Gene Association: PHYH

UniProt Search: PHYH (PROTEIN_CODING)
Function Description: phytanoyl-CoA 2-hydroxylase

found 37 associated metabolites with current gene based on the text mining result from the pubmed database.

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Methyl red

Methyl red(to be removed)

C15H15N3O2 (269.1164)


D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9367; ORIGINAL_PRECURSOR_SCAN_NO 9363 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9443; ORIGINAL_PRECURSOR_SCAN_NO 9441 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9445; ORIGINAL_PRECURSOR_SCAN_NO 9443 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9467; ORIGINAL_PRECURSOR_SCAN_NO 9462 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9471; ORIGINAL_PRECURSOR_SCAN_NO 9469 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9503; ORIGINAL_PRECURSOR_SCAN_NO 9501

   

Fomesafen

5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-methanesulfonyl-2-nitrobenzene-1-carboximidic acid

C15H10ClF3N2O6S (437.99)


CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4841; ORIGINAL_PRECURSOR_SCAN_NO 4840 CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4864; ORIGINAL_PRECURSOR_SCAN_NO 4860 CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4866; ORIGINAL_PRECURSOR_SCAN_NO 4861 CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4858; ORIGINAL_PRECURSOR_SCAN_NO 4857 CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4860; ORIGINAL_PRECURSOR_SCAN_NO 4858 CONFIDENCE standard compound; INTERNAL_ID 670; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4876; ORIGINAL_PRECURSOR_SCAN_NO 4874 DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 670; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4860; ORIGINAL_PRECURSOR_SCAN_NO 4858

   

Quinclorac

3,7-Dichloro-8-quinolinecarboxylic acid

C10H5Cl2NO2 (240.9697)


CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7880; ORIGINAL_PRECURSOR_SCAN_NO 7877 CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7876; ORIGINAL_PRECURSOR_SCAN_NO 7873 CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7833; ORIGINAL_PRECURSOR_SCAN_NO 7831 CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7836; ORIGINAL_PRECURSOR_SCAN_NO 7833 CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7792; ORIGINAL_PRECURSOR_SCAN_NO 7790 CONFIDENCE standard compound; INTERNAL_ID 647; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7882; ORIGINAL_PRECURSOR_SCAN_NO 7879 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Penoxsulam

2-(2,2-difluoroethoxy)-N-{5,8-dimethoxy-[1,2,4]triazolo[1,5-c]pyrimidin-2-yl}-6-(trifluoromethyl)benzene-1-sulfonamide

C16H14F5N5O5S (483.0636)


CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4005; ORIGINAL_PRECURSOR_SCAN_NO 4004 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8116; ORIGINAL_PRECURSOR_SCAN_NO 8114 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4018; ORIGINAL_PRECURSOR_SCAN_NO 4017 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8170; ORIGINAL_PRECURSOR_SCAN_NO 8166 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8176; ORIGINAL_PRECURSOR_SCAN_NO 8174 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4015; ORIGINAL_PRECURSOR_SCAN_NO 4014 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8118; ORIGINAL_PRECURSOR_SCAN_NO 8115 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4004; ORIGINAL_PRECURSOR_SCAN_NO 4003 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3984; ORIGINAL_PRECURSOR_SCAN_NO 3983 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8080; ORIGINAL_PRECURSOR_SCAN_NO 8079 CONFIDENCE standard compound; INTERNAL_ID 462; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8164; ORIGINAL_PRECURSOR_SCAN_NO 8162

   

Malathion

1,4-diethyl 2-{[dimethoxy(sulfanylidene)-lambda5-phosphanyl]sulfanyl}butanedioate

C10H19O6PS2 (330.0361)


Malathion is only found in individuals that have used or taken this drug. It is a wide spectrum aliphatic organophosphate insecticide widely used for both domestic and commercial agricultural purposes. [PubChem]Malathion is a nonsystemic, wide-spectrum organophosphate insecticide. It inhibits acetylcholinesterase activity of most eukaryotes. Malathion is toxic to aquatic organisms, but has a relatively low toxicity for birds and mammals. The major metabolites of malathion are mono- and di-carboxylic acid derivatives, and malaoxon is a minor metabolite. However, it is malaoxon that is the strongest cholinesterase inhibitor. Cholinesterases catalyze the hydrolysis of the neurotransmitter acetylcholine into choline and acetic acid, a reaction necessary to allow a cholinergic neuron to return to its resting state after activation. Because of its essential function, chemicals that interfere with the action of cholinesterase are potent neurotoxins, causing muscle spasms and ultimately death. P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Bentazone

