: 10.1248/CPB.29.2073
- 163058 - Nervilia plicata: 10.1248/CPB.29.2073
- 204144 - Ocimum gratissimum: 10.1021/NP50015A012
- 49556 - Oenanthe javanica: 10.1271/BBB.59.526
- 200954 - Ononis natrix:
- 798039 - Ononis speciosa: 10.1016/0031-9422(89)85030-7
- 204151 - Orthosiphon aristatus: 10.1055/S-2007-969136
- 212355 - Oscillatoria amoena: 10.1248/YAKUSHI1947.101.9_852
- 796242 - Ovatus malisuctus: 10.1055/S-2007-981551
- 470590 - Palisada perforata: 10.1007/S10600-011-0022-2
- 2783885 - Parasenecio auriculatus: 10.1248/YAKUSHI1947.94.12_1593
- 374721 - Parentucellia latifolia: 10.1016/0031-9422(90)83042-Y
- 1259760 - Parlibellus delognei: 10.1021/NP50035A010
- 159425 - Passiflora incarnata: 10.1080/10412905.1992.9698081
- 40340 - Pellia epiphylla: 10.1016/S0031-9422(97)00414-7
- 119176 - Pentanema britannicum: 10.1016/S0031-9422(00)90865-3
- 1719525 - Peperomia humilis: 10.1016/S0031-9422(03)00183-3
- 511531 - Peperomia leptostachya: 10.1016/S0031-9422(03)00183-3
- 488003 - Persicaria minor: 10.3390/MOLECULES191119220
- 1155347 - Persicaria mitis: 10.3390/MOLECULES191119220
- 580473 - Persicaria odorata: 10.1080/10412905.1995.9698534
- 455099 - Photinia lucida: 10.1002/CBDV.200900198
- 130377 - Piper aduncum: 10.1002/HLCA.19930760409
- 130385 - Piper auritum: 10.1016/S0031-9422(00)84721-4
- 54803 - Piper kadsura:
- 54803 - Piper kadsura: 10.1016/S0031-9422(98)00067-3
- 538341 - Piper rusbyi: 10.1055/S-2007-967123
- 1465742 - Piper sintenense: 10.1002/HLCA.200390161
- 306935 - Piptostigma fasciculatum: 10.1016/S0305-1978(98)00110-0
- 43073 - Pittosporum tobira: 10.1016/0031-9422(89)80285-7
- 53031 - Plagiochasma rupestre: 10.1016/S0031-9422(99)00452-5
- 33090 - Plants: -
- 94286 - Platycodon grandiflorus: 10.3390/MOLECULES22081280
- 1081571 - Pogostemon benghalensis: 10.1016/S0031-9422(00)80711-6
- 1809638 - Pogostemon parviflorus: 10.1016/S0031-9422(00)80711-6
- 460663 - Porella perrottetiana: 10.1016/0031-9422(90)83030-5
- 139833 - Porella platyphylla: 10.1016/0031-9422(95)00548-X
- 2109368 - Pourthiaea arguta: 10.1002/CBDV.200900198
- 4335 - Primulaceae: 10.1016/0031-9422(92)80271-F
- 39358 - Prunella vulgaris:
- 102107 - Prunus mume: 10.1021/NP020058M
- 232787 - Prunus zippeliana: 10.1248/CPB.41.2007
- 183589 - Pseudo-nitzschia multistriata: 10.3390/MD18060313
- 56535 - Pulicaria dysenterica: 10.1016/0031-9422(81)83087-7
- 178107 - Qualea grandiflora: 10.1590/S0100-40422008000600038
- 139838 - Radula complanata: 10.1016/0031-9422(82)85245-X
- 280841 - Radula perrottetii: 10.1016/S0031-9422(00)90371-6
- 3726 - Raphanus sativus: 10.1021/JF0346206
- 40031 - Rhizophora mangle: 10.1080/10412905.2001.9699622
- 53035 - Ricciocarpos natans:
- 28513 - Salvia divinorum:
- 342062 - Salvia yunnanensis: 10.1055/S-2005-873184
- 127572 - Sargassum siliquastrum: 10.1021/NP50084A012
- 886941 - Saussurea candicans: 10.1016/0031-9422(88)80305-4
- 215256 - Scapania undulata: 10.1016/S0031-9422(00)90406-0
- 375857 - Scolochloa festucacea: 10.1016/0031-9422(91)84185-U
- 53168 - Scutellaria altissima: 10.1007/BF00563844
- 72402 - Senna alexandrina: 10.1055/S-2006-957965
- 155236 - Sideritis candicans: 10.1016/0305-1978(95)00067-4
- 155260 - Sideritis romana: 10.1076/1388-0209(200004)3821-1FT106
- 860692 - Sieruela elegantissima: 10.1016/S0367-326X(99)00071-4
- 860697 - Sieruela hirta: 10.1016/S0367-326X(99)00071-4
- 185192 - Smallanthus connatus: 10.1271/BBB.56.1562
- 185202 - Smallanthus sonchifolius: 10.1271/BBB.56.1562
- 2834065 - Solidago drummondii: 10.1055/S-2007-969570
- 330182 - Solidago flexicaulis: 10.1055/S-2007-969570
- 471149 - Solidago nemoralis: 10.1016/S0031-9422(00)83939-4
- 462879 - Solidago virgaurea: 10.1007/BF02980100
- 1475013 - Spermacoce alata: 10.3987/COM-01-S(K)45
- 2516533 - Spermacoce latifolia: 10.3987/COM-01-S(K)45
- 1603837 - Strobilanthes dimorphotricha: 10.1055/S-2005-873125
- 547782 - Symphyotrichum undulatum: 10.1021/JF00034A033
- 1142 - Synechocystis: 10.1021/NP980006Q
- 1609897 - Syzygium formosanum: 10.1021/NP980313W
- 169606 - Tagetes lucida: 10.1002/(SICI)1099-1026(199701)12:1<47::AID-FFJ610>3.0.CO;2-7
- 128002 - Tanacetum vulgare: 10.1016/J.PHYTOCHEM.2004.08.019
- 1924228 - Terminalia glabrescens: 10.1590/S0103-50532003000300021
- 183089 - Tetragonotheca repanda: 10.1016/0031-9422(88)83037-1
- 1854044 - Teucrium pestalozzae: 10.1080/10412905.1997.9700774
- 210368 - Tilia mandshurica: 10.1080/10412905.1999.9701158
- 82423 - Tilia platyphyllos: 10.1080/10412905.1999.9701158
- 121718 - Tilia tomentosa: 10.1080/10412905.1999.9701158
- 443222 - Toona sinensis:
- 1640469 - Trichilia lepidota: 10.1590/S0103-50532002000300014
- 318066 - Tridax procumbens: 10.1139/V08-097
- 74787 - Tripolium pannonicum: 10.1016/J.BMCL.2015.04.091
- 587543 - Tripolium vulgare: 10.1016/J.BMCL.2015.04.091
- 4565 - Triticum aestivum: 10.1007/S11745-999-0466-5
- 78812 - Vanda falcata: 10.1080/10412905.2000.9699496
- 1008966 - Wendlandia formosana: 10.1080/14786410310001622013
- 179049 - Wiesnerella denudata: 10.1016/0031-9422(91)83456-U
- 159071 - Zanthoxylum ailanthoides: 10.1002/JCCS.200300178
- 1056465 - Zanthoxylum beecheyanum: 10.1002/JCCS.200400159
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Anton Möllerke, Diogo Montes Vidal, Hans Petter Leinaas, Stefan Schulz. Socialane, a Nonaprenyl Terpene Hydrocarbon Surface Lipid from the Collembola Hypogastrura socialis.
