NCBI Taxonomy: 1892259
Aphanizomenonaceae (ncbi_taxid: 1892259)
found 464 associated metabolites at family taxonomy rank level.
Ancestor: Nostocales
Child Taxonomies: Umezakia, Aphanizomenon, Nodularia, Cyanospira, Anabaenopsis, Raphidiopsis, Cuspidothrix, Chrysosporum, Dolichospermum, Amphiheterocytum, Sphaerospermopsis, Cylindrospermopsis, unclassified Aphanizomenonaceae
Stigmasterol
Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol
beta-Carotene
Beta-carotene is a cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. It has a role as a biological pigment, a provitamin A, a plant metabolite, a human metabolite, a mouse metabolite, a cofactor, a ferroptosis inhibitor and an antioxidant. It is a cyclic carotene and a carotenoid beta-end derivative. Beta-carotene, with the molecular formula C40H56, belongs to the group of carotenoids consisting of isoprene units. The presence of long chains of conjugated double bonds donates beta-carotene with specific colors. It is the most abundant form of carotenoid and it is a precursor of the vitamin A. Beta-carotene is composed of two retinyl groups. It is an antioxidant that can be found in yellow, orange and green leafy vegetables and fruits. Under the FDA, beta-carotene is considered as a generally recognized as safe substance (GRAS). Beta-Carotene is a natural product found in Epicoccum nigrum, Lonicera japonica, and other organisms with data available. Beta-Carotene is a naturally-occurring retinol (vitamin A) precursor obtained from certain fruits and vegetables with potential antineoplastic and chemopreventive activities. As an anti-oxidant, beta carotene inhibits free-radical damage to DNA. This agent also induces cell differentiation and apoptosis of some tumor cell types, particularly in early stages of tumorigenesis, and enhances immune system activity by stimulating the release of natural killer cells, lymphocytes, and monocytes. (NCI04) beta-Carotene is a metabolite found in or produced by Saccharomyces cerevisiae. A carotenoid that is a precursor of VITAMIN A. Beta carotene is administered to reduce the severity of photosensitivity reactions in patients with erythropoietic protoporphyria (PORPHYRIA, ERYTHROPOIETIC). See also: Lycopene (part of); Broccoli (part of); Lycium barbarum fruit (part of). Beta-Carotene belongs to the class of organic compounds known as carotenes. These are a type of polyunsaturated hydrocarbon molecules containing eight consecutive isoprene units. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Beta-carotene is therefore considered to be an isoprenoid lipid molecule. Beta-carotene is a strongly coloured red-orange pigment abundant in fungi, plants, and fruits. It is synthesized biochemically from eight isoprene units and therefore has 40 carbons. Among the carotenes, beta-carotene is distinguished by having beta-rings at both ends of the molecule. Beta-Carotene is biosynthesized from geranylgeranyl pyrophosphate. It is the most common form of carotene in plants. In nature, Beta-carotene is a precursor (inactive form) to vitamin A. Vitamin A is produed via the action of beta-carotene 15,15-monooxygenase on carotenes. In mammals, carotenoid absorption is restricted to the duodenum of the small intestine and dependent on a class B scavenger receptor (SR-B1) membrane protein, which is also responsible for the absorption of vitamin E. One molecule of beta-carotene can be cleaved by the intestinal enzyme Beta-Beta-carotene 15,15-monooxygenase into two molecules of vitamin A. Beta-Carotene contributes to the orange color of many different fruits and vegetables. Vietnamese gac and crude palm oil are particularly rich sources, as are yellow and orange fruits, such as cantaloupe, mangoes, pumpkin, and papayas, and orange root vegetables such as carrots and sweet potatoes. Excess beta-carotene is predominantly stored in the fat tissues of the body. The most common side effect of excessive beta-carotene consumption is carotenodermia, a physically harmless condition that presents as a conspicuous orange skin tint arising from deposition of the carotenoid in the outermost layer of the epidermis. Yellow food colour, dietary supplement, nutrient, Vitamin A precursor. Nutriceutical with antioxidation props. beta-Carotene is found in many foods, some of which are summer savory, gram bean, sunburst squash (pattypan squash), and other bread product. A cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins
Zeaxanthin
Zeaxanthin is a carotenoid xanthophyll and is one of the most common carotenoid found in nature. It is the pigment that gives corn, saffron, and many other plants their characteristic color. Zeaxanthin breaks down to form picrocrocin and safranal, which are responsible for the taste and aroma of saffron Carotenoids are among the most common pigments in nature and are natural lipid soluble antioxidants. Zeaxanthin is one of the two carotenoids (the other is lutein) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli and eggs, are associated with a significant reduction in the risk for cataract (up to 20\\%) and for age-related macular degeneration (up to 40\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations. (PMID: 11023002). Zeaxanthin has been found to be a microbial metabolite, it can be produced by Algibacter, Aquibacter, Escherichia, Flavobacterium, Formosa, Gramella, Hyunsoonleella, Kordia, Mesoflavibacter, Muricauda, Nubsella, Paracoccus, Siansivirga, Sphingomonas, Zeaxanthinibacter and yeast (https://reader.elsevier.com/reader/sd/pii/S0924224417302571?token=DE6BC6CC7DCDEA6150497AA3E375097A00F8E0C12AE03A8E420D85D1AC8855E62103143B5AE0B57E9C5828671F226801). It is a marker for the activity of Bacillus subtilis and/or Pseudomonas aeruginosa in the intestine. Higher levels are associated with higher levels of Bacillus or Pseudomonas. (PMID: 17555270; PMID: 12147474) Zeaxanthin is a carotenol. It has a role as a bacterial metabolite, a cofactor and an antioxidant. It derives from a hydride of a beta-carotene. Zeaxanthin is a most common carotenoid alcohols found in nature that is involved in the xanthophyll cycle. As a coexistent isomer of lutein, zeaxanthin is synthesized in plants and some micro-organisms. It gives the distinct yellow color to many vegetables and other plants including paprika, corn, saffron and wolfberries. Zeaxanthin is one of the two primary xanthophyll carotenoids contained within the retina of the eye and plays a predominant component in the central macula. It is available as a dietary supplement for eye health benefits and potential prevention of age-related macular degeneration. Zeaxanthin is also added as a food dye. Zeaxanthin is a natural product found in Bangia fuscopurpurea, Erythrobacter longus, and other organisms with data available. Carotenoids found in fruits and vegetables. Zeaxanthin accumulates in the MACULA LUTEA. See also: Saffron (part of); Corn (part of); Lycium barbarum fruit (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Phytol
Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
gamma-Cadinene
(-)-gamma-cadinene is a member of the cadinene family of sesquiterpenes in which the isopropyl group is cis to the hydrogen at the adjacent bridgehead carbon (the 1R,4aS,8aS enantiomer). It has a role as a metabolite. It is a cadinene, a member of octahydronaphthalenes and a gamma-cadinene. It is an enantiomer of a (+)-gamma-cadinene. (-)-gamma-Cadinene is a natural product found in Xylopia sericea, Chromolaena odorata, and other organisms with data available. A member of the cadinene family of sesquiterpenes in which the isopropyl group is cis to the hydrogen at the adjacent bridgehead carbon (the 1R,4aS,8aS enantiomer). gamma-Cadinene is found in allspice. gamma-Cadinene is a constituent of citronella oil.
