NCBI Taxonomy: 1097172
Conchidium (ncbi_taxid: 1097172)
found 393 associated metabolites at genus taxonomy rank level.
Ancestor: Podochileae
Child Taxonomies: Conchidium exile, Conchidium pusillum, Conchidium muscicola, Conchidium braccatum, Conchidium filiforme
Quercitrin
Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].
Ferulic acid
trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.
4-Hydroxybenzaldehyde
4-Hydroxybenzaldehyde, also known as 4-formylphenol or 4-hydroxybenzenecarbonal, belongs to the class of organic compounds known as hydroxybenzaldehydes. These are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde exists in all living organisms, ranging from bacteria to humans. 4-Hydroxybenzaldehyde is a sweet, almond, and balsam tasting compound. 4-Hydroxybenzaldehyde is found, on average, in the highest concentration within vinegars and oats. 4-Hydroxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cardoons, colorado pinyons, oyster mushrooms, common chokecherries, and potato. This could make 4-hydroxybenzaldehyde a potential biomarker for the consumption of these foods. 4-hydroxybenzaldehyde is a hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. It has a role as a plant metabolite, a mouse metabolite and an EC 1.14.17.1 (dopamine beta-monooxygenase) inhibitor. 4-Hydroxybenzaldehyde is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. Occurs naturally combined in many glycosides. Constituent of vanillin. Isol. in free state from opium poppy (Papaver somniferum) A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-08-0 (retrieved 2024-07-02) (CAS RN: 123-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
(+)-taxifolin
Taxifolin, also known as dihydroquercetin or (+)-taxifolin, is a member of the class of compounds known as flavanonols. Flavanonols are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a hydroxyl group and a ketone at the carbon C2 and C3, respectively. Taxifolin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Taxifolin can be found in a number of food items such as sweet rowanberry, arrowroot, evening primrose, and walnut, which makes taxifolin a potential biomarker for the consumption of these food products. Taxifolin is a flavanonol, a type of flavonoid . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].
Quercetin
Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
Sugiol
Sugiol is an abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group. It has a role as a plant metabolite, an antiviral agent, an antineoplastic agent, an antioxidant and a radical scavenger. It is an abietane diterpenoid, a carbotricyclic compound, a meroterpenoid, a member of phenols and a cyclic terpene ketone. It is functionally related to a ferruginol. Sugiol is a natural product found in Austrocedrus chilensis, Libocedrus bidwillii, and other organisms with data available. An abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group.
Phytol
Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
Isopimaric acid
Isopimaric acid is a diterpenoid, a carbotricyclic compound and a monocarboxylic acid. It is a conjugate acid of an isopimarate. It derives from a hydride of an isopimara-7,15-diene. Isopimaric acid is a natural product found in Pinus brutia var. eldarica, Halocarpus bidwillii, and other organisms with data available. Isopimaric acid is isolated from Pinus palustris (pitch pine). D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.
Ferruginol
Ferruginol is an abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12. It has a role as an antineoplastic agent, an antibacterial agent, a protective agent and a plant metabolite. It is an abietane diterpenoid, a member of phenols, a carbotricyclic compound and a meroterpenoid. Ferruginol is a natural product found in Calocedrus macrolepis, Teucrium polium, and other organisms with data available. An abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12.
Matairesinol
Matairesinol belongs to the class of organic compounds known as dibenzylbutyrolactone lignans. These are lignan compounds containing a 3,4-dibenzyloxolan-2-one moiety. Matairesinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, matairesinol is found, on average, in the highest concentration in a few different foods such as sesame, burdocks, and flaxseeds, and in a lower concentration in oats, asparagus, and poppies. Matairesinol has also been detected, but not quantified in, several different foods, such as silver lindens, tamarinds, cherry tomato, skunk currants, and fireweeds. This could make matairesinol a potential biomarker for the consumption of these foods. Matairesinol is composed of gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). (-)-matairesinol is a lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). It has a role as a phytoestrogen, a plant metabolite, an angiogenesis inhibitor and an anti-asthmatic agent. It is a polyphenol, a lignan and a gamma-lactone. Matairesinol is a natural product found in Crossosoma bigelovii, Brassica oleracea var. sabauda, and other organisms with data available. See also: Arctium lappa fruit (part of); Pumpkin Seed (part of). Matairesinol is a plant lignan. It occurs with secoisolariciresinol in numerous foods such as oil seeds, whole grains, vegetables, and fruits. (-)-Matairesinol is found in many foods, some of which are caraway, pecan nut, cereals and cereal products, and longan. A lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].