Chemistry (Weinheim an der Bergstrasse, Germany).
2024 May; 30(27):e202400272. doi:
10.1002/chem.202400272
. [PMID: 38445549] - Özge Üst, Emine Yalçin, Kültiğin Çavuşoğlu, Burak Özkan. LC-MS/MS, GC-MS and molecular docking analysis for phytochemical fingerprint and bioactivity of Beta vulgaris L.
Scientific reports.
2024 03; 14(1):7491. doi:
10.1038/s41598-024-58338-7
. [PMID: 38553576] - Paula Muñoz, Verónica Tijero, Celia Vincent, Sergi Munné-Bosch. Abscisic acid triggers vitamin E accumulation by transient transcript activation of VTE5 and VTE6 in sweet cherry fruits.
The Biochemical journal.
2024 Feb; ?(?):. doi:
10.1042/bcj20230399
. [PMID: 38314636] - Jill Romer, Katharina Gutbrod, Antonia Schuppener, Michael Melzer, Stefanie J Müller-Schüssele, Andreas J Meyer, Peter Dörmann. Tocopherol and phylloquinone biosynthesis in chloroplasts requires the phytol kinase VTE5 and the farnesol kinase FOLK.
The Plant cell.
2023 Dec; ?(?):. doi:
10.1093/plcell/koad316
. [PMID: 38124486] - Hazem S Hasan, Ashok K Shakya, Hala I Al-Jaber, Hana E Abu-Sal, Lina M Barhoumi. Exploring Echinops polyceras Boiss. from Jordan: Essential Oil Composition, COX, Protein Denaturation Inhibitory Power and Antimicrobial Activity of the Alcoholic Extract.
Molecules (Basel, Switzerland).
2023 May; 28(10):. doi:
10.3390/molecules28104238
. [PMID: 37241978] - Asako Narai-Kanayama, Shin-Ichi Yokosaka, Yuji Seo, Kouji Mikami, Takayuki Yoshino, Hiroko Matsuda. Evidence of increases of phytol and chlorophyllide by enzymatic dephytylation of chlorophylls in smoothie made from spinach leaves.
Journal of food science.
2023 Apr; ?(?):. doi:
10.1111/1750-3841.16588
. [PMID: 37122139] - Jochem Baan, Meisha Holloway-Phillips, Daniel B Nelson, Ansgar Kahmen. The metabolic sensitivity of hydrogen isotope fractionation differs between plant compounds.
Phytochemistry.
2023 Mar; 207(?):113563. doi:
10.1016/j.phytochem.2022.113563
. [PMID: 36528118] - Shengnan Xu, Li Yu, Yuping Hou, Bo Huang, Hong Wang, Dengwu Li, Dongmei Wang. Chemical composition, chemotypic characterization, and histochemical localization of volatile components in different cultivars of Zanthoxylum bungeanum Maxim. leaves.
Journal of food science.
2023 Feb; ?(?):. doi:
10.1111/1750-3841.16490
. [PMID: 36786362] - Jianan Song, Mengyuan Jiang, Yuchen Jin, Hongrui Li, Yanhong Li, Yumei Liu, Haibo Yu, Xiangzhong Huang. Phytol from Faeces Bombycis alleviated migraine pain by inhibiting Nav1.7 sodium channels.
Journal of ethnopharmacology.
2023 Jan; 306(?):116161. doi:
10.1016/j.jep.2023.116161
. [PMID: 36646158] - Bruno Silvestre Lira, Giovanna Gramegna, Paula Amaral, Juliene Dos Reis Moreira, Raquel Tsu Ay Wu, Mateus Henrique Vicente, Fabio Tebaldi Silveira Nogueira, Luciano Freschi, Magdalena Rossi. Phytol recycling: essential, yet not limiting for tomato fruit tocopherol accumulation under normal growing conditions.
Plant molecular biology.
2023 Jan; ?(?):. doi:
10.1007/s11103-022-01331-3
. [PMID: 36587296] - Shanshan Wang, Hua Wang, Fujie Yan, Jie Wang, Songbai Liu. Development of Galloyl Antioxidant for Dispersed and Bulk Oils through Incorporation of Branched Phytol Chain.
Molecules (Basel, Switzerland).