Cholesterol
Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
Canthaxanthin
Canthaxanthin, also known as Cantaxanthin, Cantaxanthine, or Canthaxanthine is a keto-carotenoid, a pigment widely distributed in nature. Carotenoids belong to a larger class of phytochemicals known as terpenoids. Canthaxanin is also classified as a xanthophyll. Xanthophylls are yellow pigments and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. Both are carotenoids. Xanthophylls and carotenes are similar in structure, but xanthophylls contain oxygen atoms while carotenes are purely hydrocarbons, which do not contain oxygen. Their content of oxygen causes xanthophylls to be more polar (in molecular structure) than carotenes and causes their separation from carotenes in many types of chromatography. (Carotenes are usually more orange in color than xanthophylls. Canthaxanthin is naturally found in bacteria, algae and some fungi. Canthaxanthin is associated with E number E161g and is approved for use as a food coloring agent in different countries, including the United States and the EU. Canthaxanthin is used as poultry feed additive to yield red color in skin and yolks. The European Union permits the use of canthaxanthin in feedstuff at a maximum content of 25 mg/kg of final feedstuff while the United States allows the use of this pigment in broiler chicken and salmonid fish feeds. Canthoxanthin was first isolated in edible chanterelle mushroom (Cantharellus cinnabarinus), from which it derived its name. It has also been found in green algae, bacteria, archea (a halophilic archaeon called Haloferax alexandrines), fungi and bioaccumulates in tissues and egg yolk from wild birds and at low levels in crustaceans and fish such as carp, golden grey mullet, and seabream. Canthaxanthin is not found in wild Atlantic Salmon, but is a minor carotenoid in Pacific Salmon. Canthaxanthin is used in farm-raised trout to give a red/orange color to their flesh similar to wild trout. Canthaxanthin has been used as a food additive for egg yolk, in cosmetics and as a pigmenting agent for human skin applications. It has also been used as a feed additive in fish and crustacean farms. Canthaxanthin is a potent lipid-soluble antioxidant (PMID: 2505240). Canthaxanthin increases resistance to lipid peroxidation primarily by enhancing membrane alpha-tocopherol levels and secondarily by providing weak direct antioxidant activity. Canthaxanthin biosynthesis in bacteria and algae proceeds from beta-carotene via the action of an enzyme known as a beta-carotene ketolase, that is able to add a carbonyl group to carbon 4 and 4 of the beta carotene molecule. Food colouring. Constituent of the edible mushroom (Cantharellus cinnabarinus), sea trout, salmon and brine shrimp. It is used in broiler chicken feed to enhance the yellow colour of chicken skin D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
echinenone
A carotenone that is beta-carotene in which the 4 position has undergone formal oxidation to afford the corresponding ketone. Isolated as orange-red crystals, it is widely distributed in marine invertebrates. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.
Brassicasterol
Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].
Heptadecane
Heptadecane, also known as CH3-[CH2]15-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Heptadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an organic compound, an alkane hydrocarbon with the chemical formula C17H36. The most compact and branched isomer would be tetra-tert-butylmethane, but its existence is believed to be impossible due to steric hindrance. The name may refer to any of 24894 theoretically possible structural isomers, or to a mixture thereof. Heptadecane is an alkane tasting compound. heptadecane has been detected, but not quantified, in several different foods, such as lemon balms, coconuts, orange bell peppers, allspices, and pepper (c. annuum). This could make heptadecane a potential biomarker for the consumption of these foods. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. Indeed, it is believed to be the smallest "impossible" alkane. Heptadecane, also known as ch3-[ch2]15-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an alkane tasting compound and can be found in a number of food items such as papaya, orange bell pepper, pepper (spice), and red bell pepper, which makes heptadecane a potential biomarker for the consumption of these food products. Heptadecane can be found primarily in saliva. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes .
Pentadecane
Pentadecane, also known as ch3-[ch2]13-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentadecane is considered to be a hydrocarbon lipid molecule. Pentadecane is an alkane and waxy tasting compound and can be found in a number of food items such as dill, papaya, yellow bell pepper, and pepper (c. annuum), which makes pentadecane a potential biomarker for the consumption of these food products. Pentadecane can be found primarily in saliva. Pentadecane is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pentadecane is an alkane hydrocarbon with the chemical formula C15H32 . Pentadecane belongs to the family of Acyclic Alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2
Germacrene D
Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.
Neosaxitoxin
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents Neosaxitoxin is produced by Protogonyaulax and found in shellfis D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Gonyautoxin V
Gonyautoxin V is found in mollusks. Gonyautoxin V is produced by Gonyaulax and Protogonyaulax species. Production by Gonyaulax and Protogonyaulax subspecies Gonyautoxin V is found in mollusks. D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
Epimuurolene
Gamma-cadinene, also known as D-G-cadinene or gamma-cadinene, (+)-isomer, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Gamma-cadinene is a wood tasting compound and can be found in a number of food items such as hyssop, lemon balm, sweet orange, and common sage, which makes gamma-cadinene a potential biomarker for the consumption of these food products. Gamma-cadinene can be found primarily in saliva. Chemically, the cadinenes are bicyclic sesquiterpenes. The term cadinene has sometimes also been used in a broad sense to refer to any sesquiterpene with the so-called cadalane (4-isopropyl-1,6-dimethyldecahydronaphthalene) carbon skeleton. Because of the large number of known double-bond and stereochemical isomers, this class of compounds has been subdivided into four subclasses based on the relative stereochemistry at the isopropyl group and the two bridgehead carbon atoms. The name cadinene is now properly used only for the first subclass below, which includes the compounds originally isolated from cade oil. Only one enantiomer of each subclass is depicted, with the understanding that the other enantiomer bears the same subclass name .
gamma-Muurolene
gamma-Muurolene is found in carrot. gamma-Muurolene is a constituent of Pinus sylvestris (Scotch pine).
Lupeol acetate
Poriferasterol
1-Heptadecene
1-heptadecene is a member of the class of compounds known as unsaturated aliphatic hydrocarbons. Unsaturated aliphatic hydrocarbons are aliphatic Hydrocarbons that contains one or more unsaturated carbon atoms. These compounds contain one or more double or triple bonds. Thus, 1-heptadecene is considered to be a hydrocarbon lipid molecule. 1-heptadecene can be found in burdock and safflower, which makes 1-heptadecene a potential biomarker for the consumption of these food products.
Lupeol acetate
Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].
Stigmasterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.
Germacrene D
(-)-germacrene D is a germacrene D. It is an enantiomer of a (+)-germacrene D. (-)-Germacrene D is a natural product found in Teucrium montanum, Stachys obliqua, and other organisms with data available. See also: Clary Sage Oil (part of).