3-(propan-2-yl)-3,4-dihydro-1H-2λ⁶,1,3-benzothiadiazine-2,2,4-trione

C10H12N2O3S (240.0569)


CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3883; ORIGINAL_PRECURSOR_SCAN_NO 3880 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3853; ORIGINAL_PRECURSOR_SCAN_NO 3852 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3872; ORIGINAL_PRECURSOR_SCAN_NO 3871 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3882; ORIGINAL_PRECURSOR_SCAN_NO 3878 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3897; ORIGINAL_PRECURSOR_SCAN_NO 3895 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3872; ORIGINAL_PRECURSOR_SCAN_NO 3868 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8380 CONFIDENCE standard compound; EAWAG_UCHEM_ID 253 CONFIDENCE standard compound; INTERNAL_ID 2313 CONFIDENCE standard compound; INTERNAL_ID 3258 D010575 - Pesticides > D006540 - Herbicides KEIO_ID B072; [MS2] KO008894 D016573 - Agrochemicals KEIO_ID B072

   

Melibiose

(2S,3R,4S,5S,6R)-6-({[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol

C12H22O11 (342.1162)


Melibiose (CAS: 585-99-9) is a disaccharide consisting of one galactose and one glucose moiety in an alpha (1-6) glycosidic linkage. This sugar is produced and metabolized only by enteric and lactic acid bacteria and other microbes, such as Dickeya dadantii, Escherichia, Leuconostoc, and Saccharomyces (PMID: 19734309, 28453942). It is not an endogenous metabolite but may be obtained from the consumption of partially fermented molasses, brown sugar, or honey. Antibodies to melibiose will appear in individuals affected by Chagas disease (Trypanosoma cruzi infection). Melibiose is not metabolized by humans but can be broken down by gut microflora, such as E. coli. In fact, E. coli is able to utilize melibiose as a sole source of carbon. Melibiose is first imported by the melibiose permease, MelB and then converted into β-D-glucose and β-D-galactose by the α-galactosidase encoded by melA. Because of its poor digestibility, melibiose (along with rhamnose) can be used together for noninvasive intestinal mucosa barrier testing. This test can be used to assess malabsorption or impairment of intestinal permeability. Recent studies with dietary melibiose have shown that it can strongly affect the Th cell responses to an ingested antigen. It has been suggested that melibiose could be used to enhance the induction of oral tolerance (PMID: 17986780). Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions. Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions.

   

5-Keto-D-gluconate

2,3,4,6-tetrahydroxy-5-oxohexanoic acid

C6H10O7 (194.0427)


5-Keto-D-gluconate is metabolized from glucose in certain bacterial species. It is an intermediate in L-idonate degradation and ketogluconate metabolism. 5-Keto-D-gluconate 5-reductase catalyzes the reversible reduction of 5-ketogluconate to D-gluconate. This is the second reaction of the L-idonate catabolic pathway after uptake of L-idonate into the cell. The enzyme specifically reduces 5-ketogluconate using either NADH or NADPH. The enzyme is also specific for D-gluconate oxidation using NADP as the coenzyme, NAD does not serve as a coenzyme. 5-Keto-D-gluconate has also been found to be a metabolite of Gluconobacter (https://www.sciencedirect.com/science/article/pii/S138111779800112X). 5-Keto-D-gluconate is metabolized from glucose in certain bacterial species. It is an intermediate in L-idonate degradation and ketogluconate metabolism. 5-Keto-D-gluconate 5-reductase catalyzes the reversible reduction of 5-ketogluconate to D-gluconate. This is the second reaction of the L-idonate catabolic pathway after uptake of L-idonate into the cell. The enzyme specifically reduces 5-ketogluconate using either NADH or NADPH. The enzyme is also specific for D-gluconate oxidation using NADP as the coenzyme, NAD does not serve as a coenzyme. [HMDB]

   

FA 15:0

Dodecanoic acid, 3,7,11-trimethyl-

C15H30O2 (242.2246)


A branched-chain saturated fatty acid comprising tetradecanoic acid carrying a 12-methyl substituent. CONFIDENCE standard compound; INTERNAL_ID 246 CONFIDENCE standard compound; INTERNAL_ID 247 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2]. 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].