2022 Oct; 27(21):. doi:
10.3390/molecules27217301
. [PMID: 36364126] - Jesica Ramírez-Santos, Fernando Calzada, Jessica Elena Mendieta-Wejebe, Rosa María Ordoñez-Razo, Rubria Marlen Martinez-Casares, Miguel Valdes. Understanding the Antilymphoma Activity of Annona macroprophyllata Donn and Its Acyclic Terpenoids: In Vivo, In Vitro, and In Silico Studies.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27207123
. [PMID: 36296714] - Shubhadeep Roychoudhury, Dipika Das, Sandipan Das, Niraj Kumar Jha, Mahadeb Pal, Adriana Kolesarova, Kavindra Kumar Kesari, Jogen C Kalita, Petr Slama. Clinical Potential of Himalayan Herb Bergenia ligulata: An Evidence-Based Study.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27207039
. [PMID: 36296631] - Marcela Christofoli, Eliangela Cristina Candida Costa, Márcio Fernandes Peixoto, Cassia Cristina Fernandes Alves, Adriano Carvalho Costa, João Batista Fernandes, Moacir Rossi Forim, Wagner L Araújo, Cristiane de Melo Cazal. Nanoparticles Loaded with Essential Oil from Zanthoxylum riedelianum Engl. Leaves: Characterization and Effects on Bemisia tabaci Middle-East Asia Minor 1.
Neotropical entomology.
2022 Oct; 51(5):761-776. doi:
10.1007/s13744-022-00980-9
. [PMID: 35948802] - Elise Albert, Sungsoo Kim, Maria Magallanes-Lundback, Yan Bao, Nicholas Deason, Benoit Danilo, Di Wu, Xiaowei Li, Joshua C Wood, Nolan Bornowski, Michael A Gore, C Robin Buell, Dean DellaPenna. Genome-wide association identifies a missing hydrolase for tocopherol synthesis in plants.
Proceedings of the National Academy of Sciences of the United States of America.
2022 06; 119(23):e2113488119. doi:
10.1073/pnas.2113488119
. [PMID: 35639691] - Burhan Durhan, Emine Yalçın, Kültiğin Çavuşoğlu, Ali Acar. Molecular docking assisted biological functions and phytochemical screening of Amaranthus lividus L. extract.
Scientific reports.
2022 03; 12(1):4308. doi:
10.1038/s41598-022-08421-8
. [PMID: 35279686] - Sethuraman Sathya, Boovaragamoorthy Gowri Manogari, Kaliannan Thamaraiselvi, Sethuraman Vaidevi, Kandasamy Ruckmani, Kasi Pandima Devi. Phytol loaded PLGA nanoparticles ameliorate scopolamine-induced cognitive dysfunction by attenuating cholinesterase activity, oxidative stress and apoptosis in Wistar rat.
Nutritional neuroscience.
2022 Mar; 25(3):485-501. doi:
10.1080/1028415x.2020.1764290
. [PMID: 32406811] - Wentao Yang, Philipp Gutbrod, Katharina Gutbrod, Helga Peisker, Xiaoning Song, Anna-Lena Falz, Andreas J Meyer, Peter Dörmann. 2-Hydroxy-phytanoyl-CoA lyase (AtHPCL) is involved in phytol metabolism in Arabidopsis.
The Plant journal : for cell and molecular biology.
2022 03; 109(5):1290-1304. doi:
10.1111/tpj.15632
. [PMID: 34902195] - Maaike Blankestijn, Vincent W Bloks, Dicky Struik, Nicolette Huijkman, Niels Kloosterhuis, Justina C Wolters, Ronald J A Wanders, Frédéric M Vaz, Markus Islinger, Folkert Kuipers, Bart van de Sluis, Albert K Groen, Henkjan J Verkade, Johan W Jonker. Mice with a deficiency in Peroxisomal Membrane Protein 4 (PXMP4) display mild changes in hepatic lipid metabolism.
Scientific reports.
2022 02; 12(1):2512. doi:
10.1038/s41598-022-06479-y
. [PMID: 35169201] - Youssef Khalil, Sara Carrino, Fujun Lin, Anna Ferlin, Heena V Lad, Francesca Mazzacuva, Sara Falcone, Natalie Rivers, Gareth Banks, Danilo Concas, Carlos Aguilar, Andrew R Haynes, Andy Blease, Thomas Nicol, Raya Al-Shawi, Wendy Heywood, Paul Potter, Kevin Mills, Daniel P Gale, Peter T Clayton. Tissue Proteome of 2-Hydroxyacyl-CoA Lyase Deficient Mice Reveals Peroxisome Proliferation and Activation of ω-Oxidation.
International journal of molecular sciences.
2022 Jan; 23(2):. doi:
10.3390/ijms23020987
. [PMID: 35055171] - Rajaiah Alexpandi, Gurusamy Abirami, Lakkakula Satish, Roshni Prithiviraj Swasthikka, Nataraj Krishnaveni, Rangarajan Jayakumar, Shunmugiah Karutha Pandian, Arumugam Veera Ravi. Tocopherol and phytol possess anti-quorum sensing mediated anti-infective behavior against Vibrio campbellii in aquaculture: An in vitro and in vivo study.
Microbial pathogenesis.
2021 Dec; 161(Pt A):105221. doi:
10.1016/j.micpath.2021.105221
. [PMID: 34627940] - Mohammad Hossain Shariare, Humaira Binte Noor, Junayet Hossain Khan, Jamal Uddin, Syed Rizwan Ahamad, Mohammad A Altamimi, Fars K Alanazi, Mohsin Kazi. Liposomal drug delivery of Corchorus olitorius leaf extract containing phytol using design of experiment (DoE): In-vitro anticancer and in-vivo anti-inflammatory studies.
Colloids and surfaces. B, Biointerfaces.
2021 Mar; 199(?):111543. doi:
10.1016/j.colsurfb.2020.111543
. [PMID: 33360927] - Taketo Fujimoto, Hiroshi Abe, Takayuki Mizukubo, Shigemi Seo. Phytol, a Constituent of Chlorophyll, Induces Root-Knot Nematode Resistance in Arabidopsis via the Ethylene Signaling Pathway.
Molecular plant-microbe interactions : MPMI.
2021 Mar; 34(3):279-285. doi:
10.1094/mpmi-07-20-0186-r
. [PMID: 33166202] - L L Ding, M Matsumura, T Obitsu, T Sugino. Phytol supplementation alters plasma concentrations of formate, amino acids, and lipid metabolites in sheep.
Animal : an international journal of animal bioscience.
2021 Mar; 15(3):100174. doi:
10.1016/j.animal.2021.100174
. [PMID: 33610515] - Shi-Xing Zhou, Xun-Zhi Zhu, Cai-Xia Wei, Kai Shi, Cai-Xia Han, Chi Zhang, Hua Shao. Chemical Profile and Phytotoxic Action of Hibiscus trionum Essential Oil.
Chemistry & biodiversity.