Cholesterol
A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
Norharmane
D009676 - Noxae > D009498 - Neurotoxins D009676 - Noxae > D009153 - Mutagens IPB_RECORD: 2981; CONFIDENCE confident structure Norharmane (Norharman), a β-carboline alkaloid, is a potent and reversible monoamine oxidase inhibitor, with IC50 values of 6.5 and 4.7 μM for MAO-A and MAO-B, respectively. Norharmane causes antidepressant responses. Norharmane is also a prospective anti-cancer photosensitizer. Norharmane alters polar auxin transport (PAT) by inhibiting PIN2, PIN3 and PIN7 transport proteins, thus causing a significant inhibitory effect on the growth of Arabidopsis thaliana seedlings[1][2][3][4][5][6]. Norharmane (Norharman), a β-carboline alkaloid, is a potent and reversible monoamine oxidase inhibitor, with IC50 values of 6.5 and 4.7 μM for MAO-A and MAO-B, respectively. Norharmane causes antidepressant responses. Norharmane is also a prospective anti-cancer photosensitizer. Norharmane alters polar auxin transport (PAT) by inhibiting PIN2, PIN3 and PIN7 transport proteins, thus causing a significant inhibitory effect on the growth of Arabidopsis thaliana seedlings[1][2][3][4][5][6].
Brassicasterol
An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].
β-Carotene
The novel carbohydrate-derived b-carboline, 1-pentahydroxypentyl-1,2,3,4-tetrahydro-b-carboline-3-carboxylic acid, was identified in fruit- and vegetable-derived products such as juices, jams, and tomato sauces. This compound occurred as two diastereoisomers, a cis isomer (the major compound) and a trans isomer, ranging from undetectable amounts to 6.5 ug/g. Grape, tomato, pineapple, and tropical juices exhibited the highest amount of this alkaloid (up to 3.8 mg/L), whereas apple, banana, and peach juices showed very low or nondetectable levels. This tetrahydro-b-carboline was also found in jams (up to 0.45 ug/g), and a relative high amount was present in tomato concentrate (6.5 ug/g) and sauce (up to 1.8 ug/g). This b-carboline occurred in fruit-derived products as a glycoconjugate from a chemical condensation of d-glucose and l-tryptophan that is highly favored at low pH values and high temperature. Production, processing treatments, and storage of fruit juices and jams can then release this b-carboline. Fruit-derived products and other foods containing this compound might be an exogenous dietary source of this glucose-derived tetrahydro-b-carboline.(PMID: 12137498) [HMDB] Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.
Phytol
Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
Zeaxanthin
Meso-zeaxanthin (3R,3´S-zeaxanthin) is a xanthophyll carotenoid, as it contains oxygen and hydrocarbons, and is one of the three stereoisomers of zeaxanthin. Of the three stereoisomers, meso-zeaxanthin is the second most abundant in nature after 3R,3´R-zeaxanthin, which is produced by plants and algae. To date, meso-zeaxanthin has been identified in specific tissues of marine organisms and in the macula lutea, also known as the "yellow spot", of the human retina . Meso-zeaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Meso-zeaxanthin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Meso-zeaxanthin can be found in channel catfish, crustaceans, and fishes, which makes meso-zeaxanthin a potential biomarker for the consumption of these food products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.
g-Cadinene
N-HEPTADECANE
A straight-chain alkane with 17 carbon atoms. It is a component of essential oils from plants like Opuntia littoralis and Annona squamosa.
Pentadecane
A straight-chain alkane with 15 carbon atoms. It is a component of volatile oils isolated from plants species like Scandix balansae.
canthaxanthin
A carotenone that consists of beta,beta-carotene bearing two oxo substituents at positions 4 and 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Lupeol acetate
Lupeyl acetate, also known as lupeyl acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Lupeyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Lupeyl acetate can be found in burdock, date, and fig, which makes lupeyl acetate a potential biomarker for the consumption of these food products. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].
Gonyautoxin 2
D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
Gonyautoxin V
D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
(+)-gamma-cadinene
A member of the cadinene family of sesquiterpenes in which the isopropyl group is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,4aR,8aR enantiomer).
Avenasterol
A stigmastane sterol that is 5alpha-stigmastane carrying a hydroxy group at position 3beta and double bonds at positions 7 and 24.
2-[(3,27-dihydroxyoctacosyl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3s)-3-methyl-2-({[(3s,6s,9s,12s,15r)-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-3-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C38H61N7O9 (759.4530536000001)
3-methyl-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-7-methyl-3,12-bis[2-(methylsulfanyl)ethyl]-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C44H65N7O9S2 (899.4284960000001)
(3as,4r,10as)-6-amino-10,10-dihydroxy-4-[(c-hydroxycarbonimidoyloxy)methyl]-2-imino-1h,3h,3ah,4h,8h,9h-pyrrolo[1,2-c]purin-5-ium-5-olate
1,3,3-trimethyl-2-[(9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene
(2s,3r,4s,5s,6r)-2-{[(3s,25s)-3,25-dihydroxyhexacosyl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
3-phenyl-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-3-(2-methanesulfinylethyl)-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]propanoic acid
C47H63N7O10S (917.4356898000001)
2-[({3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-(4-hydroxyphenyl)propanoic acid
(2s,3s)-2-({[(3s,6s,9s,12s,15r)-3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-(2-methanesulfinylethyl)-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
C44H63N7O12S (913.4255198000001)
(2s)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-(4-hydroxyphenyl)propanoic acid
(5r,8s,11r,12s,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-8-(2-phenylethyl)-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
2,4,4-trimethyl-3-[(9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-2-en-1-one
2-{[25-(3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2-hydroxy-2,6,10,14,19,23-hexamethylpentacosa-4,6,8,10,12,14,16,18,20,22,24-undecaen-3-yl]oxy}-6-methyloxane-3,4,5-triol
