Gene Association: HACL1
UniProt Search:
HACL1 (PROTEIN_CODING)
Function Description: 2-hydroxyacyl-CoA lyase 1
found 44 associated metabolites with current gene based on the text mining result from the pubmed database.
Hyoscyamine
(S)-atropine is an atropine with a 2S-configuration. It is functionally related to a (S)-tropic acid. It is a conjugate base of a (S)-atropinium. Hyoscyamine is a tropane alkaloid and the levo-isomer of [atropine]. It is commonly extracted from plants in the Solanaceae or nightshade family. Research into the action of hyoscyamine in published literature dates back to 1826. Hyoscyamine is used for a wide variety of treatments and therapeutics due to its antimuscarinic properties. Although hyoscyamine is marketed in the United States, it is not FDA approved. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. L-Hyoscyamine is a natural product found in Datura ferox, Crenidium spinescens, and other organisms with data available. Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. The 3(S)-endo isomer of atropine. Hyoscyamine is a chemical compound, a tropane alkaloid it is the levo-isomer to atropine. It is a secondary metabolite of some plants, particularly henbane (Hyoscamus niger.). Hyoscyamine is used to provide symptomatic relief to various gastrointestinal disorders including spasms, peptic ulcers, irritable bowel syndrome, pancreatitis, colic and cystitis. It has also been used to relieve some heart problems, control some of the symptoms of Parkinsons disease, as well as for control of respiratory secretions in end of life care. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2269 D002491 - Central Nervous System Agents KEIO_ID H045; [MS2] KO008998 KEIO_ID H045 L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].
Valtrats
Valtratum is a fatty acid ester. Valtrate is a natural product found in Valeriana pulchella, Valeriana alpestris, and other organisms with data available. See also: Viburnum opulus bark (part of). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2]. Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2].
Phytol
Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
Dihydrovaltrate
Didrovaltratum is an iridoid monoterpenoid. Didrovaltrate is a natural product found in Valeriana pulchella, Fedia cornucopiae, and other organisms with data available. See also: Viburnum opulus bark (has part). Isolated from Valeriana subspecies Dihydrovaltrate is found in tea, fats and oils, and herbs and spices. Dihydrovaltrate is found in fats and oils. Dihydrovaltrate is isolated from Valeriana specie C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Pentadecanoic acid
Pentadecanoic acid, also known as pentadecylic acid or C15:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Pentadecanoic acid (its ester is called pentadecanoate) is a saturated fatty acid that has 15 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. Pentadecanoic acid is found in plants and ruminants. Many "odd" length long-chain fatty acids, such as pentadecanoic acid, are derived from the consumption of cattle fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of pentadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID: 9701185; PMID: 11238766). A fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185; PMID 11238766). Pentadecanoic acid is found in many foods, some of which are common bean, coriander, pepper (c. annuum), and hamburger. CONFIDENCE standard compound; INTERNAL_ID 248 Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.
Levallorphan
An opioid antagonist with properties similar to those of naloxone; in addition it also possesses some agonist properties. It should be used cautiously; levallorphan reverses severe opioid-induced respiratory depression but may exacerbate respiratory depression such as that induced by alcohol or other non-opioid central depressants. (From Martindale, The Extra Pharmacopoeia, 30th ed, p683) D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist
Benzo[b]fluoranthene
Benzo[k]fluoranthene
Chrysene
Chrysene is a high molecular weight (HMW), polycyclic aromatic hydrocarbon (PAH) known for its recalcitrance and carcinogenic properties[1]. Chrysene is a high molecular weight (HMW), polycyclic aromatic hydrocarbon (PAH) known for its recalcitrance and carcinogenic properties[1].