2021 Feb; 18(2):e2000897. doi:
10.1002/cbdv.202000897
. [PMID: 33410569] - Yao-Pin Lin, Yee-Yung Charng. Chlorophyll dephytylation in chlorophyll metabolism: a simple reaction catalyzed by various enzymes.
Plant science : an international journal of experimental plant biology.
2021 Jan; 302(?):110682. doi:
10.1016/j.plantsci.2020.110682
. [PMID: 33288004] - Philipp Gutbrod, Wentao Yang, Goran Vuk Grujicic, Helga Peisker, Katharina Gutbrod, Lin Fang Du, Peter Dörmann. Phytol derived from chlorophyll hydrolysis in plants is metabolized via phytenal.
The Journal of biological chemistry.
2021 Jan; 296(?):100530. doi:
10.1016/j.jbc.2021.100530
. [PMID: 33713704] - Timothy P Durrett, Ruth Welti. The tail of chlorophyll: Fates for phytol.
The Journal of biological chemistry.
2021 Jan; 296(?):100802. doi:
10.1016/j.jbc.2021.100802
. [PMID: 34022219] - Stephanie Krauß, Vanessa Hermann-Ene, Walter Vetter. Fate of free and bound phytol and tocopherols during fruit ripening of two Capsicum cultivars.
Scientific reports.
2020 10; 10(1):17310. doi:
10.1038/s41598-020-74308-1
. [PMID: 33057127] - Songyot Anuchapreeda, Riki Anzawa, Natsima Viriyaadhammaa, Waranya Neimkhum, Wantida Chaiyana, Siriporn Okonogi, Toyonobu Usuki. Isolation and biological activity of agrostophillinol from kaffir lime (Citrus hystrix) leaves.
Bioorganic & medicinal chemistry letters.
2020 07; 30(14):127256. doi:
10.1016/j.bmcl.2020.127256
. [PMID: 32527555] - Mandira Saha, P K Bandyopadhyay. In vivo and in vitro antimicrobial activity of phytol, a diterpene molecule, isolated and characterized from Adhatoda vasica Nees. (Acanthaceae), to control severe bacterial disease of ornamental fish, Carassius auratus, caused by Bacillus licheniformis PKBMS16.
Microbial pathogenesis.
2020 Apr; 141(?):103977. doi:
10.1016/j.micpath.2020.103977
. [PMID: 31953226] - Mohammed Aizouq, Helga Peisker, Katharina Gutbrod, Michael Melzer, Georg Hölzl, Peter Dörmann. Triacylglycerol and phytyl ester synthesis in Synechocystis sp. PCC6803.
Proceedings of the National Academy of Sciences of the United States of America.
2020 03; 117(11):6216-6222. doi:
10.1073/pnas.1915930117
. [PMID: 32123083] - Tomonori Nakanishi, Kazuhiro Kagamizono, Sayaka Yokoyama, Ryoji Suzuki, Hiroyuki Sakakibara, Laurie Erickson, Satoshi Kawahara. Effects of dietary phytol on tissue accumulation of phytanic acid and pristanic acid and on the tissue lipid profiles in mice.
Animal science journal = Nihon chikusan Gakkaiho.
2020 Jan; 91(1):e13424. doi:
10.1111/asj.13424
. [PMID: 32618084] - Wei Zhan, Jie Liu, Qingchun Pan, Hong Wang, Shijuan Yan, Kun Li, Min Deng, Wenqiang Li, Nannan Liu, Qian Kong, Alisdair R Fernie, Jianbing Yan. An allele of ZmPORB2 encoding a protochlorophyllide oxidoreductase promotes tocopherol accumulation in both leaves and kernels of maize.
The Plant journal : for cell and molecular biology.
2019 10; 100(1):114-127. doi:
10.1111/tpj.14432
. [PMID: 31169939] - Ravi Sakthivel, Dicson Sheeja Malar, Govindaraju Archunan, Kasi Pandima Devi. Phytol ameliorated benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice via inhibition of oxidative stress and apoptosis.
Environmental toxicology.
2019 Apr; 34(4):355-363. doi:
10.1002/tox.22690
. [PMID: 30520250] - Katharina Gutbrod, Jill Romer, Peter Dörmann. Phytol metabolism in plants.
Progress in lipid research.
2019 04; 74(?):1-17. doi:
10.1016/j.plipres.2019.01.002
. [PMID: 30629961] - Muhammad Torequl Islam, Eunüs S Ali, Shaikh J Uddin, Subrata Shaw, Md Amirul Islam, Md Iqbal Ahmed, Manik Chandra Shill, Utpal Kumar Karmakar, Nagendra Sastry Yarla, Ishaq N Khan, Md Morsaline Billah, Magdalena D Pieczynska, Gokhan Zengin, Clemens Malainer, Ferdinando Nicoletti, Diana Gulei, Ioana Berindan-Neagoe, Apostol Apostolov, Maciej Banach, Andy W K Yeung, Amr El-Demerdash, Jianbo Xiao, Prasanta Dey, Santosh Yele, Artur Jóźwik, Nina Strzałkowska, Joanna Marchewka, Kannan R R Rengasamy, Jarosław Horbańczuk, Mohammad Amjad Kamal, Mohammad S Mubarak, Siddhartha K Mishra, Jamil A Shilpi, Atanas G Atanasov. Phytol: A review of biomedical activities.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2018 Nov; 121(?):82-94. doi:
10.1016/j.fct.2018.08.032
. [PMID: 30130593] - Leonard Blum, Nadja Tafferner, Ilknur Spring, Jennifer Kurz, Natasja deBruin, Gerd Geisslinger, Michael J Parnham, Susanne Schiffmann. Dietary phytol reduces clinical symptoms in experimental autoimmune encephalomyelitis (EAE) at least partially by modulating NOX2 expression.
Journal of molecular medicine (Berlin, Germany).
2018 10; 96(10):1131-1144. doi:
10.1007/s00109-018-1689-7
. [PMID: 30151738] - Ravi Sakthivel, Dicson Sheeja Malar, Kasi Pandima Devi. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2018 Sep; 105(?):742-752. doi:
10.1016/j.biopha.2018.06.035
. [PMID: 29908495] - Negin Khomarlou, Parviz Aberoomand-Azar, Ardalan Pasdaran Lashgari, Hamid Tebyanian, Ali Hakakian, Reza Ranjbar, Seyed Abdolmajid Ayatollahi. Essential oil composition and in vitro antibacterial activity of Chenopodium album subsp. striatum.