Amentoflavone
Amentoflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. It has a role as a cathepsin B inhibitor, an antiviral agent, an angiogenesis inhibitor, a P450 inhibitor and a plant metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Amentoflavone is a natural product found in Podocarpus elongatus, Austrocedrus chilensis, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Amentoflavone is found in fruits. Amentoflavone is obtained from Viburnum prunifolium (black haw Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].
Pimaric acid
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.561 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.568 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.560
alpha-Cadinol
alpha-Cadinol is found in cloves. alpha-Cadinol is a constituent of Juniperus communis (juniper)
Proximadiol
Apigenin 7,4'-dimethyl ether
Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
Epicubenol
1alpha-4-Cadinen-1-ol is found in cloves. 1alpha-4-Cadinen-1-ol is a constituent of oil of cubeb pepper (Piper cubeba). Constituent of cubeb pepper (Piper cubeba) oil. Epicubenol is found in herbs and spices.
ent-8(14),15-Pimaradiene
ent-8(14),15-Pimaradiene is found in fruits. ent-8(14),15-Pimaradiene is a constituent of Aralia racemosa (American spikenard). Constituent of Aralia racemosa (American spikenard). ent-8(14),15-Pimaradiene is found in fruits.
Sugiresinol
A norlignan that is an isomer of agatharesinol in which the dihydroxypentene side chain is cyclised.
Abietatriene
A diterpene that is abietane having three double bonds located at positions 8, 11 and 13.
Pinene
Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.
Cedrelanol
A cadinane sesquiterpenoid that is cadin-4-ene carrying a hydroxy substituent at position 10.
Cedrol
Cedrol is a cedrane sesquiterpenoid and a tertiary alcohol. Cedrol is a natural product found in Xylopia aromatica, Widdringtonia whytei, and other organisms with data available. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].
Ferulic acid 4-glucoside
Ferulic acid 4-glucoside is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Ferulic acid 4-glucoside is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Ferulic acid 4-glucoside can be found in a number of food items such as redcurrant, gooseberry, highbush blueberry, and blackcurrant, which makes ferulic acid 4-glucoside a potential biomarker for the consumption of these food products. (2E)-3-[4-(beta-D-glucopyranosyloxy)-3-methoxyphenyl]acrylic acid is a glycoside. (E)-4-Hydroxy-3-methoxycinnamic acid 4-O-|A-D-glucopyranoside is a natural product found in Ribes uva-crispa, Aristolochia kaempferi, and other organisms with data available. Lavandoside is an active compound found from Lavandula spica flowers[1].
(E)-Calamene
Calamene is a metabolite of plant Turnera diffusa. Turnera diffusa (Damiana, Mexican holly, Old Womans Broom) is a small shrub of the family Tuneraceae. T. diffusa is native to both Central and South America and now commercially cultivated in Bolivia and Mexico. The leaf includes volatile oils (1,8-cineole, p-cymene, alpha- and beta-pinene, thymol, alpha-copaene, and calamene); luteolin; tannins, flavonoids (arbutin, acacetin, apigenin and pinocembrin), beta-sitosterol, damianin, and the cyanogenic glycoside tetraphyllin B. (www.globinmed.com) (e)-calamene is also known as calamenene or 1,6-dimethyl-4-isopropyltetralin. (e)-calamene can be found in a number of food items such as guava, lovage, summer savory, and rosemary, which makes (e)-calamene a potential biomarker for the consumption of these food products (e)-calamene can be found primarily in urine.
delta-Amorphene
1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]
(+)-alpha-Muurolene
(+)-alpha-Muurolene is isolated from various plant oils including Pinus mugo (dwarf mountain pine). Isolated from various plant oils including Pinus mugo (dwarf mountain pine)
delta6-Dehydroferruginol
delta6-Dehydroferruginol is found in fruits. delta6-Dehydroferruginol is isolated from woods of Juniperus communis (juniper Isolated from woods of Juniperus communis (juniper). delta6-Dehydroferruginol is found in fruits.
