NCBI Taxonomy: 169655

Morindeae (ncbi_taxid: 169655)

found 491 associated metabolites at tribe taxonomy rank level.

Ancestor: Rubioideae

Child Taxonomies: Morinda, Mitchella, Appunia, Damnacanthus, Coelospermum, Gynochthodes, Lucinaea, Sarcopygme, Pogonolobus, Lecananthus

Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0422568)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Loganin

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H26O10 (390.1525896)


Loganin is an iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. It has a role as a plant metabolite, a neuroprotective agent, an EC 3.4.23.46 (memapsin 2) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an anti-inflammatory agent and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. It is a cyclopentapyran, a beta-D-glucoside, an enoate ester, a monosaccharide derivative, an iridoid monoterpenoid, a methyl ester and a secondary alcohol. It is functionally related to a loganetin. Loganin is one of the best-known of the iridoid glycosides. It is named for the Loganiaceae, having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae),[1] a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America. Loganin is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. An iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. Loganin, also known as loganoside, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, loganin is considered to be an isoprenoid lipid molecule. Loganin is soluble (in water) and a very weakly acidic compound (based on its pKa). Loganin can be found in a number of food items such as groundcherry, annual wild rice, muscadine grape, and broad bean, which makes loganin a potential biomarker for the consumption of these food products. Loganin is one of the best-known of the iridoid glycosides.It is named for the Loganiaceae,having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae), a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America . Loganin is formed from loganic acid by the enzyme loganic acid O-methyltransferase (LAMT). Loganin then becomes a substrate for the enzyme secologanin synthase (SLS) to form secologanin, a secoiridoid monoterpene found as part of ipecac and terpene indole alkaloids. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Vanillin

Vanillin melting point standard, Pharmaceutical Secondary Standard; Certified Reference Material

C8H8O3 (152.0473418)


Vanillin, also known as vanillaldehyde or lioxin, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is used by the food industry as well as ethylvanillin. Vanillin exists in all living species, ranging from bacteria to humans. Vanillin is a sweet, chocolate, and creamy tasting compound. Vanillin is found, on average, in the highest concentration within a few different foods, such as corns, ryes, and sherries and in a lower concentration in beers, rums, and oats. Vanillin has also been detected, but not quantified, in several different foods, such as gooseberries, other bread, brazil nuts, shea tree, and ohelo berries. This could make vanillin a potential biomarker for the consumption of these foods. Vanillin is a potentially toxic compound. Synthetic vanillin, instead of natural Vanillin extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. Vanillin is the primary component of the extract of the Vanillin bean. Because of the scarcity and expense of natural Vanillin extract, there has long been interest in the synthetic preparation of its predominant component. Artificial Vanillin flavoring is a solution of pure vanillin, usually of synthetic origin. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Vanillin appears as white or very slightly yellow needles. Vanillin is a member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, a flavouring agent, an antioxidant and an anticonvulsant. It is a member of phenols, a monomethoxybenzene and a member of benzaldehydes. Vanillin is a natural product found in Ficus erecta var. beecheyana, Pandanus utilis, and other organisms with data available. Vanillin is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. It is used by the food industry as well as ethylvanillin.Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. (Wiki). Vanillin is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of vanilla (Vanilla subspecies) and many other plants, e.g. Peru balsam, clove bud oil. Widely used flavouring agent especies in cocoa products. obtained from spent wood-pulp liquors. Vanillin is found in many foods, some of which are pomes, elderberry, common cabbage, and dock. A member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; ML_ID 59 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215226)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Narcissin

5,7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C28H32O16 (624.1690272)


Isorhamnetin-3-O-rutinoside is a disaccharide derivative, a glycosyloxyflavone, a monomethoxyflavone and a trihydroxyflavone. Narcissoside is a natural product found in Phoenix canariensis, Scolymus hispanicus, and other organisms with data available. See also: Ginkgo (part of); Calendula Officinalis Flower (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1]. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1].