Acta biologica Hungarica.
2018 Jun; 69(2):144-155. doi:
10.1556/018.69.2018.2.4
. [PMID: 29888667] - Iman Kamranfar, Gang-Ping Xue, Takayuki Tohge, Mastoureh Sedaghatmehr, Alisdair R Fernie, Salma Balazadeh, Bernd Mueller-Roeber. Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence.
The New phytologist.
2018 06; 218(4):1543-1557. doi:
10.1111/nph.15127
. [PMID: 29659022] - Fenglin Zhang, Wei Ai, Xiaoquan Hu, Yingying Meng, Cong Yuan, Han Su, Lina Wang, Xiaotong Zhu, Ping Gao, Gang Shu, Qingyan Jiang, Songbo Wang. Phytol stimulates the browning of white adipocytes through the activation of AMP-activated protein kinase (AMPK) α in mice fed high-fat diet.
Food & function.
2018 Apr; 9(4):2043-2050. doi:
10.1039/c7fo01817g
. [PMID: 29570193] - Olaoluwa Omosalewa Olaoluwa, Doyinsola Ayomide James, Oludoyin Adeseun Adigun. Volatile oil analysis of aerial parts of Boerhavia coccinea (Mill.).
Natural product research.
2018 Apr; 32(8):959-962. doi:
10.1080/14786419.2017.1366477
. [PMID: 28826259] - Ji-Yeong An, Huei-Fen Jheng, Hiroyuki Nagai, Kohei Sanada, Haruya Takahashi, Mari Iwase, Natsumi Watanabe, Young-Il Kim, Aki Teraminami, Nobuyuki Takahashi, Rieko Nakata, Hiroyasu Inoue, Shigeto Seno, Hideo Mastuda, Teruo Kawada, Tsuyoshi Goto. A Phytol-Enriched Diet Activates PPAR-α in the Liver and Brown Adipose Tissue to Ameliorate Obesity-Induced Metabolic Abnormalities.
Molecular nutrition & food research.
2018 03; 62(6):e1700688. doi:
10.1002/mnfr.201700688
. [PMID: 29377597] - Marcus V O B Alencar, Muhammad T Islam, Eunus S Ali, José V O Santos, Márcia F C J Paz, João M C Sousa, Sandra M M M Dantas, Siddhartha K Mishra, Ana A C M Cavalcante. Association of Phytol with Toxic and Cytotoxic Activities in an Antitumoral Perspective: A Meta-Analysis and Systemic Review.
Anti-cancer agents in medicinal chemistry.
2018; 18(13):1828-1837. doi:
10.2174/1871520618666180821113830
. [PMID: 30129418] - Livia Spicher, Juliana Almeida, Katharina Gutbrod, Rosa Pipitone, Peter Dörmann, Gaétan Glauser, Magdalena Rossi, Felix Kessler. Essential role for phytol kinase and tocopherol in tolerance to combined light and temperature stress in tomato.
Journal of experimental botany.
2017 12; 68(21-22):5845-5856. doi:
10.1093/jxb/erx356
. [PMID: 29186558] - Avery L McIntosh, Stephen M Storey, Huan Huang, Ann B Kier, Friedhelm Schroeder. Sex-dependent impact of Scp-2/Scp-x gene ablation on hepatic phytol metabolism.
Archives of biochemistry and biophysics.
2017 12; 635(?):17-26. doi:
10.1016/j.abb.2017.10.011
. [PMID: 29051070] - Yao-Pin Lin, Yee-Yung Charng. Supraoptimal activity of CHLOROPHYLL DEPHYTYLASE1 results in an increase in tocopherol level in mature arabidopsis seeds.
Plant signaling & behavior.
2017 Nov; 12(11):e1382797. doi:
10.1080/15592324.2017.1382797
. [PMID: 28937840] - Serena Mezzar, Evelyn De Schryver, Stanny Asselberghs, Els Meyhi, Petruta L Morvay, Myriam Baes, Paul P Van Veldhoven. Phytol-induced pathology in 2-hydroxyacyl-CoA lyase (HACL1) deficient mice. Evidence for a second non-HACL1-related lyase.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2017 Sep; 1862(9):972-990. doi:
10.1016/j.bbalip.2017.06.004
. [PMID: 28629946] - L F Jorge, A B Meniqueti, R F Silva, K A Santos, E A Da Silva, J E Gonçalves, C M De Rezende, N B Colauto, Z C Gazim, G A Linde. Antioxidant activity and chemical composition of oleoresin from leaves and flowers of Brunfelsia uniflora.
Genetics and molecular research : GMR.
2017 Aug; 16(3):. doi:
10.4238/gmr16039714
. [PMID: 28829897] - Stephen M Storey, Huan Huang, Avery L McIntosh, Gregory G Martin, Ann B Kier, Friedhelm Schroeder. Impact of Fabp1/Scp-2/Scp-x gene ablation (TKO) on hepatic phytol metabolism in mice.
Journal of lipid research.
2017 06; 58(6):1153-1165. doi:
10.1194/jlr.m075457
. [PMID: 28411199] - Danilo Landrock, Sherrelle Milligan, Gregory G Martin, Avery L McIntosh, Kerstin K Landrock, Friedhelm Schroeder, Ann B Kier. Effect of Fabp1/Scp-2/Scp-x Ablation on Whole Body and Hepatic Phenotype of Phytol-Fed Male Mice.
Lipids.
2017 05; 52(5):385-397. doi:
10.1007/s11745-017-4249-y
. [PMID: 28382456] - Sherrelle Milligan, Gregory G Martin, Danilo Landrock, Avery L McIntosh, John T Mackie, Friedhelm Schroeder, Ann B Kier. Impact of dietary phytol on lipid metabolism in SCP2/SCPX/L-FABP null mice.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2017 Mar; 1862(3):291-304. doi:
10.1016/j.bbalip.2016.12.002
. [PMID: 27940000] - T Tang, W Mohr, S R Sattin, D R Rogers, P R Girguis, A Pearson. Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180T grown photoautotrophically and photoheterotrophically.