3-methyl-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-7-methyl-3-[2-(methylsulfanyl)ethyl]-8-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C45H67N7O9S (881.4720732000001)
3-methyl-2-[({2,5,11,14-tetrahydroxy-12-isopropyl-7-methyl-3-[2-(methylsulfanyl)ethyl]-8-oxo-6,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C44H65N7O8S (851.4615090000001)
1-[(1r,4r,6s)-4-hydroxy-9-azabicyclo[4.2.1]non-2-en-2-yl]propan-1-one
C11H17NO2 (195.12592220000002)
(2s)-n-(5-carbamimidamido-1-oxopentan-2-yl)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-phenylbutanoyl]pyrrolidine-2-carboximidic acid
(2s,3r,4s,5s,6r)-2-{[(3r,25r)-3,25-dihydroxyhexacosyl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(4s)-1-(2-{[2-(acetyloxy)-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl)-n-(5-carbamimidamido-1-oxopentan-2-yl)-4-methylpyrrolidine-2-carboximidic acid
C33H44N6O8 (652.3220464000001)
n-sulfo{[(3as,4r,10as)-5,10,10-trihydroxy-2,6-diimino-hexahydropyrrolo[1,2-c]purin-4-yl]methoxy}carboximidic acid
3-methyl-2-({[2,5,11,14-tetrahydroxy-3-(hydroxymethyl)-7-methyl-12-[2-(methylsulfanyl)ethyl]-8-oxo-6,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C42H61N7O9S (839.4251256000001)
3-methyl-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-3-(2-methanesulfinylethyl)-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C44H65N7O10S (883.4513390000001)
1-(2-{[2-(acetyloxy)-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl)-n-(5-carbamimidamido-1-oxopentan-2-yl)pyrrolidine-2-carboximidic acid
(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-8-[2-(methylsulfanyl)ethyl]-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
C47H70N10O12S (998.4895140000001)
(1s,6r)-5-propanoyl-9-azabicyclo[4.2.1]non-4-en-3-one
(2e,5r,6r,9r,12r,13r,16r)-9-(4-carbamimidamidobutyl)-2-ethylidene-3,7,10,14-tetrahydroxy-12-[(1e,3z,5s,6r)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,6,13-trimethyl-19-oxo-1,4,8,11,15-pentaazacyclononadeca-3,7,10,14-tetraene-5,16-dicarboxylic acid
[(3as,4r,10as)-10,10-dihydroxy-2,6-diimino-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-12-(2-methanesulfinylethyl)-7-methyl-8-oxo-6,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C44H63N7O11S (897.4306048000001)
(2s)-n-[(3s)-1-carbamimidoyl-2-hydroxypiperidin-3-yl]-1-[(2r)-2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carboximidic acid
n-sulfo{[(3as,4r,10as)-10,10-dihydroxy-2,6-diimino-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxy}carboximidic acid
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-12-isopropyl-7-methyl-8-oxo-6,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C44H63N7O10 (849.4636178000001)
(2z,5r,9s,12s,13s,16r)-9-(3-carbamimidamidopropyl)-2-ethylidene-3,7,10,14-tetrahydroxy-12-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,13-dimethyl-19-oxo-1,4,8,11,15-pentaazacyclononadeca-3,7,10,14-tetraene-5,16-dicarboxylic acid
(2s,3r)-2-({[(3s,6s,9r)-6-[(2r)-butan-2-yl]-2,5,8-trihydroxy-3-[2-(4-hydroxyphenyl)ethyl]-1,4,7-triazacyclotrideca-1,4,7-trien-9-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
(2s,3r,4s,5s,6r)-2-{[(3s,25r)-3,25-dihydroxyhexacosyl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(3as,7as)-n-(5-carbamimidamido-1-oxopentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxyoctylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
C37H58N6O10 (746.4214208000001)
n-(5-carbamimidamido-1-hydroxypentan-2-yl)-1-[(2s)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl]pyrrolidine-2-carboximidic acid
(3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
26-hydroxy-28-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octacosan-2-one
(3as,4r,10s,10as)-4-(hydroxymethyl)-2,6-diimino-octahydropyrrolo[1,2-c]purin-10-ol
C9H16N6O2 (240.13346760000002)
10-{2-[3-(pent-2-en-1-yl)oxiran-2-yl]ethenyl}oxecan-2-one
[(4s,5r,6s,8s,10r)-10-[(r)-hydroxy(2-hydroxy-6-oxo-1h-pyrimidin-4-yl)methyl]-5-methyl-2,11,12-triazatricyclo[6.3.1.0⁴,¹²]dodec-1-en-6-yl]oxidanesulfonic acid
C15H21N5O7S (415.11616360000005)
(1s,9s)-1,10-dimethyl-10-azatricyclo[7.2.1.0²,⁷]dodeca-2,4,6-trien-4-ol
15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-8-[(4-hydroxyphenyl)methyl]-18-[(1e,3e)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
(2s)-2-{[(2s,3r)-3-{[(2s)-2-{[(2r)-2-({2-[(2r)-2-{[(2s,3s,4e,6e,8s,9s)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-carboxy-n-methylbutanamido]-1-hydroxyprop-2-en-1-ylidene}amino)-1-hydroxypropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-3-carboxy-1-hydroxy-2-methylpropylidene]amino}-5-carbamimidamidopentanoic acid
(2z,5r,6s,9s,12s,13s,16r)-9-(3-carbamimidamidopropyl)-2-ethylidene-3,7,10,14-tetrahydroxy-12-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-16-(methoxycarbonyl)-1,6,13-trimethyl-19-oxo-1,4,8,11,15-pentaazacyclononadeca-3,7,10,14-tetraene-5-carboxylic acid
5-carbamimidamido-2-({[1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl)-4-methylpyrrolidin-2-yl](hydroxy)methylidene}amino)pentanoic acid
3-phenyl-2-[({2,5,11,14-tetrahydroxy-6,9-bis[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-3-(2-methanesulfinylethyl)-7-methyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]propanoic acid
C47H63N7O11S (933.4306048000001)
(2s,5r,8s,11r,12s,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-2-(hydroxymethyl)-8-[2-(4-hydroxyphenyl)ethyl]-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
C53H76N10O14 (1076.5542196000001)
n-[2-(1-carbamimidoyl-2,5-dihydropyrrol-3-yl)ethyl]-10-{[3-(hexanoyloxy)-6-[(hexanoyloxy)methyl]-4,5-dihydroxyoxan-2-yl]oxy}-3,12-dihydroxy-7-(2-{[1-hydroxy-2-methoxy-3-(sulfooxy)propylidene]amino}-3-methylpentanoyl)-2-oxa-4,7-diazatricyclo[6.3.1.0¹,⁵]dodec-3-ene-6-carboximidic acid
n-(5-carbamimidamido-1-hydroxypentan-2-yl)-1-(2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl)-4-methylpyrrolidine-2-carboximidic acid
(3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
C35H56N6O10 (720.4057716000001)
3-methyl-2-({[2,5,11,14-tetrahydroxy-3-(hydroxymethyl)-12-isopropyl-7-methyl-8-oxo-6,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C42H61N7O9 (807.4530536000001)
(5r,8s,11r,12s,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-8-[2-(methylsulfanyl)ethyl]-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
C48H72N10O12S (1012.5051632000001)
(2s)-n-[(3r)-1-carbamimidoyl-2-hydroxypiperidin-3-yl]-1-[(2r)-2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carboximidic acid