   

Alizarin

1,2-dihydroxy-9,10-dihydroanthracene-9,10-dione

C14H8O4 (240.0422568)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8028 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Isoscopoletin

2H-1-Benzopyran-2-one, 6-hydroxy-7-methoxy-

C10H8O4 (192.0422568)


Isoscopoletin is a hydroxycoumarin that is esculetin in which the hydroxy group at position 7 is replaced by a methoxy group. It is the major primary metabolite of scoparone. It has a role as a plant metabolite. It is a hydroxycoumarin and an aromatic ether. It is functionally related to an esculetin. Isoscopoletin is a natural product found in Clausena dunniana, Olea capensis, and other organisms with data available. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) is an active constituent in Artemisia argyi leaves. Isoscopoletin shows substantial inhibition against cell proliferation, with IC50s of 4.0 μM and 1.6 μM for human CCRF-CEM leukaemia cells and multidrug resistant subline CEM/ADR5000, respectively[1]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) possesses inhibitory activity against HBV replication[2]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) is an active constituent in Artemisia argyi leaves. Isoscopoletin shows substantial inhibition against cell proliferation, with IC50s of 4.0 μM and 1.6 μM for human CCRF-CEM leukaemia cells and multidrug resistant subline CEM/ADR5000, respectively[1]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) possesses inhibitory activity against HBV replication[2].

   

Coniferaldehyde

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enal

C10H10O3 (178.062991)


Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Kaempferol

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O6 (286.047736)


Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Citric acid

2-hydroxypropane-1,2,3-tricarboxylic acid

C6H8O7 (192.0270018)


Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

DL-Mannitol

(2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol

C6H14O6 (182.0790344)


D-mannitol appears as odorless white crystalline powder or free-flowing granules. Sweet taste. (NTP, 1992) D-mannitol is the D-enantiomer of mannitol. It has a role as an osmotic diuretic, a sweetening agent, an antiglaucoma drug, a metabolite, an allergen, a hapten, a food bulking agent, a food anticaking agent, a food humectant, a food stabiliser, a food thickening agent, an Escherichia coli metabolite and a member of compatible osmolytes. Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Mannitol is an Osmotic Diuretic. The mechanism of action of mannitol is as an Osmotic Activity. The physiologic effect of mannitol is by means of Increased Diuresis. Mannitol is a natural product found in Pavetta indica, Scoparia dulcis, and other organisms with data available. Mannitol is a naturally occurring alcohol found in fruits and vegetables and used as an osmotic diuretic. Mannitol is freely filtered by the glomerulus and poorly reabsorbed from the renal tubule, thereby causing an increase in osmolarity of the glomerular filtrate. An increase in osmolarity limits tubular reabsorption of water and inhibits the renal tubular reabsorption of sodium, chloride, and other solutes, thereby promoting diuresis. In addition, mannitol elevates blood plasma osmolarity, resulting in enhanced flow of water from tissues into interstitial fluid and plasma. D-mannitol is a metabolite found in or produced by Saccharomyces cerevisiae. A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. See also: Mannitol; sorbitol (component of); Mannitol; menthol (component of). Mannitol, or hexan-1,2,3,4,5,6-hexol (C6H8(OH)6), is an alcohol and a sugar (sugar alcohol), or a polyol, it is a stereoisomer of sorbitol and is similar to the C5 xylitol. The structure of mannitol is made of a straight chain of six carbon atoms, each of which is substituted with a hydroxyl group. Mannitol is one of the most abundant energy and carbon storage molecules in nature, it is produced by a wide range of organisms such as bacteria, fungi and plants (PMID: 19578847). In medicine, mannitol is used as a diuretic and renal diagnostic aid. Mannitol has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. Mannitol has a tendency to lose a hydrogen ion in aqueous solutions, which causes the solution to become acidic. For this, it is not uncommon to add a weak base, such as sodium bicarbonate, to the solution to adjust its pH. Mannitol is a non-permeating molecule i.e., it cannot cross biological membranes. Mannitol is an osmotic diuretic agent and a weak renal vasodilator. Mannitol is found to be associated with cytochrome c oxidase deficiency and ribose-5-phosphate isomerase deficiency, which are inborn errors of metabolism. Mannitol is also a microbial metabolite found in Aspergillus, Candida, Clostridium, Gluconobacter, Lactobacillus, Lactococcus, Leuconostoc, Pseudomonas, Rhodobacteraceae, Saccharomyces, Streptococcus, Torulaspora and Zymomonas (PMID: 15240312; PMID: 29480337). Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85085-15-0 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.

   

Asperuloside

(2aS-(2aalpha,4aalpha,5alpha,7balpha))-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-1-oxo-1H-2,6-dioxacyclopent(cd)inden-4-ylmethyl acetate

C18H22O11 (414.11620619999997)


Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone. Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available. See also: Galium aparine whole (part of). A iridoid monoterpenoid glycoside isolated from Galium verum. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].