Geobiology.
2017 03; 15(2):324-339. doi:
10.1111/gbi.12221
. [PMID: 28042698] - Itzamná Baqueiro-Peña, José Á Guerrero-Beltrán. Physicochemical and antioxidant characterization of Justicia spicigera.
Food chemistry.
2017 Mar; 218(?):305-312. doi:
10.1016/j.foodchem.2016.09.078
. [PMID: 27719914] - Lei Wang, Qingwei Li, Aihong Zhang, Wen Zhou, Rui Jiang, Zhipan Yang, Huixia Yang, Xiaochun Qin, Shunhua Ding, Qingtao Lu, Xiaogang Wen, Congming Lu. The Phytol Phosphorylation Pathway Is Essential for the Biosynthesis of Phylloquinone, which Is Required for Photosystem I Stability in Arabidopsis.
Molecular plant.
2017 01; 10(1):183-196. doi:
10.1016/j.molp.2016.12.006
. [PMID: 28007557] - Ramanathan Srinivasan, Ramar Mohankumar, Arunachalam Kannappan, Veeramani Karthick Raja, Govindaraju Archunan, Shunmugiah Karutha Pandian, Kandasamy Ruckmani, Arumugam Veera Ravi. Exploring the Anti-quorum Sensing and Antibiofilm Efficacy of Phytol against Serratia marcescens Associated Acute Pyelonephritis Infection in Wistar Rats.
Frontiers in cellular and infection microbiology.
2017; 7(?):498. doi:
10.3389/fcimb.2017.00498
. [PMID: 29259923] - Ramanathan Srinivasan, Kannan Rama Devi, Arunachalam Kannappan, Shunmugiah Karutha Pandian, Arumugam Veera Ravi. Piper betle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro.
Journal of ethnopharmacology.
2016 Dec; 193(?):592-603. doi:
10.1016/j.jep.2016.10.017
. [PMID: 27721053] - Charles L Cantrell, A Maxwell P Jones, Abbas Ali. Isolation and Identification of Mosquito (Aedes aegypti) Biting-Deterrent Compounds from the Native American Ethnobotanical Remedy Plant Hierochloë odorata (Sweetgrass).
Journal of agricultural and food chemistry.
2016 Nov; 64(44):8352-8358. doi:
10.1021/acs.jafc.6b01668
. [PMID: 27744691] - Adrielli Tenfen, Diogo Alexandre Siebert, Celina Noriko Yamanaka, Caio Maurício Mendes de Córdova, Dilamara Riva Scharf, Edésio Luiz Simionatto, Michele Debiasi Alberton. Chemical composition and evaluation of the antimicrobial activity of the essential oil from leaves of Eugenia platysema.
Natural product research.
2016 Sep; 30(17):2007-11. doi:
10.1080/14786419.2015.1107056
. [PMID: 26595394] - Stephanie Krauß, Simon Hammann, Walter Vetter. Phytyl Fatty Acid Esters in the Pulp of Bell Pepper (Capsicum annuum).
Journal of agricultural and food chemistry.
2016 Aug; 64(32):6306-11. doi:
10.1021/acs.jafc.6b02645
. [PMID: 27458658] - Moacir Dos Santos Andrade, Leandro do Prado Ribeiro, Paulo Cesar Borgoni, Maria Fátima das Graças Fernandes da Silva, Moacir Rossi Forim, João Batista Fernandes, Paulo Cezar Vieira, José Djair Vendramin, Marcos Antônio Machado. Essential Oil Variation from Twenty Two Genotypes of Citrus in Brazil-Chemometric Approach and Repellency Against Diaphorina citri Kuwayama.
Molecules (Basel, Switzerland).
2016 Jun; 21(6):. doi:
10.3390/molecules21060814
. [PMID: 27338332] - Vanessa G Alves, Elisa A da Rosa, Laura L M de Arruda, Bruno A Rocha, Ciomar A Bersani Amado, Silvana M O Santin, Armando M Pomini, Cleuza C da Silva. Acute toxicity, antiedematogenic activity, and chemical constituents of Palicourea rigida Kunth.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2016 Mar; 71(3-4):39-43. doi:
10.1515/znc-2015-0036
. [PMID: 26927220] - Juliana Almeida, Mariana da Silva Azevedo, Livia Spicher, Gaétan Glauser, Katharina vom Dorp, Luzia Guyer, Andrea del Valle Carranza, Ramón Asis, Amanda Pereira de Souza, Marcos Buckeridge, Diego Demarco, Cécile Bres, Christophe Rothan, Lázaro Eustáquio Pereira Peres, Stefan Hörtensteiner, Félix Kessler, Peter Dörmann, Fernando Carrari, Magdalena Rossi. Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner.
Journal of experimental botany.
2016 Feb; 67(3):919-34. doi:
10.1093/jxb/erv504
. [PMID: 26596763] - Jéssica P Costa, Md T Islam, Pauline S Santos, Paula B Ferreira, George L S Oliveira, Marcus V O B Alencar, Marcia F C J Paz, Éverton L F Ferreira, Chistiane M Feitosa, Antonia M G L Citó, Damião P Sousa, Ana Amelia C Melo-Cavalcante. Evaluation of Antioxidant Activity of Phytol Using Non- and Pre-Clinical Models.
Current pharmaceutical biotechnology.
2016 ; 17(14):1278-1284. doi:
10.2174/1389201017666161019155715
. [PMID: 27774891] - Yin-Hua Cheng, Ih-Sheng Chen, Ying-Chi Lin, Chun-Wei Tung, Hsun-Shuo Chang, Chia-Chi Wang. Attenuation of antigen-specific T helper 1 immunity by Neolitsea hiiranensis and its derived terpenoids.
PeerJ.
2016; 4(?):e2758. doi:
10.7717/peerj.2758
. [PMID: 28344896] - Xiaowei Xin, Qingshen Liu, Yingying Zhang, Demin Gao. Chemical composition and antibacterial activity of the essential oil from Pyrrosia tonkinensis (Giesenhagen) Ching.
Natural product research.
2016; 30(7):853-6. doi:
10.1080/14786419.2015.1062759
. [PMID: 26214127] - Da-Wei Zhang, Shu Yuan, Fei Xu, Feng Zhu, Ming Yuan, Hua-Xun Ye, Hong-Qing Guo, Xin Lv, Yanhai Yin, Hong-Hui Lin. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis.