3-methyl-2-[({2,5,8-trihydroxy-3-[2-(4-hydroxyphenyl)ethyl]-6-isopropyl-1,4,7-triazacyclotrideca-1,4,7-trien-9-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C28H43N5O7 (561.3162328000001)
5-carbamimidamido-2-({[(2s)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)pentanoic acid
(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-8-(2-methanesulfonylethyl)-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
(2s)-2-{[(2s,3r)-3-{[(2s)-2-{[(2r)-2-({2-[(4r)-4-{[(2s,3s,4e,6e,8s,9s)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-carboxy-n-methylbutanamido]-1-hydroxyprop-2-en-1-ylidene}amino)-1-hydroxypropylidene]amino}-1-hydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-carboxy-1-hydroxy-2-methylpropylidene]amino}-5-carbamimidamidopentanoic acid
C53H76N10O14 (1076.5542196000001)
(2s,3s)-2-({[(3s,6s)-3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
C41H59N7O9 (793.4374044000001)
(2s)-n-[(3s)-1-carbamimidoyl-2-hydroxypiperidin-3-yl]-1-[(2r)-2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl]-4-methylpyrrolidine-2-carboximidic acid
(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-8-(2-methanesulfinylethyl)-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
C47H70N10O13S (1014.4844290000001)
(2s)-2-{[(2s,3r)-3-{[(2z)-2-[(4r)-4-{[(2s,3s,4e,6e,8s,9s)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-carboxy-n-methylbutanamido]-1-hydroxybut-2-en-1-ylidene]amino}-3-carboxy-1-hydroxy-2-methylpropylidene]amino}-5-carbamimidamidopentanoic acid
(2s)-2-({[(3s,6s)-3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-(4-hydroxyphenyl)propanoic acid
(2s)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl]pyrrolidine-2-carboximidic acid
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-7-methyl-8-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
3-phenyl-2-[({2,5,11,14-tetrahydroxy-12-isopropyl-7-methyl-3-[2-(methylsulfanyl)ethyl]-8-oxo-6,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]propanoic acid
C47H63N7O8S (885.4458598000001)
(2r,3r,4r,5r,6s)-2-{[(3s,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e,24e)-25-[(3s,4s)-3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2-hydroxy-2,6,10,14,19,23-hexamethylpentacosa-4,6,8,10,12,14,16,18,20,22,24-undecaen-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2r)-2-hydroxy-2-[(2r,5r,6r)-2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl]-n-[(1e,4r)-4-hydroxy-6-[(2s)-2-[(c-hydroxycarbonimidoylmethyl)-c-hydroxycarbonimidoyl]pyrrolidin-1-yl]-3,5-dimethyl-6-oxohex-1-en-1-yl]ethanimidic acid
C25H40N4O8 (524.2846000000001)
3-methyl-2-({[2,5,11,14-tetrahydroxy-3-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C42H61N7O10 (823.4479686000001)
(2s,3r)-3-methyl-2-({[(3s,6s,9r)-2,5,8-trihydroxy-3-[2-(4-hydroxyphenyl)ethyl]-6-isopropyl-1,4,7-triazacyclotrideca-1,4,7-trien-9-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C28H43N5O7 (561.3162328000001)
n-(5-carbamimidamido-1-oxopentan-2-yl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl)pyrrolidine-2-carboximidic acid
(1r,2s)-7-chloro-1-(3,5-dihydroxyphenyl)-2-methylundecyl acetate
C20H31ClO4 (370.19107560000003)
(2r,4r,8s,13r,15r,19s)-8,19-dibutyl-4,15-dichloro-2,13-dimethoxytricyclo[18.2.2.2⁹,¹²]hexacosa-1(22),9,11,20,23,25-hexaene-10,21,24,26-tetrol
(2e)-9-(3-carbamimidamidopropyl)-2-ethylidene-3,7,10,14-tetrahydroxy-12-[(1e,3e)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,6,13-trimethyl-19-oxo-1,4,8,11,15-pentaazacyclononadeca-3,7,10,14-tetraene-5,16-dicarboxylic acid
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6,9-bis[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-7-methyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-phenylpropanoic acid
C47H61N7O12 (915.4377986000001)
{10-[(6-hydroxy-2-oxo-5h-pyrimidin-4-yl)methyl]-5-methyl-2,11,12-triazatricyclo[6.3.1.0⁴,¹²]dodec-1-en-6-yl}oxidanesulfonic acid
C15H21N5O6S (399.12124860000006)
(25r)-25-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexacosan-3-one
10-[(1e)-2-[(2s,3s)-3-[(2z)-pent-2-en-1-yl]oxiran-2-yl]ethenyl]oxecan-2-one
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-7-methyl-12-[2-(methylsulfanyl)ethyl]-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C44H63N7O11S (897.4306048000001)
25-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexacosan-3-one
2-[({3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-6,7-dimethyl-8-oxo-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C42H61N7O9 (807.4530536000001)
9-(4-carbamimidamidobutyl)-2-ethylidene-3,7,10,14-tetrahydroxy-12-(6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl)-1,6,13-trimethyl-19-oxo-1,4,8,11,15-pentaazacyclononadeca-3,7,10,14-tetraene-5,16-dicarboxylic acid
3-methyl-2-({[2,5,11,14-tetrahydroxy-3-(hydroxymethyl)-7-methyl-8-oxo-6,9-bis(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C43H63N7O9 (821.4687028000001)
1-[(1r,6r)-9-azabicyclo[4.2.1]non-2-en-2-yl]ethanone
(3as,4r,10r,10as)-4-(hydroxymethyl)-2,6-diimino-octahydropyrrolo[1,2-c]purin-10-ol
C9H16N6O2 (240.13346760000002)
3-methyl-2-[({2,5,11,14-tetrahydroxy-7-methyl-3,12-bis[2-(methylsulfanyl)ethyl]-8-oxo-6,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C44H65N7O8S2 (883.4335810000001)
(1r,2s,7s)-7-{4-[(1r,2s)-7-chloro-1-hydroxy-2-methylundecyl]-2,6-dihydroxyphenyl}-1-(3,5-dihydroxyphenyl)-2-methylundecyl acetate
(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-8-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
3-methyl-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-7-methyl-3-[2-(methylsulfanyl)ethyl]-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C44H65N7O9S (867.4564240000001)
(2s,4s)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl]-4-methylpyrrolidine-2-carboximidic acid
(2s,3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxybutylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
2-amino-5-{[5-hydroxy-5-(hydroxymethyl)-2-methoxy-3-oxocyclohex-1-en-1-yl]amino}pentanoic acid
(3as,7as)-n-(5-carbamimidamido-1-oxopentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxyoctylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
5-carbamimidamido-2-({[1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl)pyrrolidin-2-yl](hydroxy)methylidene}amino)pentanoic acid
(3as,7as)-n-(5-carbamimidamido-1-oxopentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
n-(1-carbamimidoyl-2-hydroxypiperidin-3-yl)-1-(2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl)pyrrolidine-2-carboximidic acid
10-[(1e)-2-[(2s,3s)-3-[(2z)-but-2-en-1-yl]oxiran-2-yl]ethenyl]oxecan-2-one