   

Cytidine

4-amino-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

C9H13N3O5 (243.0855168)


Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as a substrate for the salvage pathway of pyrimidine nucleotide synthesis. It is a precursor of cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathways. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transport of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in the brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP:phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. APOBEC is a family of enzymes that has been discovered with the ability to deaminate cytidines on RNA or DNA. The human apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G protein (APOBEC3G, or hA3G), provides cells with an intracellular antiretroviral activity that is associated with the hypermutation of viral DNA through cytidine deamination. Indeed, hA3G belongs to a family of vertebrate proteins that contains one or two copies of a signature sequence motif unique to cytidine deaminases (CTDAs) (PMID: 16769123, 15780864, 16720547). Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as substrate for the salvage pathway of pyrimidine nucleotide synthesis; as precursor of the cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathway. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transports of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide, which is involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP: phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. Cytidine is a white crystalline powder. (NTP, 1992) Cytidine is a pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a cytosine. Cytidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytidine is a natural product found in Fritillaria thunbergii, Castanopsis fissa, and other organisms with data available. Cytidine is a pyrimidine nucleoside comprised of a cytosine bound to ribose via a beta-N1-glycosidic bond. Cytidine is a precursor for uridine. Both cytidine and uridine are utilized in RNA synthesis. Cytidine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. A pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Pinoresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-

C20H22O6 (358.1416312)


Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Pteryxin

2-Butenoic acid, 2-methyl-, 9-(acetyloxy)-9,10-dihydro-8,8-dimethyl-2-oxo-2H,8H-benzo(1,2-b:3- ,4-b)dipyran-10-yl ester, (9R-(9alpha,10alpha(Z)))-

C21H22O7 (386.1365462)


Pteryxin is a member of coumarins. Pteryxin is a natural product found in Musineon divaricatum, Pteryxia terebinthina, and other organisms with data available. Origin: Plant, Coumarins Pteryxin, a coumarin in Peucedanum japonicum Thunb leaves, exerts antiobesity activity[1]. Pteryxin is a potent butyrylcholinesterase (BChE) inhibitor, with an IC50 of 12.96 μg/ml[2]. Pteryxin, a coumarin in Peucedanum japonicum Thunb leaves, exerts antiobesity activity[1]. Pteryxin is a potent butyrylcholinesterase (BChE) inhibitor, with an IC50 of 12.96 μg/ml[2].

   

Monotropein

(1S,4aS,7R,7aS)-7-Hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.11620619999997)


Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). Monotropein is found in bilberry. Monotropein is a constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Monotropein is a food flavouring agent. Monotropein is a stabiliser Constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Food flavouring agent. Stabiliser. Monotropein is found in bilberry. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.37049579999996)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.386145)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.105642)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Chrysoeriol

3 inverted exclamation mark -Methoxy-4 inverted exclamation mark ,5,7-trihydroxyflavone

C16H12O6 (300.06338519999997)


Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

(-)-Pinoresinol

4-[(3R,3aS,6R,6aS)-6-(3-methoxy-4-oxidanyl-phenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxy-phenol

C20H22O6 (358.1416312)


(-)-pinoresinol is an enantiomer of pinoresinol having (-)-1R,3aS,4R,6aS-configuration. It has a role as a plant metabolite. (-)-Pinoresinol is a natural product found in Dendrobium loddigesii, Forsythia suspensa, and other organisms with data available. An enantiomer of pinoresinol having (-)-1R,3aS,4R,6aS-configuration.

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.307899)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Cycloartenol

(3R,6S,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C30H50O (426.386145)


Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

   

1-Hydroxyanthraquinone

1-hydroxy-9,10-dihydroanthracene-9,10-dione

C14H8O3 (224.0473418)


CONFIDENCE standard compound; INTERNAL_ID 8284 CONFIDENCE standard compound; INTERNAL_ID 25 D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].