Plant, cell & environment.
2016 Jan; 39(1):12-25. doi:
10.1111/pce.12438
. [PMID: 25158995] - Josiane Mello da Silva, Luciana Maria Ribeiro Antinarelli, Antônia Ribeiro, Elaine Soares Coimbra, Elita Scio. The effect of the phytol-rich fraction from Lacistema pubescens against Leishmania amazonensis is mediated by mitochondrial dysfunction.
Experimental parasitology.
2015 Dec; 159(?):143-50. doi:
10.1016/j.exppara.2015.09.009
. [PMID: 26424529] - Md Torequl Islam, Marcus Vinícius Oliveira Barros de Alencar, Katia da Conceição Machado, Keylla da Conceição Machado, Ana Amélia de Carvalho Melo-Cavalcante, Damiao Pergentino de Sousa, Rivelilson Mendes de Freitas. Phytol in a pharma-medico-stance.
Chemico-biological interactions.
2015 Oct; 240(?):60-73. doi:
10.1016/j.cbi.2015.07.010
. [PMID: 26296761] - Eija M Selkälä, Remya R Nair, Werner Schmitz, Ari-Pekka Kvist, Myriam Baes, J Kalervo Hiltunen, Kaija J Autio. Phytol is lethal for Amacr-deficient mice.
Biochimica et biophysica acta.
2015 Oct; 1851(10):1394-405. doi:
10.1016/j.bbalip.2015.07.008
. [PMID: 26248199] - Katharina Vom Dorp, Georg Hölzl, Christian Plohmann, Marion Eisenhut, Marion Abraham, Andreas P M Weber, Andrew D Hanson, Peter Dörmann. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis.
The Plant cell.
2015 Oct; 27(10):2846-59. doi:
10.1105/tpc.15.00395
. [PMID: 26452599] - Jennifer Mach. Phytol from Degradation of Chlorophyll Feeds Biosynthesis of Tocopherols.
The Plant cell.
2015 Oct; 27(10):2676. doi:
10.1105/tpc.15.00860
. [PMID: 26475867] - Nitin Chauhan, Peeyush Kumar, Sapna Mishra, Sharad Verma, Anushree Malik, Satyawati Sharma. Insecticidal activity of Jatropha curcas extracts against housefly, Musca domestica.
Environmental science and pollution research international.
2015 Oct; 22(19):14793-800. doi:
10.1007/s11356-015-4686-1
. [PMID: 25989859] - Alessandro Venditti, Armandodoriano Bianco, Luana Quassinti, Massimo Bramucci, Giulio Lupidi, Silvia Damiano, Fabrizio Papa, Sauro Vittori, Laura Maleci Bini, Claudia Giuliani, Domenico Lucarini, Filippo Maggi. Phytochemical Analysis, Biological Activity, and Secretory Structures of Stachys annua (L.) L. subsp. annua (Lamiaceae) from Central Italy.
Chemistry & biodiversity.
2015 Aug; 12(8):1172-83. doi:
10.1002/cbdv.201400275
. [PMID: 26265569] - M I Lupak, M R Khokhla, G Ya Hachkova, O P Kanyuka, N I Klymyshyn, Ya P Chajka, M I Skybitska, N O Sybirna. [THE ALKALOID-FREE FRACTION FROM Galega officinalis EXTRACT PREVENTS OXIDATIVE STRESS UNDER EXPERIMENTAL DIABETES MELLITUS].
Ukrainian biochemical journal.
2015 Jul; 87(4):78-86. doi:
10.15407/ubj87.04.078
. [PMID: 26547967] - Rodrigo Alonso, Federico J Berli, Rubén Bottini, Patricia Piccoli. Acclimation mechanisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines.
Plant physiology and biochemistry : PPB.
2015 Jun; 91(?):56-60. doi:
10.1016/j.plaphy.2015.03.011
. [PMID: 25885355] - Yi-Li Chou, Chia-Yun Ko, Long-Fang O Chen, Chih-Chung Yen, Jei-Fu Shaw. Purification and immobilization of the recombinant Brassica oleracea Chlorophyllase 1 (BoCLH1) on DIAION®CR11 as potential biocatalyst for the production of chlorophyllide and phytol.
Molecules (Basel, Switzerland).
2015 Feb; 20(3):3744-57. doi:
10.3390/molecules20033744
. [PMID: 25719743] - Astrid Mork-Jansson, Ann Kristin Bue, Daniela Gargano, Clemens Furnes, Veronika Reisinger, Janine Arnold, Karol Kmiec, Lutz Andreas Eichacker. Lil3 Assembles with Proteins Regulating Chlorophyll Synthesis in Barley.
PloS one.
2015; 10(7):e0133145. doi:
10.1371/journal.pone.0133145
. [PMID: 26172838] - Dinesh Gupta, Tina Ip, Michael L Summers, Chhandak Basu. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.
Bioengineered.
2015; 6(1):33-41. doi:
10.4161/21655979.2014.979702
. [PMID: 25424521] - Satoshi Nakaya, Atsushi Usami, Tomohito Yorimoto, Mitsuo Miyazawa. Characteristic Chemical Components and Aroma-active Compounds of the Essential Oils from Ranunculus nipponicus var. submersus Used in Japanese Traditional Food.
Journal of oleo science.
2015; 64(6):595-601. doi:
10.5650/jos.ess14265
. [PMID: 25891110] - Peng Yang, Ding-Quan Liu, Tong-Jun Liang, Jia Li, Hai-Yan Zhang, Ai-Hong Liu, Yue-Wei Guo, Shui-Chun Mao. Bioactive constituents from the green alga Caulerpa racemosa.
Bioorganic & medicinal chemistry.
2015 Jan; 23(1):38-45. doi:
10.1016/j.bmc.2014.11.031
. [PMID: 25497963] - Opeyemi N Avoseh, Ope-oluwa O Oyedeji, Kayode Aremu, Benedicta N Nkeh-Chungag, Sandile P Songca, Samuel O Oluwafemi, Adebola O Oyedeji. Chemical composition and anti-inflammatory activities of the essential oils from Acacia mearnsii de Wild.
Natural product research.