[(3as,4r,9r,10as)-9,10,10-trihydroxy-2,6-diimino-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid
{5-[(dimethylamino)methyl]-2-iminoimidazolidin-1-yl}oxy(methoxy)phosphinic acid
(9r,10e,12z,15z)-9-hydroxyoctadeca-10,12,15-trienoic acid
(2s)-3-phenyl-2-({[(3s,6s,9s,12s,15r)-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-3-(2-methanesulfinylethyl)-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)propanoic acid
C47H63N7O10S (917.4356898000001)
(2s,3r,4s,5s,6r)-2-{[(3r,27r)-3,27-dihydroxyoctacosyl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3as,7as)-n-(5-carbamimidamido-1-oxopentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxyoctylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene
(4r)-4-{[(2s,3r,4e,6e,8s,9s)-3-{[(2s)-2-{[(2r)-2-{[(2s)-2-amino-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxy-4-methoxy-4-oxobutylidene]amino}-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-[(1-{[(1s)-1-carboxyethyl]-c-hydroxycarbonimidoyl}eth-1-en-1-yl)(methyl)carbamoyl]butanoic acid
(2s,4s)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-4-methylpyrrolidine-2-carboximidic acid
(2s)-2-{[(3r)-3-{[(2s)-2-{[(2r)-2-({2-[(4r)-4-{[(2s,3s,4e,6e,8s,9s)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-carboxy-n-methylbutanamido]-1-hydroxyprop-2-en-1-ylidene}amino)-1-hydroxypropylidene]amino}-1-hydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-carboxy-1-hydroxypropylidene]amino}-5-carbamimidamidopentanoic acid
3-[(3s,6s,12s,15s,18s,21s,26as)-21-benzyl-1,4,7,10,13,16,19-heptahydroxy-15-(hydroxymethyl)-12-isopropyl-3-methyl-18-({4-[(3-methylbut-2-en-1-yl)oxy]phenyl}methyl)-22-oxo-3h,6h,9h,12h,15h,18h,21h,24h,25h,26h,26ah-pyrrolo[1,2-a]1,4,7,10,13,16,19,22-octaazacyclotetracosan-6-yl]propanimidic acid
(4s,5r,6s,8s,10r)-10-[(2,6-dihydroxypyrimidin-4-yl)methyl]-5-methyl-2,11,12-triazatricyclo[6.3.1.0⁴,¹²]dodec-1-en-6-yl acetate
C17H23N5O4 (361.17499580000003)
[(3as,4r,10as)-5,10,10-trihydroxy-2,6-diimino-hexahydropyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid
[(4s,5r,6s,8s,10r)-10-[(s)-(2,6-dihydroxypyrimidin-4-yl)(hydroxy)methyl]-5-methyl-2,11,12-triazatricyclo[6.3.1.0⁴,¹²]dodec-1-en-6-yl]oxidanesulfonic acid
C15H21N5O7S (415.11616360000005)
(2s,3r)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
C41H59N7O9 (793.4374044000001)
(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-5-(hydroxymethyl)-8-[2-(4-hydroxyphenyl)ethyl]-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,19-dimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
(2s)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-5-carbamimidamidopentanoic acid
C41H60N10O9 (836.4544510000001)
1-[(1r,4s,6s)-4-hydroxy-9-azabicyclo[4.2.1]non-2-en-2-yl]propan-1-one
C11H17NO2 (195.12592220000002)
(2s)-2-{[(3r)-3-{[(2s)-2-{[(2r)-2-({2-[(4r)-4-{[(2s,3s,4e,6e,8s,9s)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-carboxy-n-methylbutanamido]-1-hydroxyprop-2-en-1-ylidene}amino)-1-hydroxypropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-3-carboxy-1-hydroxypropylidene]amino}-5-carbamimidamidopentanoic acid
1-[(1r,2s,6r)-9-azabicyclo[4.2.1]nonan-2-yl]ethanone
(2z,5r,6s,9s,12s,13s,16r)-9-(3-carbamimidamidopropyl)-2-ethylidene-3,7,10,14-tetrahydroxy-12-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,6,13-trimethyl-19-oxo-1,4,8,11,15-pentaazacyclononadeca-3,7,10,14-tetraene-5,16-dicarboxylic acid
(2s,3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxyoctylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
C37H60N6O10 (748.4370700000001)
(2s,4s)-n-[(2s)-5-carbamimidamido-1-hydroxypentan-2-yl]-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl]-4-methylpyrrolidine-2-carboximidic acid
(5r,6s,9s,12s,13s,16r)-9-(3-carbamimidamidopropyl)-2-ethylidene-3,7,10,14,19-pentahydroxy-12-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-6,13-dimethyl-1,4,8,11,15-pentaazacyclononadeca-1(19),3,7,10,14-pentaene-5,16-dicarboxylic acid
(2z,5r,6s,9s,13s,16r)-9-(3-carbamimidamidopropyl)-2-ethylidene-3,7,10,14-tetrahydroxy-12-[(1e,3z,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,6,13-trimethyl-19-oxo-1,4,8,11,15-pentaazacyclononadeca-3,7,10,14-tetraene-5,16-dicarboxylic acid
(2s,3as,7as)-n-(5-carbamimidamido-1-oxopentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
3-methyl-2-({[2,5,11,14-tetrahydroxy-3-(hydroxymethyl)-12-(2-methanesulfinylethyl)-7-methyl-8-oxo-6,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C42H61N7O10S (855.4200406000001)
{10-[hydroxy(2-hydroxy-6-oxo-1h-pyrimidin-4-yl)methyl]-5-methyl-2,11,12-triazatricyclo[6.3.1.0⁴,¹²]dodec-1-en-6-yl}oxidanesulfonic acid
C15H21N5O7S (415.11616360000005)
3-methyl-2-[({2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-3-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C38H61N7O9 (759.4530536000001)
(2r)-5-carbamimidamido-2-({[(2s)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)pentanoic acid
(2s)-n-[(2s)-5-carbamimidamido-1-hydroxypentan-2-yl]-1-[(2r)-2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl]-4-methylpyrrolidine-2-carboximidic acid
3-methyl-2-[({2,5,8-trihydroxy-3-[2-(4-hydroxyphenyl)ethyl]-6-propyl-1,4,7-triazacyclotrideca-1,4,7-trien-9-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C28H43N5O7 (561.3162328000001)
3-methyl-2-[({2,5,8-trihydroxy-3-[2-(4-hydroxyphenyl)ethyl]-6-(sec-butyl)-1,4,7-triazacyclotrideca-1,4,7-trien-9-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
(2e,4e,7s)-8,8,8-trichloro-2,7-dimethyl-n-[(1s)-2-methyl-1-(1,3-thiazol-2-yl)propyl]octa-2,4-dienimidic acid
n-(5-carbamimidamido-1-oxopentan-2-yl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-phenylbutanoyl)pyrrolidine-2-carboximidic acid
[(3as,4r,9s,10as)-9,10,10-trihydroxy-2,6-diimino-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid
(2s,3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxyethylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
(4r)-4-{[(2s,3r,4e,6e,8s,9s)-3-{[(2s)-2-{[(2r)-2-{[(2s)-2-amino-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-4-methoxy-4-oxobutylidene]amino}-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-[(1-{[(1s)-1-carboxyethyl]-c-hydroxycarbonimidoyl}eth-1-en-1-yl)(methyl)carbamoyl]butanoic acid
3-methyl-2-({[2,5,11,14-tetrahydroxy-3-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethyl]-7-methyl-12-[2-(methylsulfanyl)ethyl]-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C42H61N7O10S (855.4200406000001)
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-7-methyl-12-[2-(methylsulfanyl)ethyl]-8-oxo-6,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C44H63N7O10S (881.4356898000001)