Formyl-CoA
Formyl-CoA is formed during the alpha-oxidation process in liver peroxisomes, as a result of the alpha-oxidation of 3-methyl-substituted fatty acids. The amount of formyl-CoA formed constitutes 2 - 5\\% of the total formate. The formyl-CoA formed is not due to activation of formate - until now presumed to be the primary end-product of alpha-oxidation - but is rather than formate the end-product of alpha-oxidation. The cleavage of 2-hydroxy-3-methylhexadecanoyl-CoA to 2-methylpentadecanal and formate (formyl-CoA) is probably due to the presence of a specific lyase. (PMID: 9276483, 9166898) [HMDB]. Formyl-CoA is found in many foods, some of which are roman camomile, java plum, sweet marjoram, and new zealand spinach. Formyl-CoA is formed during the alpha-oxidation process in liver peroxisomes, as a result of the alpha-oxidation of 3-methyl-substituted fatty acids. The amount of formyl-CoA formed constitutes 2 - 5\\% of the total formate. The formyl-CoA formed is not due to activation of formate - until now presumed to be the primary end-product of alpha-oxidation - but is rather than formate the end-product of alpha-oxidation. The cleavage of 2-hydroxy-3-methylhexadecanoyl-CoA to 2-methylpentadecanal and formate (formyl-CoA) is probably due to the presence of a specific lyase. (PMID: 9276483, 9166898).
Phytanate
Phytanic acid (or 3,7,11,15-tetramethylhexadecanoic acid) is a 20-carbon branched-chain fatty acid that humans can obtain through the consumption of dairy products, ruminant animal fats, and certain fish. It is primarily formed by bacterial degradation of chlorophyll in the intestinal tract of ruminants. Unlike most fatty acids, phytanic acid cannot be metabolized by beta-oxidation (because of a methyl group in the beta position). Instead, it undergoes alpha-oxidation in the peroxisome, where it is converted into pristanic acid by the removal of one carbon. Pristanic acid can undergo several rounds of beta-oxidation in the peroxisome to form medium-chain fatty acids that can be converted into carbon dioxide and water in mitochondria. Refsum disease, an autosomal recessive neurological disorder caused by mutations in the PHYH gene, is characterized by having impaired alpha-oxidation activity. Individuals with Refsum disease accumulate large stores of phytanic acid in their blood and tissues. This frequently leads to peripheral polyneuropathy, cerebellar ataxia, retinitis pigmentosa, anosmia, and hearing loss. Therefore, chronically high levels of phytanic acid can be neurotoxic. Phytanic acids neurotoxicity appears to lie in its ability to initiate astrocyte/neural cell death by activating the mitochondrial route of apoptosis. In particular, phytanic acid can induce the substantial generation of reactive oxygen species in isolated mitochondria as well as in intact cells. It also induces the release of cytochrome c from mitochondria. A 20-carbon branched chain fatty acid, Phytanic acid is present in animal (primarily herbivores or omnivores) tissues where it may be derived from the chlorophyll in consumed plant material. Phytanic acid derives from the corresponding alcohol, phytol, and is ultimately oxidized into pristanic acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids in plasma. These high levels in Refsum disease (a neurological disorder) are due to a phytanic acid alpha-hydroxylase deficiency.; A 20-carbon branched chain fatty acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids of the plasma. This is due to a phytanic acid alpha-hydroxylase deficiency. [HMDB]
Phytanoyl-CoA
Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698). [HMDB] Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698).
2-hydroxyphytanic acid
A methylated long-chain hyroxy fatty acid formed during alpha-oxidation of phytanic acid by liver mitochondria and peroxisomes, but it is detected in tissues only in patients with peroxisomal disorders.
Thiamine triphosphate
Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. [HMDB] Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. D018977 - Micronutrients > D014815 - Vitamins
2-Hydroxyphytanoyl-CoA
2-Hydroxyphytanoyl-CoA is a substrate for Phytanoyl-CoA dioxygenase (peroxisomal). [HMDB] 2-Hydroxyphytanoyl-CoA is a substrate for Phytanoyl-CoA dioxygenase (peroxisomal).
E-3174
EXP3174 is a metabolite of losartan (previous name DuP753), which is a non-peptide angiotensin II receptor antagonist. EXP3174, a metabolite of losartan (MK 954, DuP 753) is more potent than losartan in blocking the angiotensin II-induced responses in vascular smooth muscle cells. (PMID: 8385175) D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Losartan Carboxylic Acid (E-3174), an active carboxylic acid metabolite of Losartan, is an angiotensin II receptor type 1 (AT1) antagonist. The Ki values are 0.97, 0.57, 0.67 nM for rat AT1B/AT1A and human AT1, respectively. Losartan Carboxylic Acid blocks the angiotensin II-induced responses in vascular smoothmuscle cells (VSMC). Losartan Carboxylic Acid elevates plasma renin activities and reduces mean arterial pressure[1][2][3][4].