2015; 29(12):1184-8. doi:
10.1080/14786419.2014.983504
. [PMID: 25422136] - Yohei Ishibashi, Yusuke Nagamatsu, Tomofumi Miyamoto, Naoyuki Matsunaga, Nozomu Okino, Kuniko Yamaguchi, Makoto Ito. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa.
Biochemical and biophysical research communications.
2014 Oct; 452(4):873-80. doi:
10.1016/j.bbrc.2014.08.056
. [PMID: 25157808] - Nageshwar R Yepuri, Stephen A Holt, Greta Moraes, Peter J Holden, Khondker R Hossain, Stella M Valenzuela, Michael James, Tamim A Darwish. Stereoselective synthesis of perdeuterated phytanic acid, its phospholipid derivatives and their formation into lipid model membranes for neutron reflectivity studies.
Chemistry and physics of lipids.
2014 Oct; 183(?):22-33. doi:
10.1016/j.chemphyslip.2014.04.004
. [PMID: 24794716] - Luzia Guyer, Silvia Schelbert Hofstetter, Bastien Christ, Bruno Silvestre Lira, Magdalena Rossi, Stefan Hörtensteiner. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato.
Plant physiology.
2014 Sep; 166(1):44-56. doi:
10.1104/pp.114.239541
. [PMID: 25033826] - Wei Zhang, Tianqi Liu, Guodong Ren, Stefan Hörtensteiner, Yongming Zhou, Edgar B Cahoon, Chunyu Zhang. Chlorophyll degradation: the tocopherol biosynthesis-related phytol hydrolase in Arabidopsis seeds is still missing.
Plant physiology.
2014 Sep; 166(1):70-9. doi:
10.1104/pp.114.243709
. [PMID: 25059706] - Jiajia Guo, Yun Yuan, Danfeng Lu, Baowen Du, Liang Xiong, Jiangong Shi, Lijuan Yang, Wanli Liu, Xiaohong Yuan, Guolin Zhang, Fei Wang. Two natural products, trans-phytol and (22E)-ergosta-6,9,22-triene-3β,5α,8α-triol, inhibit the biosynthesis of estrogen in human ovarian granulosa cells by aromatase (CYP19).
Toxicology and applied pharmacology.
2014 Aug; 279(1):23-32. doi:
10.1016/j.taap.2014.05.008
. [PMID: 24853760] - Xiao-Kai Chen, Fa-Huan Ge. [Chemical components from essential oil of Pandanus amaryllifolius leaves].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2014 Apr; 37(4):616-20. doi:
. [PMID: 25345137]
- Kaori Takahashi, Atsushi Takabayashi, Ayumi Tanaka, Ryouichi Tanaka. Functional analysis of light-harvesting-like protein 3 (LIL3) and its light-harvesting chlorophyll-binding motif in Arabidopsis.
The Journal of biological chemistry.
2014 Jan; 289(2):987-99. doi:
10.1074/jbc.m113.525428
. [PMID: 24275650] - B Pejin, A Savic, M Sokovic, J Glamoclija, A Ciric, M Nikolic, K Radotic, M Mojovic. Further in vitro evaluation of antiradical and antimicrobial activities of phytol.
Natural product research.
2014; 28(6):372-6. doi:
10.1080/14786419.2013.869692
. [PMID: 24422895] - Beauty Etinosa Omoruyi, Anthony Jide Afolayan, Graeme Bradley. Chemical composition profiling and antifungal activity of the essential oil and plant extracts of Mesembryanthemum edule (L.) bolus leaves.
African journal of traditional, complementary, and alternative medicines : AJTCAM.
2014; 11(4):19-30. doi:
10.4314/ajtcam.v11i4.4
. [PMID: 25392576] - Oladipupo A Lawal, Isiaka A Ogunwande, Atinuke F Salvador, Adetayo A Sanni, Andy R Opoku. Pachira glabra Pasq. essential oil: chemical constituents, antimicrobial and insecticidal activities.
Journal of oleo science.
2014; 63(6):629-35. doi:
10.5650/jos.ess13179
. [PMID: 24881772] - Edith Malecki, Christine Knies, Emma Werz, Helmut Rosemeyer. Mitsunobu reactions of 5-fluorouridine with the terpenols phytol and nerol: DNA building blocks for a biomimetic lipophilization of nucleic acids.
Chemistry & biodiversity.
2013 Dec; 10(12):2209-20. doi:
10.1002/cbdv.201300107
. [PMID: 24327441] - Nguyen X Nhiem, Phan V Kiem, Chau V Minh, Nanyoung Kim, Seonju Park, Hwa Young Lee, Eun Sil Kim, Young Ho Kim, Sohyun Kim, Young-Sang Koh, Seung Hyun Kim. Diarylheptanoids and flavonoids from viscum album inhibit LPS-stimulated production of pro-inflammatory cytokines in bone marrow-derived dendritic cells.
Journal of natural products.
2013 Apr; 76(4):495-502. doi:
10.1021/np300490v
. [PMID: 23484668] - Ran Tao, Cheng-Zhang Wang, Zhen-Wu Kong. Antibacterial/antifungal activity and synergistic interactions between polyprenols and other lipids isolated from Ginkgo biloba L. leaves.
Molecules (Basel, Switzerland).
2013 Feb; 18(2):2166-82. doi:
10.3390/molecules18022166
. [PMID: 23434869] - Mohamed M Elmazar, Hanan S El-Abhar, Mona F Schaalan, Nahla A Farag. Phytol/Phytanic acid and insulin resistance: potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations.
PloS one.
2013; 8(1):e45638. doi:
10.1371/journal.pone.0045638
. [PMID: 23300941] - Mary H Grace, Carmen Lategan, Rocky Graziose, Peter J Smith, Ilya Raskin, Mary Ann Lila. Antiplasmodial activity of the ethnobotanical plant Cassia fistula.
Natural product communications.
2012 Oct; 7(10):1263-6. doi:
"
. [PMID: 23156984] - Sukanya Keawsa-ard, Boonsom Liawruangrath, Saisunee Liawruangrath, Aphiwat Teerawutgulrag, Stephen G Pyne. Chemical constituents and antioxidant and biological activities of the essential oil from leaves of Solanum spirale.
Natural product communications.
2012 Jul; 7(7):955-8. doi:
. [PMID: 22908592]