2-(hexadecanoyloxy)ethylphosphonic acid
C18H37O5P (364.23784820000003)
n-(4-carbamimidamidobutyl)-1-[(2s)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl]-4-methylpyrrolidine-2-carboximidic acid
(2s,3as,7as)-n-(5-carbamimidamido-1-oxopentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxybutylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
2-({[1-(2-{[2-(acetyloxy)-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl)pyrrolidin-2-yl](hydroxy)methylidene}amino)-5-carbamimidamidopentanoic acid
n-(1-carbamimidoyl-2-hydroxypiperidin-3-yl)-1-(2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl)-4-methylpyrrolidine-2-carboximidic acid
(2s)-n-[(3r)-1-carbamimidoyl-2-hydroxypiperidin-3-yl]-1-[(2r)-2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl]-4-methylpyrrolidine-2-carboximidic acid
(2s,3s)-2-({[(3s,6s,9s,12s,15r)-3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-(2-methanesulfonylethyl)-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
C44H63N7O13S (929.4204348000001)
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-(2-methanesulfinylethyl)-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C44H63N7O12S (913.4255198000001)
2-[({3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-phenylpropanoic acid
(26r)-26-hydroxy-28-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octacosan-2-one
(2s)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-phenylpropanoic acid
(3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxyoctylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
(1r,2s,7s)-7-{4-[(1r,2s)-1-(acetyloxy)-7-chloro-2-methylundecyl]-2,6-dihydroxyphenyl}-1-(3,5-dihydroxyphenyl)-2-methylundecyl acetate
10-[(1e)-2-[(2r,3r)-3-[(2e)-pent-2-en-1-yl]oxiran-2-yl]ethenyl]oxecan-2-one
1,10-dimethyl-10-azatricyclo[7.2.1.0²,⁷]dodeca-2,4,6-trien-4-ol
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C44H63N7O11 (865.4585328000001)
(3as,4r,10as)-4-(hydroxymethyl)-2,6-diimino-hexahydro-1h-pyrrolo[1,2-c]purine-9,10,10-triol
(2z,5r,6s,9s,12s,13s,16r)-9-(3-carbamimidamidopropyl)-2-ethylidene-3,7,10,14-tetrahydroxy-12-[(1e,3e,5s,6s)-6-hydroxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,6,13-trimethyl-19-oxo-1,4,8,11,15-pentaazacyclononadeca-3,7,10,14-tetraene-5,16-dicarboxylic acid
(2s)-2-({[(3s,6s,9s,12s,15r)-3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-phenylpropanoic acid
C47H61N7O11 (899.4428836000001)
(2s)-n-[(2r)-5-carbamimidamido-1-hydroxypentan-2-yl]-1-[(2r)-2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl]-4-methylpyrrolidine-2-carboximidic acid
n-(5-carbamimidamido-1-hydroxypentan-2-yl)-1-(2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl)pyrrolidine-2-carboximidic acid
(2s,4s)-n-(5-carbamimidamido-1-oxopentan-2-yl)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl]-4-methylpyrrolidine-2-carboximidic acid
(5r,8s,11r,12s,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-8-(2-methanesulfonylethyl)-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
n-(5-carbamimidamido-1-hydroxypentan-2-yl)-1-[(2s)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl]pyrrolidine-2-carboximidic acid
n-(5-carbamimidamido-1-oxopentan-2-yl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-phenylbutanoyl)-4-methylpyrrolidine-2-carboximidic acid
(3as,4s,10s,10as)-2,6-diimino-4-methyl-octahydropyrrolo[1,2-c]purin-10-ol
(2z,5r,6s,9s,12s,13s,16r)-9-(4-carbamimidamidobutyl)-2-ethylidene-3,7,10,14-tetrahydroxy-12-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,6,13-trimethyl-19-oxo-1,4,8,11,15-pentaazacyclononadeca-3,7,10,14-tetraene-5,16-dicarboxylic acid
n-(5-carbamimidamido-1-oxopentan-2-yl)-1-[(2s)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carboximidic acid
(3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxyoctylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
C37H60N6O10 (748.4370700000001)
(5r,8s,11r,15s,18s,19s,22r)-8-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-15-[(4-hydroxyphenyl)methyl]-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
(2s,3s)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
C41H59N7O9 (793.4374044000001)
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-7-methyl-8-oxo-6,9-bis(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
2-[({3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C41H59N7O9 (793.4374044000001)
2-amino-6-{[5-hydroxy-5-(hydroxymethyl)-2-methoxy-3-oxocyclohex-1-en-1-yl]amino}hexanoic acid
(2s,3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxyoctylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
n-(5-carbamimidamido-1-oxopentan-2-yl)-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-4-methylpyrrolidine-2-carboximidic acid
2-{[(4e,6e)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-({1-[(1-{[1-({2-[(4-carbamimidamido-1-carboxybutyl)-c-hydroxycarbonimidoyl]-1-carboxy-2-methylethyl}-c-hydroxycarbonimidoyl)-3-methylbutyl]-c-hydroxycarbonimidoyl}ethyl)-c-hydroxycarbonimidoyl]eth-1-en-1-yl}(methyl)carbamoyl)butanoic acid
(5r,8s,11r,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-22-(methoxycarbonyl)-1,5,19-trimethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11-carboxylic acid
(5r,8s,11r,12s,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-8-[2-(4-hydroxyphenyl)ethyl]-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
(2s)-n-(5-carbamimidamido-1-oxopentan-2-yl)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl]pyrrolidine-2-carboximidic acid
(3as,7as)-n-(4-carbamimidamidobutyl)-6-hydroxy-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
(2r)-5-carbamimidamido-2-({[(2s,4s)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl]-4-methylpyrrolidin-2-yl](hydroxy)methylidene}amino)pentanoic acid
3-[(7s,10e,13s,16e,19s,22s,25r,28s,33as)-3-(dodecan-2-yl)-10,16-diethylidene-1,4,5,8,11,14,17,20,23-nonahydroxy-19,28-bis(c-hydroxycarbonimidoylmethyl)-25-[(1s)-1-hydroxyethyl]-7-isopropyl-22,27-dimethyl-26,29-dioxo-3h,4h,7h,13h,19h,22h,25h,28h,31h,32h,33h,33ah-pyrrolo[2,1-c]1,4,7,10,13,16,19,22,25,28-decaazacyclohentriacontan-13-yl]propanimidic acid
C54H89N13O15 (1159.6600764000002)
[(5s)-5-[(dimethylamino)methyl]-2-iminoimidazolidin-1-yl]oxy(methoxy)phosphinic acid
(2s,3as,7as)-n-(5-carbamimidamido-1-oxopentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxyoctylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
C37H58N6O10 (746.4214208000001)
[(3as,4r,10ar)-2,6-diimino-octahydropyrrolo[1,2-c]purin-4-yl]methanol