   

Formyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(formylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C22H36N7O17P3S (795.1101)


Formyl-CoA is formed during the alpha-oxidation process in liver peroxisomes, as a result of the alpha-oxidation of 3-methyl-substituted fatty acids. The amount of formyl-CoA formed constitutes 2 - 5\\% of the total formate. The formyl-CoA formed is not due to activation of formate - until now presumed to be the primary end-product of alpha-oxidation - but is rather than formate the end-product of alpha-oxidation. The cleavage of 2-hydroxy-3-methylhexadecanoyl-CoA to 2-methylpentadecanal and formate (formyl-CoA) is probably due to the presence of a specific lyase. (PMID: 9276483, 9166898) [HMDB]. Formyl-CoA is found in many foods, some of which are roman camomile, java plum, sweet marjoram, and new zealand spinach. Formyl-CoA is formed during the alpha-oxidation process in liver peroxisomes, as a result of the alpha-oxidation of 3-methyl-substituted fatty acids. The amount of formyl-CoA formed constitutes 2 - 5\\% of the total formate. The formyl-CoA formed is not due to activation of formate - until now presumed to be the primary end-product of alpha-oxidation - but is rather than formate the end-product of alpha-oxidation. The cleavage of 2-hydroxy-3-methylhexadecanoyl-CoA to 2-methylpentadecanal and formate (formyl-CoA) is probably due to the presence of a specific lyase. (PMID: 9276483, 9166898).

   

Phytanate

3,7,11,15-Tetramethylhexadecoanoic acid

C20H40O2 (312.3028)


Phytanic acid (or 3,7,11,15-tetramethylhexadecanoic acid) is a 20-carbon branched-chain fatty acid that humans can obtain through the consumption of dairy products, ruminant animal fats, and certain fish. It is primarily formed by bacterial degradation of chlorophyll in the intestinal tract of ruminants. Unlike most fatty acids, phytanic acid cannot be metabolized by beta-oxidation (because of a methyl group in the beta position). Instead, it undergoes alpha-oxidation in the peroxisome, where it is converted into pristanic acid by the removal of one carbon. Pristanic acid can undergo several rounds of beta-oxidation in the peroxisome to form medium-chain fatty acids that can be converted into carbon dioxide and water in mitochondria. Refsum disease, an autosomal recessive neurological disorder caused by mutations in the PHYH gene, is characterized by having impaired alpha-oxidation activity. Individuals with Refsum disease accumulate large stores of phytanic acid in their blood and tissues. This frequently leads to peripheral polyneuropathy, cerebellar ataxia, retinitis pigmentosa, anosmia, and hearing loss. Therefore, chronically high levels of phytanic acid can be neurotoxic. Phytanic acids neurotoxicity appears to lie in its ability to initiate astrocyte/neural cell death by activating the mitochondrial route of apoptosis. In particular, phytanic acid can induce the substantial generation of reactive oxygen species in isolated mitochondria as well as in intact cells. It also induces the release of cytochrome c from mitochondria. A 20-carbon branched chain fatty acid, Phytanic acid is present in animal (primarily herbivores or omnivores) tissues where it may be derived from the chlorophyll in consumed plant material. Phytanic acid derives from the corresponding alcohol, phytol, and is ultimately oxidized into pristanic acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids in plasma. These high levels in Refsum disease (a neurological disorder) are due to a phytanic acid alpha-hydroxylase deficiency.; A 20-carbon branched chain fatty acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids of the plasma. This is due to a phytanic acid alpha-hydroxylase deficiency. [HMDB]

   

Phytanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(3S,7R,11R)-3,7,11,15-tetramethylhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H74N7O17P3S (1061.4075)


Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698). [HMDB] Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698).