Prexanthoperol
Xanthoperol is found in fruits. Xanthoperol is a constituent of Juniperus communis (juniper) Constituent of Juniperus communis (juniper). Xanthoperol is found in fruits.
8-[5-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)-2-hydroxyphenyl]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one
Cedrelanol
Constituent of Juniperus communis (juniper). Cedrelanol is found in many foods, some of which are fruits, sweet basil, lemon balm, and hyssop. Cedrelanol is found in fruits. Cedrelanol is a constituent of Juniperus communis (juniper).
Calamenene
Calamenene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.
(2R)-2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydrochromen-4-one
Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].
Afzelin
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one can be found in a number of food items such as endive, linden, peach, and ginkgo nuts, which makes 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one a potential biomarker for the consumption of these food products. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Isocupressic acid
Quercetin 3-O-rhamnoside
Retusin
Retusin(ariocarpus), also known as 5-hydroxy-3,7,3,4-tetramethoxyflavone or 3,7,3,4-tetra-O-methylquercetin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, retusin(ariocarpus) is considered to be a flavonoid lipid molecule. Retusin(ariocarpus) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Retusin(ariocarpus) can be found in common oregano and mandarin orange (clementine, tangerine), which makes retusin(ariocarpus) a potential biomarker for the consumption of these food products. Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1]. Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1].
ent-Sandaracopimaradiene
Ent-sandaracopimaradiene, also known as (-)-8(14),15-isopimaradiene or (-)-isopimara-8(14),15-diene, is a member of the class of compounds known as diterpenoids. Diterpenoids are terpene compounds formed by four isoprene units. Thus, ent-sandaracopimaradiene is considered to be an isoprenoid lipid molecule. Ent-sandaracopimaradiene can be found in rice, which makes ent-sandaracopimaradiene a potential biomarker for the consumption of this food product.
ent-Kauran-16-beta-ol
Ent-kauran-16-beta-ol is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D. Ent-kauran-16-beta-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Ent-kauran-16-beta-ol can be found in sunflower, which makes ent-kauran-16-beta-ol a potential biomarker for the consumption of this food product.
delta-Cadinol
Delta-cadinol, also known as delta-cadinol, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Delta-cadinol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Delta-cadinol is a herbal tasting compound and can be found in a number of food items such as cloves, parsley, lemon balm, and common sage, which makes delta-cadinol a potential biomarker for the consumption of these food products. Delta-cadinol, also known as δ-cadinol, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Delta-cadinol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Delta-cadinol is a herbal tasting compound and can be found in a number of food items such as cloves, parsley, lemon balm, and common sage, which makes delta-cadinol a potential biomarker for the consumption of these food products.
Dehydroabietane
Dehydroabietane is a member of the class of compounds known as diterpenoids. Diterpenoids are terpene compounds formed by four isoprene units. Dehydroabietane can be found in lemon balm, which makes dehydroabietane a potential biomarker for the consumption of this food product.
1-S-cis-Calamenene
(E)-Calamene, also known as calamenene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. (E)-Calamene is possibly neutral. (E)-Calamene is found in highest concentrations in allspices, common oregano, and rosemaries and in lower concentrations in lovages. (E)-Calamene has also been detected in cloves, guava, summer savories, sweet basils, and pepper (spice). This could make (E)-calamene a potential biomarker for the consumption of these foods. Calamene is a metabolite of plant Turnera diffusa (Damiana, Mexican holly, Old Womans Broom), a small shrub of the family Tuneraceae. T. diffusa is native to both Central and South America and now commercially cultivated in Bolivia and Mexico. 1-s-cis-calamenene, also known as (7r,10r)-calamenene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. 1-s-cis-calamenene is a herb and spice tasting compound found in rosemary, which makes 1-s-cis-calamenene a potential biomarker for the consumption of this food product.
Cedrol
Cedrol is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol is a sweet, cedarwood, and dry tasting compound found in ginger, pepper (spice), and peppermint, which makes cedrol a potential biomarker for the consumption of these food products. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].