n-(5-carbamimidamido-1-hydroxypentan-2-yl)-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-4-methylpyrrolidine-2-carboximidic acid
n-(5-carbamimidamido-1-oxopentan-2-yl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl)-4-methylpyrrolidine-2-carboximidic acid
(2s)-n-[(2r)-5-carbamimidamido-1-hydroxypentan-2-yl]-1-[(2r)-2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carboximidic acid
2-[(7s,10e,13s,16e,19s,22s,25r,28s,33as)-3-(dodecan-2-yl)-10,16-diethylidene-1,4,5,8,11,14,17,20,23-nonahydroxy-19,28-bis(c-hydroxycarbonimidoylmethyl)-25-[(1s)-1-hydroxyethyl]-7-isopropyl-22,27-dimethyl-26,29-dioxo-3h,4h,7h,13h,19h,22h,25h,28h,31h,32h,33h,33ah-pyrrolo[2,1-c]1,4,7,10,13,16,19,22,25,28-decaazacyclohentriacontan-13-yl]ethanimidic acid
3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate
(2s,4s)-n-(5-carbamimidamido-1-oxopentan-2-yl)-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-phenylbutanoyl]-4-methylpyrrolidine-2-carboximidic acid
(3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxydecylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
(5r,8s,11r,12s,15s,18s,19s,22r)-8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
n-[2-(1-carbamimidoyl-2,5-dihydropyrrol-3-yl)ethyl]-10-{[(2s,3r,4s,5s,6r)-3-(hexanoyloxy)-6-[(hexanoyloxy)methyl]-4,5-dihydroxyoxan-2-yl]oxy}-3,12-dihydroxy-7-[(2r,3s)-2-{[1-hydroxy-2-methoxy-3-(sulfooxy)propylidene]amino}-3-methylpentanoyl]-2-oxa-4,7-diazatricyclo[6.3.1.0¹,⁵]dodec-3-ene-6-carboximidic acid
6-{[(4s,5r,6s,8s,10r)-6-hydroxy-5-methyl-2,11,12-triazatricyclo[6.3.1.0⁴,¹²]dodec-1-en-10-yl]methyl}pyrimidine-2,4-diol
C15H21N5O3 (319.16443160000006)
(5r,8s,11r,12s,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-22-(methoxycarbonyl)-1,5,12,19-tetramethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11-carboxylic acid
(2z,5r,6s,9s,12s,13s,16r)-9-(3-carbamimidamidopropyl)-2-ethylidene-3,7,10,14-tetrahydroxy-12-[(1e,3z,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,6,13-trimethyl-19-oxo-1,4,8,11,15-pentaazacyclononadeca-3,7,10,14-tetraene-5,16-dicarboxylic acid
(2s,3s)-2-({[(3s,6s,9s,12s,15r)-3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-{2-[(r)-methanesulfinyl]ethyl}-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
C44H63N7O12S (913.4255198000001)
(2r)-2-hydroxy-n-[(1e,4r)-4-hydroxy-6-[(2s)-2-[(c-hydroxycarbonimidoylmethyl)-c-hydroxycarbonimidoyl]pyrrolidin-1-yl]-3,5-dimethyl-6-oxohex-1-en-1-yl]-2-[(2r,5r,6r)-2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl]ethanimidic acid
1-(2-{[2-(acetyloxy)-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-n-(5-carbamimidamido-1-oxopentan-2-yl)pyrrolidine-2-carboximidic acid
(2s,3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-hydroxy-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
6-amino-10,10-dihydroxy-4-[(c-hydroxycarbonimidoyloxy)methyl]-2-imino-1h,3h,3ah,4h,8h,9h-pyrrolo[1,2-c]purin-5-ium-5-olate
(2s,3r)-3-methyl-2-({[(3s,6s,9s,12s,15r)-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-3-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C38H61N7O9 (759.4530536000001)
1-[(1r,6r)-9-azabicyclo[4.2.1]non-2-en-2-yl]propan-1-one
(2s,3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid
C35H56N6O10 (720.4057716000001)
1-(2-{[2-(acetyloxy)-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)pyrrolidine-2-carboximidic acid
C32H44N6O8 (640.3220464000001)
2-[(4s,10s,13s,23r,26s,29s)-23-[(2s)-butan-2-yl]-2,11,14,21,24,27-hexahydroxy-13-(hydroxymethyl)-29-[(4-hydroxyphenyl)methyl]-16,26-bis(2-methylpropyl)-5-oxo-18,31-dithia-3,6,12,15,22,25,28,33,34-nonaazatetracyclo[28.2.1.1¹⁷,²⁰.0⁶,¹⁰]tetratriaconta-1(32),2,11,14,17(34),21,24,27,30(33)-nonaen-4-yl]ethanimidic acid
C45H64N10O10S2 (968.4248084000001)
3-phenyl-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-7-methyl-3-[2-(methylsulfanyl)ethyl]-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]propanoic acid
C47H63N7O9S (901.4407748000001)
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-phenylpropanoic acid
C47H61N7O11 (899.4428836000001)
(2s)-2-{[(2s,3r)-3-({2-[(2r)-2-{[(2s,3s,4e,6e,8s,9s)-3-amino-1-hydroxy-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dien-1-ylidene]amino}-4-carboxy-n-methylbutanamido]-1-hydroxybut-3-en-1-ylidene}amino)-3-carboxy-1-hydroxy-2-methylpropylidene]amino}-5-carbamimidamidopentanoic acid
2-[({3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-5-carbamimidamidopentanoic acid
C41H60N10O9 (836.4544510000001)
(2s)-3-phenyl-2-({[(3s,6s,9s,12s,15r)-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-7-methyl-3-[2-(methylsulfanyl)ethyl]-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)propanoic acid
C47H63N7O9S (901.4407748000001)
2-[(3,25-dihydroxyhexacosyl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-(2-methanesulfonylethyl)-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C44H63N7O13S (929.4204348000001)
(10r)-10-[(1e)-2-[(2s,3s)-3-[(2z)-pent-2-en-1-yl]oxiran-2-yl]ethenyl]oxecan-2-one
(2s)-n-[(2s)-5-carbamimidamido-1-hydroxypentan-2-yl]-1-[(2r)-2-{[1,2-dihydroxy-4-(4-hydroxyphenyl)butylidene]amino}-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carboximidic acid
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-12-isopropyl-7-methyl-8-oxo-6,9-bis(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-phenylpropanoic acid
C47H61N7O10 (883.4479686000001)
(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-6-methylhept-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(5r,8s,11r,12s,15s,18s,19s,22r)-15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
3-methyl-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-(2-methanesulfinylethyl)-7-methyl-3-[2-(methylsulfanyl)ethyl]-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C44H65N7O10S2 (915.4234110000001)
(2s,4s)-n-(5-carbamimidamido-1-oxopentan-2-yl)-1-[(2s)-2-[(1-hydroxyhexylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-4-methylpyrrolidine-2-carboximidic acid
n-(5-carbamimidamido-1-hydroxypentan-2-yl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-(4-hydroxyphenyl)butanoyl)-4-methylpyrrolidine-2-carboximidic acid
(2z,5r,6s,9s,12s,13s,16r)-9-(3-carbamimidamidopropyl)-2-ethylidene-3,7,10,14,19-pentahydroxy-12-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-6,13-dimethyl-1,4,8,11,15-pentaazacyclononadeca-1(19),3,7,10,14-pentaene-5,16-dicarboxylic acid
3-methyl-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-3,12-bis(2-methanesulfinylethyl)-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C44H65N7O11S2 (931.4183260000001)