   

Isovaleryl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(3-methylbutanoyl)sulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid

C26H44N7O17P3S (851.1727)


Isovaleryl-CoA is an intermediate metabolite in the catabolic pathway of leucine. The accumulation of derivatives of isovaleryl-CoA occurs in patients affected with isovaleric acidemia (IVA, OMIM 243500) an autosomal recessive inborn error of leucine metabolism caused by a deficiency of the mitochondrial enzyme isovaleryl-CoA dehydrogenase (IVD, EC 1.3.99.10, a flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA). IVA was the first organic acidemia recognized in humans and can cause significant morbidity and mortality. Early diagnosis and treatment with a protein restricted diet and supplementation with carnitine and glycine are effective in promoting normal development in severely affected individuals. Both intra- and interfamilial variability have been recognized. Initially, two phenotypes with either an acute neonatal or a chronic intermittent presentation were described. More recently, a third group of individuals with mild biochemical abnormalities who can be asymptomatic have been identified through newborn screening of blood spots by tandem mass spectrometry. The majority of patients with IVA today are diagnosed pre-symptomatically through newborn screening by use of MS/MS which reveals elevations of the marker metabolite C5 acylcarnitine in dried blood spots. C5 acylcarnitine represents a mixture of isomers (isovalerylcarnitine, 2-methylbutyrylcarnitine, and pivaloylcarnitine). (PMID: 16602101, Am J Med Genet C Semin Med Genet. 2006 May 15;142(2):95-103.) [HMDB]. Isovaleryl-CoA is found in many foods, some of which are purple laver, alaska wild rhubarb, macadamia nut (m. tetraphylla), and green zucchini. Isovaleryl-CoA is an intermediate metabolite in the catabolic pathway of leucine. The accumulation of derivatives of isovaleryl-CoA occurs in patients affected with isovaleric acidemia (IVA, OMIM: 243500), an autosomal recessive inborn error of leucine metabolism caused by a deficiency of the mitochondrial enzyme isovaleryl-CoA dehydrogenase (IVD, EC 1.3.99.10), a flavoenzyme that catalyzes the conversion of isovaleryl-CoA into 3-methylcrotonyl-CoA. IVA was the first organic acidemia recognized in humans and can cause significant morbidity and mortality. Early diagnosis and treatment with a protein-restricted diet and supplementation with carnitine and glycine are effective in promoting normal development in severely affected individuals. Both intra- and interfamilial variability have been recognized. Initially, two phenotypes with either an acute neonatal or a chronic intermittent presentation were described. More recently, a third group of individuals with mild biochemical abnormalities who can be asymptomatic have been identified through newborn screening of blood spots by tandem mass spectrometry. The majority of patients with IVA today are diagnosed pre-symptomatically through newborn screening by use of MS/MS which reveals elevations of the marker metabolite C5 acylcarnitine in dried blood spots. C5 Acylcarnitine represents a mixture of isomers (isovalerylcarnitine, 2-methylbutyrylcarnitine, and pivaloylcarnitine) (PMID: 16602101).

   

2-hydroxyphytanic acid

(2S)-2-hydroxy-3,7,11,15-tetramethylhexadecanoic acid

C20H40O3 (328.2977)


A methylated long-chain hyroxy fatty acid formed during alpha-oxidation of phytanic acid by liver mitochondria and peroxisomes, but it is detected in tissues only in patients with peroxisomal disorders.

   

2-Hydroxyphytanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-3-({2-[(2-{[(3S,7R,11R)-2-hydroxy-3,7,11,15-tetramethylhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H74N7O18P3S (1077.4024)


2-Hydroxyphytanoyl-CoA is a substrate for Phytanoyl-CoA dioxygenase (peroxisomal). [HMDB] 2-Hydroxyphytanoyl-CoA is a substrate for Phytanoyl-CoA dioxygenase (peroxisomal).

   

Lysergic acid

6-Methyl-9,10-didehydroergoline-8-carboxylic acid

C16H16N2O2 (268.1212)


An ergoline alkaloid comprising 6-methylergoline having additional unsaturation at the 9,10-position and a carboxy group at the 8-position.

   

13-Methylmyristic acid

13-Methylmyristic acid, >=98\\% (capillary GC)

C15H30O2 (242.2246)


Isopentadecanoic acid is a branched-chain saturated fatty acid comprising tetradecanoic (myristic) acid substituted at position 13 by a methyl group. It is a long-chain fatty acid, a branched-chain saturated fatty acid and a methyl-branched fatty acid. It is a conjugate acid of an isopentadecanoate. 13-Methyltetradecanoic acid is a natural product found in Streptomyces manipurensis, Myrmekioderma rea, and other organisms with data available. 13-Methyltetradecanoic Acid is a branched-chain saturated fatty acid that is comprised of tetradecanoic acid with a methyl group on the carbon in the thirteenth position. 13-Methylmyristic acid (CAS# 2485-71-4), also known as 13-methyltetradecanoic acid, iso-pentadecanoic acid, 13-methyltetradecanoic acid, 13-MTD, or 13-MTDA, is an iso-fatty acid. It is used to study the induction of mitochondrial-mediated apoptosis via the AKT and MAPK pathways. 13-MTDA is used for the biosynthesis of methyl-branched polyhydroxyalkanoates A branched-chain saturated fatty acid comprising tetradecanoic (myristic) acid substituted at position 13 by a methyl group. 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2]. 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].