Anthemoside
Constituent of Anthemis nobilis (Roman chamomile). Anthemoside is found in herbs and spices.
gamma-Eudesmol
Gamma-eudesmol, also known as gamma-eudesmol, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Gamma-eudesmol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Gamma-eudesmol is a sweet and waxy tasting compound and can be found in a number of food items such as rosemary, ginkgo nuts, mango, and common thyme, which makes gamma-eudesmol a potential biomarker for the consumption of these food products. Gamma-eudesmol, also known as γ-eudesmol, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Gamma-eudesmol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Gamma-eudesmol is a sweet and waxy tasting compound and can be found in a number of food items such as rosemary, ginkgo nuts, mango, and common thyme, which makes gamma-eudesmol a potential biomarker for the consumption of these food products.
Apigenin 7,4'-dimethyl ether
Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. Apigenin 7,4-dimethyl ether is a dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. It has a role as a plant metabolite. It is a dimethoxyflavone and a monohydroxyflavone. It is functionally related to an apigenin. Apigenin 7,4-dimethyl ether is a natural product found in Teucrium polium, Calea jamaicensis, and other organisms with data available. A dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
sandaracopimaric acid
A pimarane diterpenoid that is (1S,4aS,4bS,7R,10aS)-1,4a,7-trimethyl-1,2,3,4,4a,4b,5,6,7,9,10,10a-dodecahydrophenanthrene carrying a carboxy group at position 1 and a vinyl group at position 7. It is a natural product found in several plant species.
β-Eudesmol
Beta-eudesmol, also known as beta-selinenol, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Beta-eudesmol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-eudesmol is a green and wood tasting compound and can be found in a number of food items such as common walnut, sweet basil, ginkgo nuts, and burdock, which makes beta-eudesmol a potential biomarker for the consumption of these food products. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].
gamma-Eudesmol
A eudesmane sesquiterpenoid in which the eudesmane skeleton carries a hydroxy substituent at C-11 and has a double bond between C-4 and C-5.
Quercitrin
Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].
Quercetin
Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
Agatharesinol
A major heartwood norlignan characterised by a core trans-3-p-hydroxyphenyl-1-phenylpropene structural unit.
2-(2-Formyl-1,3,3-trimethylcyclohexyl)-4-hydroxy-5-isopropylbenzaldehyde
Amentoflavone
D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 4341; CONFIDENCE confident structure Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].
Retusin
Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1]. Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1].
Matairesinol
Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 INTERNAL_ID 17; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.920 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.921 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].
Ferulic acid
(E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.
Phytol
Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
Apigetrin
Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].
3-hydroxy-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one
p-Hydroxybenzaldehyde
p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
4-Hydroxybenzaldehyde
p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
Isopimaric acid
Isolated from Pinus palustris (pitch pine) Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.
5-hydroxy-3,7-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one
Hypargenin C
ent-8(14),15-Pimaradiene
isopimarinol
(+)-Copalol
A labdane diterpenoid in which the labdane skeleton has double bonds at positions 8(17) and 13 (the latter with E-stereochemistry) and carries a hydroxy group at the terminal C-15 position.
3,4-Bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one
3-hydroxy-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one
7-Dehydroabietanone
An abietane diterpenoid that is abieta-8,11,13-triene substituted by an oxo group at position 7. It has been isolated from the stem bark of Fraxinus sieboldiana.
2-(4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1H-naphthalen-2-yl)propan-2-ol
13-epi-manool
A labdane diterpenoid in which the labdane skeleton has double bonds at positions 8(17) and 14 and carries an S-hydroxy group at position 13.
delta-Cadinene
A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).