Acevaltrate
Production by Valeriana subspecies Acevaltrate is found in tea, fats and oils, and herbs and spices. Acevaltrate is found in fats and oils. Acevaltrate is produced by Valeriana specie C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic Acevaltrate inhibits the Na+/K+-ATPase activity in the rat kidney and brain hemispheres with IC50s of 22.8 μM and 42.3 μM, respectively[1]. Acevaltrate inhibits the Na+/K+-ATPase activity in the rat kidney and brain hemispheres with IC50s of 22.8 μM and 42.3 μM, respectively[1].
Baldrinal
Baldrinal is an arenecarbaldehyde. Baldrinal is a natural product found in Nardostachys jatamansi, Valeriana officinalis, and other organisms with data available. Baldrinal is derived from the extracts of valerian rhizomes and roots, inhibits autonomic activity, and has anti-inflammatory effects[1].
Thioperamide
D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Thioperamide (MR-12842) is a potent, orally available, brain penetrant and selective H3 receptor antagonist with a Ki of 4.3 nM for inhibition of [3H]histamine release. Thioperamide inhibits [3H]histamine synthesis with a Ki of 31 nM[1].
Chrysene
Chrysene appears as a crystalline solid. Denser than water and insoluble in water. The primary hazard is the threat to the environment. Immediate steps should be taken to limit spread to the environment. Toxic by ingestion. Used to make other chemicals. Chrysene is an ortho-fused polycyclic arene found commonly in the coal tar. It has a role as a plant metabolite. Chrysene is a natural product found in Camellia sinensis with data available. Chrysene is an aromatic hydrocarbon in coal tar, allied to naphthalene and anthracene. It is a white crystalline substance, C18H12, of strong blue fluorescence, but generally colored yellow by impurities. Chrysene is one of over 100 different polycyclic aromatic hydrocarbons (PAHs). PAHs are chemicals that are formed during the incomplete burning of organic substances, such as fossil fuels. They are usually found as a mixture containing two or more of these compounds. (L10) An ortho-fused polycyclic arene found commonly in the coal tar. Chrysene is a high molecular weight (HMW), polycyclic aromatic hydrocarbon (PAH) known for its recalcitrance and carcinogenic properties[1]. Chrysene is a high molecular weight (HMW), polycyclic aromatic hydrocarbon (PAH) known for its recalcitrance and carcinogenic properties[1].
3D,7D,11D-Phytanic acid
3D,7D,11D-Phytanic acid is an isomer of Phytanic acid, an unusual 20-carbon branched-chain fatty acid; Phytanic acid accumulates in blood and tissues of patients with Refsum disease (RD, an inborn error of lipid metabolism inherited as an autosomal recessive trait (OMIM 266500)), and is a reliable identifier of RD from a large number of other neurological disorders. Phytanic acid also accumulates in a number of other disorders with a very different clinical course: disorders of peroxisome biogenesis (Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), infantile Refsum disease (OMIM 266510)) and rhizomelic chondrodysplasia punctata, type 1 (OMIM 215100). Phytanic acid is a 3-methyl fatty acid that cannot be beta-oxidized directly, and first undergoes an alpha-oxidation a reaction catalyzed by the enzyme phytanoyl-CoA hydroxylase, which is deficient in RD, the only true disorder of phytanic acid alpha-oxidation. (The Metabolic and Molecular Bases of Inherited Disease).
Acevaltrate
Acevaltrate is a fatty acid ester. Acevaltratum is a natural product found in Fedia cornucopiae, Plectritis macrocera, and other organisms with data available. C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic Acevaltrate inhibits the Na+/K+-ATPase activity in the rat kidney and brain hemispheres with IC50s of 22.8 μM and 42.3 μM, respectively[1]. Acevaltrate inhibits the Na+/K+-ATPase activity in the rat kidney and brain hemispheres with IC50s of 22.8 μM and 42.3 μM, respectively[1].