   

3D,7D,11D-Phytanic acid

3,7,11,15-Tetramethyl-[3R-(3R*,7R*,11R*)]-hexadecanoic acid

C20H40O2 (312.3028)


3D,7D,11D-Phytanic acid is an isomer of Phytanic acid, an unusual 20-carbon branched-chain fatty acid; Phytanic acid accumulates in blood and tissues of patients with Refsum disease (RD, an inborn error of lipid metabolism inherited as an autosomal recessive trait (OMIM 266500)), and is a reliable identifier of RD from a large number of other neurological disorders. Phytanic acid also accumulates in a number of other disorders with a very different clinical course: disorders of peroxisome biogenesis (Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), infantile Refsum disease (OMIM 266510)) and rhizomelic chondrodysplasia punctata, type 1 (OMIM 215100). Phytanic acid is a 3-methyl fatty acid that cannot be beta-oxidized directly, and first undergoes an alpha-oxidation a reaction catalyzed by the enzyme phytanoyl-CoA hydroxylase, which is deficient in RD, the only true disorder of phytanic acid alpha-oxidation. (The Metabolic and Molecular Bases of Inherited Disease).

   

(+)-Lysergic acid

6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxylic acid

C16H16N2O2 (268.1212)


   

Methyl red

2-{2-[4-(dimethylamino)phenyl]diazen-1-yl}benzoic acid

C15H15N3O2 (269.1164)


D004396 - Coloring Agents

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

PHYTANIC ACID

Hexadecanoic acid, 3,7,11,15-tetramethyl-

C20H40O2 (312.3028)


A branched-chain saturated fatty acid consisting of hexadecanoic acid carrying methyl substituents at positions 3, 7, 11 and 15.

   
   

2-Hydroxyphytanic acid

2-hydroxy-3,7,11,15-tetramethylhexadecanoic acid

C20H40O3 (328.2977)


An alpha-hydroxy fatty acid formed from phytanic acid by bacterial cytochrome P450; and also formed in human peroxisomal disorders.

   

CoA 20:0;O

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-3-({2-[(2-{[(3S,7R,11R)-2-hydroxy-3,7,11,15-tetramethylhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H74N7O18P3S (1077.4024)


   

CoA 5:0

3-methylbutanoyl-coenzyme A;3-methylbutyryl-CoA;3-methylbutyryl-coenzyme A;beta-methylbutanoyl-CoA;beta-methylbutanoyl-coenzyme A;beta-methylbutyryl-CoA;beta-methylbutyryl-coenzyme A;isovaleryl-coenzyme A

C26H44N7O17P3S (851.1727)


   

13-Mtd

Tetradecanoic acid, 13-methyl-

C15H30O2 (242.2246)


13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2]. 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].

   

malathion

malathion

C10H19O6PS2 (330.0361)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   
   

Quinclorac

3,7-Dichloroquinoline-8-carboxylic acid

C10H5Cl2NO2 (240.9697)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Isovaleryl-CoA

Isovaleryl-CoA

C26H44N7O17P3S (851.1727)


A methylbutanoyl-CoA is the S-isovaleryl derivative of coenzyme A.

   

formyl CoA

Formyl-CoA

C22H36N7O17P3S (795.1101)


An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of formic acid.

   

(+)-Lysergic acid

6-Methyl-9,10-didehydroergoline-8-carboxylic acid

C16H16N2O2 (268.1212)


   

Bentazon

Bentazone

C10H12N2O3S (240.0569)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

2,3,4,6-tetrahydroxy-5-oxohexanoic acid

2,3,4,6-tetrahydroxy-5-oxohexanoic acid

C6H10O7 (194.0427)


   

6-O-alpha-D-Galactopyranosyl-alpha-D-glucopyranose

6-O-alpha-D-Galactopyranosyl-alpha-D-glucopyranose

C12H22O11 (342.1162)