3-(3-methoxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)prop-2-enoic acid
(2r,4ar,4bs,7s,10ar)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,4b,5,6,9,10,10a-octahydro-2h-phenanthren-2-ol
(1s,4ar,5s,8ar)-1,4a-dimethyl-5-[(3e)-3-methyl-5-oxopent-3-en-1-yl]-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid
5-hydroxy-7-isopropyl-6-methoxy-1,1,4a-trimethyl-3,4,10,10a-tetrahydro-2h-phenanthren-9-one
(1r,3r,10s,15s,16r,18s,25s,30s)-6,21-diisopropyl-10,14,14,25,29,29-hexamethyl-2,17-dioxaheptacyclo[16.12.0.0³,¹⁶.0⁴,⁹.0¹⁰,¹⁵.0¹⁹,²⁴.0²⁵,³⁰]triaconta-4,6,8,19(24),20,22-hexaene-7,22-diol
(6-hydroxy-7-isopropyl-1,4a-dimethyl-2,3,4,9,10,10a-hexahydrophenanthren-1-yl)methyl acetate
2-isopropyl-9-[(2-isopropyl-4b,8,8-trimethyl-5,6,7,8a-tetrahydrophenanthren-3-yl)oxy]-10-methoxy-4b,8,8-trimethyl-5,6,7,8a,9,10-hexahydrophenanthren-3-ol
methyl 4-(6-methyl-4-oxoheptan-2-yl)cyclohex-1-ene-1-carboxylate
7-isopropyl-6-methoxy-1,1,4a-trimethyl-2,3,4,10a-tetrahydrophenanthrene
1,5-dihydroxy-3,5'-diisopropyl-7,7,10a-trimethyl-6a,8,9,10-tetrahydro-5h-spiro[acephenanthrylene-4,2'-bicyclo[3.1.0]hexane]-2,6-dione
(4s,5s)-4-hydroxy-2-methyl-5-(5-methylhex-4-enoyl)cyclohex-2-en-1-one
(4bs,8s,8ar)-8-(hydroxymethyl)-2-isopropyl-4b,8-dimethyl-5,6,7,8a,9,10-hexahydrophenanthren-3-ol
(1s,4ar,5s,8as)-5-[(3s,5e)-6-[(2s)-4-[(1s,4ar,5s,8ar)-5-carboxy-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]butan-2-yl]-3-methyl-7-oxohept-5-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid
(2r)-3-[4-(acetyloxy)-3-methoxyphenyl]-2-[2-(acetyloxy)-5-[3-(acetyloxy)propyl]-3-methoxyphenyl]propyl acetate
7-isopropyl-6-methoxy-1,1,4a-trimethyl-3,4,10,10a-tetrahydro-2h-phenanthren-9-one
(4as,10ar)-6-hydroxy-7-isopropyl-1,1,4a-trimethyl-2,3,4,10a-tetrahydrophenanthrene-9,10-dione
(4bs,8as)-2-isopropyl-4b,8,8-trimethyl-6,7,8a,9-tetrahydro-5h-phenanthrene-1,4,10-trione
{2-[4-(acetyloxy)-3-methoxyphenyl]-5-[3-(acetyloxy)propyl]-2,3-dihydro-1-benzofuran-3-yl}methyl acetate
2-isopropyl-3,10-dimethoxy-4b,8,8-trimethyl-5,6,7,8a,9,10-hexahydrophenanthren-4-ol
1-[(1r,4r,9r,10s,13r,14r,15s)-14-hydroxy-15-(hydroxymethyl)-5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]ethanone
2-[4-ethenyl-3-(2-hydroxypropan-2-yl)-4-methylcyclohexyl]propan-2-ol
3,10-dihydroxy-2-isopropyl-4b,8,8-trimethyl-5,6,7,8a,9,10-hexahydrophenanthren-9-yl acetate
[(1s,4ar,5s,8ar)-5-[(3s)-3-hydroxy-3-methylpent-4-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalen-1-yl]methyl acetate
5-(4-carboxy-3-methylbutyl)-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid
methyl 5-(4-hydroxy-3-methylbutyl)-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylate
(7-ethenyl-1,4a,7-trimethyl-3,4,4b,5,6,8,10,10a-octahydro-2h-phenanthren-1-yl)methanol
7-ethenyl-1,1,4a,7-tetramethyl-decahydrophenanthren-8a-ol
methyl 5-(3-hydroxy-3-methylpent-4-en-1-yl)-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylate
(4bs,8as,9r,10s)-9-{[(4bs,8as)-2-isopropyl-4b,8,8-trimethyl-5,6,7,8a-tetrahydrophenanthren-3-yl]oxy}-2-isopropyl-10-methoxy-4b,8,8-trimethyl-5,6,7,8a,9,10-hexahydrophenanthren-3-ol
[(1s,4as,5r,6r,8ar)-6-hydroxy-1,4a,6-trimethyl-5-(3-methylidenepent-4-en-1-yl)-hexahydro-2h-naphthalen-1-yl]methyl (2e)-3-(4-methoxyphenyl)prop-2-enoate
4-[5-(hydroxymethyl)-4-(4-hydroxyphenyl)-2,5-dihydrofuran-2-yl]phenol
6-hydroxy-3-isopropyl-7,7,10a-trimethyl-5ah,6h,6ah,8h,9h,10h-phenanthro[9,8a-b]oxiren-2-one
methyl 5-(5-methoxy-3-methyl-5-oxopentyl)-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylate
5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-ene-14-carbaldehyde
(1s,4ar,5s,8ar)-1,4a-dimethyl-5-[(3s,5e)-3-methyl-7-oxooct-5-en-1-yl]-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid
(4as,10as)-5,8-dihydroxy-7-isopropyl-1,1,4a-trimethyl-3,4,10,10a-tetrahydro-2h-phenanthren-9-one
(1s,4ar,5s,8ar)-5-[(3s)-3-hydroxy-3-methylpent-4-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carbaldehyde
(1s,4s,4ar,8as)-6-{[(4as,9s,10as)-6-hydroxy-7-isopropyl-1,1,4a-trimethyl-2,3,4,9,10,10a-hexahydrophenanthren-9-yl]methyl}-4-isopropyl-1-methyl-2,3,4,4a,7,8-hexahydronaphthalene-1,8a-diol
5-(5-formyl-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl)-3-methylpent-2-en-1-yl acetate
methyl (1s,4ar,5r,7s,8ar)-7-(acetyloxy)-5-[(3e)-5-hydroxy-3-methylpent-3-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylate
[(2s,3r)-2-[4-(acetyloxy)-3-methoxyphenyl]-5-[3-(acetyloxy)propyl]-7-methoxy-2,3-dihydro-1-benzofuran-3-yl]methyl acetate
(4ar)-6,10-dihydroxy-7-(2-hydroxypropan-2-yl)-1,1,4a-trimethyl-3,4-dihydro-2h-phenanthren-9-one
apigetrin
{"Ingredient_id": "HBIN016480","Ingredient_name": "apigetrin","Alias": "CHEMBL487995; SR-05000002285; Galactosyl-7-apigenin; EINECS 209-430-5; 5-Hydroxy-2-(4-hydroxyphenyl)-7-(4,5,6-trihydroxy-3-(hydroxymethyl)(2-oxanyloxy))-4H-chromen-4-one; Cosemetin; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; COSMOSIIN; 4H-1-Benzopyran-4-one, 7-(beta-D-glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)- (9CI); Apigenin, 7-beta-D-glucopyranoside; Apigenin 7-O-beta-D-glucopyranoside; 7-(beta-D-Glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; Cosmosiine; 7-O-(beta-D-Glucosyl)apigenin; Thalictiin; SR-05000002285-3; A831652; Cosmosioside; 23598-21-2; NSC 407303; Apigetrin; NCGC00163513-01; CCG-208379; 62532-75-6; 5-hydroxy-2-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-1-benzopyran-4-one; UNII-7OF2S66PCH; SR-05000002285-2; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; AC1NUZ8G; Apigenin, 7-beta-D-galactopyranoside; 7-[(2S,3R,4S,5R,6R)-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-2-(4-hydroxyphenyl)-5-oxidanyl-chromen-4-one; 7OF2S66PCH; Cosmosiin (8CI)","Ingredient_formula": "C21H20O10","Ingredient_Smile": "C1=CC(=CC=C1C2=CC(=O)C3=C(C=C(C=C3O2)OC4C(C(C(C(O4)CO)O)O)O)O)O","Ingredient_weight": "432.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT19095","TCMID_id": "30618","TCMSP_id": "NA","TCM_ID_id": "21625","PubChem_id": "12304093","DrugBank_id": "NA"}