Atropine
Atropine is a racemate composed of equimolar concentrations of (S)- and (R)-atropine. It is obtained from deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. It has a role as a muscarinic antagonist, an anaesthesia adjuvant, an anti-arrhythmia drug, a mydriatic agent, a parasympatholytic, a bronchodilator agent, a plant metabolite, an antidote to sarin poisoning and a oneirogen. It contains a (S)-atropine and a (R)-atropine. Atropine is an alkaloid originally synthesized from Atropa belladonna. It is a racemic mixture of d-and l-hyoscyamine, of which only l-hyoscyamine is pharmacologically active. Atropine is generally available as a sulfate salt and can be administered by intravenous, subcutaneous, intramuscular, intraosseous, endotracheal and ophthalmic methods. Oral atropine is only available in combination products. Atropine is a competitive, reversible antagonist of muscarinic receptors that blocks the effects of acetylcholine and other choline esters. It has a variety of therapeutic applications, including pupil dilation and the treatment of anticholinergic poisoning and symptomatic bradycardia in the absence of reversible causes. Atropine is a relatively inexpensive drug and is included in the World Health Organization List of Essential Medicines. Atropine is an Anticholinergic and Cholinergic Muscarinic Antagonist. The mechanism of action of atropine is as a Cholinergic Antagonist and Cholinergic Muscarinic Antagonist. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. Atropine is a natural product found in Cyphanthera tasmanica, Anthocercis ilicifolia, and other organisms with data available. Atropine Sulfate is the sulfate salt of atropine, a naturally-occurring alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Atropine is a synthetically-derived form of the endogenous alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines A racemate composed of equimolar concentrations of (S)- and (R)-atropine . It is obtained from deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.421 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.416 Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].
Phytol
Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
PENTADECANOIC ACID
A straight-chain saturated fatty acid containing fifteen-carbon atoms. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.
EXP 3174
A biphenylyltetrazole that is losartan with the hydroxymethyl group at position 5 on the imidazole ring replaced with a carboxylic acid. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Losartan Carboxylic Acid (E-3174), an active carboxylic acid metabolite of Losartan, is an angiotensin II receptor type 1 (AT1) antagonist. The Ki values are 0.97, 0.57, 0.67 nM for rat AT1B/AT1A and human AT1, respectively. Losartan Carboxylic Acid blocks the angiotensin II-induced responses in vascular smoothmuscle cells (VSMC). Losartan Carboxylic Acid elevates plasma renin activities and reduces mean arterial pressure[1][2][3][4].
PHYTANIC ACID
A branched-chain saturated fatty acid consisting of hexadecanoic acid carrying methyl substituents at positions 3, 7, 11 and 15.
Hyoscyamine
(S)-atropine is an atropine with a 2S-configuration. It is functionally related to a (S)-tropic acid. It is a conjugate base of a (S)-atropinium. Hyoscyamine is a tropane alkaloid and the levo-isomer of [atropine]. It is commonly extracted from plants in the Solanaceae or nightshade family. Research into the action of hyoscyamine in published literature dates back to 1826. Hyoscyamine is used for a wide variety of treatments and therapeutics due to its antimuscarinic properties. Although hyoscyamine is marketed in the United States, it is not FDA approved. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. L-Hyoscyamine is a natural product found in Datura ferox, Crenidium spinescens, and other organisms with data available. Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. The 3(S)-endo isomer of atropine. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents An atropine with a 2S-configuration. Annotation level-1 L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].
Thioperamide
D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Thioperamide (MR-12842) is a potent, orally available, brain penetrant and selective H3 receptor antagonist with a Ki of 4.3 nM for inhibition of [3H]histamine release. Thioperamide inhibits [3H]histamine synthesis with a Ki of 31 nM[1].
2-Hydroxyphytanic acid
An alpha-hydroxy fatty acid formed from phytanic acid by bacterial cytochrome P450; and also formed in human peroxisomal disorders.
CoA 20:0;O
Didrovaltrat
Didrovaltratum is an iridoid monoterpenoid. Didrovaltrate is a natural product found in Valeriana pulchella, Fedia cornucopiae, and other organisms with data available. See also: Viburnum opulus bark (has part). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
levallorphan
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist
formyl CoA
An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of formic acid.