   

Glucose

(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Glucose, also known as D-glucose or dextrose, is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moiety. Glucose contains an aldehyde group and is therefore referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a neutral, hydrophilic molecule that readily dissolves in water. It exists as a white crystalline powder. Glucose is the primary source of energy for almost all living organisms. As such, it is the most abundant monosaccharide and the most widely used aldohexose in living organisms. When not circulating freely in blood (in animals) or resin (in plants), glucose is stored as a polymer. In plants it is mainly stored as starch and amylopectin and in animals as glycogen. Glucose is produced by plants through the photosynthesis using sunlight, water and carbon dioxide where it is used as an energy and a carbon source Glucose is particularly abundant in fruits and other parts of plants in its free state. Foods that are particularly rich in glucose are honey, agave, molasses, apples (2g/100g), grapes (8g/100g), oranges (8.5g/100g), jackfruit, dried apricots, dates (32 g/100g), bananas (5.8 g/100g), grape juice, sweet corn, Glucose is about 75\\\\% as sweet as sucrose and about 50\\\\% as sweet as fructose. Sweetness is detected through the binding of sugars to the T1R3 and T1R2 proteins, to form a G-protein coupled receptor that is the sweetness receptor in mammals. Glucose was first isolated from raisins in 1747 by the German chemist Andreas Marggraf. It was discovered in grapes by Johann Tobias Lowitz in 1792 and recognized as different from cane sugar (sucrose). Industrially, glucose is mainly used for the production of fructose and in the production of glucose-containing foods. In foods, it is used as a sweetener, humectant, to increase the volume and to create a softer mouthfeel. Various sources of glucose, such as grape juice (for wine) or malt (for beer), are used for fermentation to ethanol during the production of alcoholic beverages. Glucose is found in many plants as glucosides. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolyzed by purely chemical means or decomposed by fermentation or enzymes. Glucose can be obtained by the hydrolysis of carbohydrates such as milk sugar (lactose), cane sugar (sucrose), maltose, cellulose, and glycogen. Glucose is a building block of the disaccharides lactose and sucrose (cane or beet sugar), of oligosaccharides such as raffinose and of polysaccharides such as starch and amylopectin, glycogen or cellulose. For most animals, while glucose is normally obtained from the diet, it can also be generated via gluconeogenesis. Gluconeogenesis is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In humans the main gluconeogenic precursors are lactate, glycerol (which is a part of the triacylglycerol molecule), alanine and glutamine. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; INTERNAL_ID 226 KEIO_ID G002 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Caprylic acid

octanoic acid

C8H16O2 (144.1150236)


Caprylic acid is the common name for the eight-carbon straight-chain fatty acid known by the systematic name octanoic acid. It is found naturally in coconuts and breast milk. It is an oily liquid with a slightly unpleasant rancid taste that is minimally soluble in water. Caprylic acid is used commercially in the production of esters used in perfumery and also in the manufacture of dyes (Wikipedia). Caprylic acid can be found in numerous foods such as Prunus (Cherry, Plum), pineapple sages, black raspberries, and shallots. Caprylic acid is found to be associated with medium-chain acyl-CoA dehydrogenase deficiency, which is an inborn error of metabolism. Widespread in plant oils, free and as glyceridesand is also present in apple, banana, orange juice and peel, pineapple, cognac, calamus, blue cheeses, cheddar cheese, Swiss cheese, feta cheese and other cheeses. Flavouring agent, defoamer, lubricant, binder and antimicrobial preservative in cheese wraps KEIO_ID C037 Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes. Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes.

   

(+)-Syringaresinol

4-[(1S,3aR,4S,6aR)-4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1627596)


(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.

   

Rubiadin

1,3-dihydroxy-2-methyl-9,10-dihydroanthracene-9,10-dione

C15H10O4 (254.057906)


Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].

   

Lampranthin II

3-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C27H30O16 (610.153378)


Panasenoside, also known as lilyn, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Panasenoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Panasenoside can be found in tea, which makes panasenoside a potential biomarker for the consumption of this food product. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1]. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1].

   

Hentriacontane

N-Hentriacontane

C31H64 (436.5007744)


Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aS,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.386145)


Constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants. Taraxasterol is found in many foods, some of which are soy bean, chicory, evening primrose, and common grape. Taraxasterol is found in alcoholic beverages. Taraxasterol is a constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

Alizarin 2-methyl ether

1-Hydroxy-2-methoxyanthraquinone

C15H10O4 (254.057906)


   

Digiferruginol

1-Hydroxy-2-hydroxymethylanthraquinone

C15H10O4 (254.057906)


   

Morindaparvin A

1,2-Methylenedioxyanthraquinone

C15H8O4 (252.0422568)


   

Morindone

1,2,5-Trihydroxy-6-methyl-9,10-anthracenedione

C15H10O5 (270.052821)


   

Purpurin 1-methyl ether

Purpurin 1-methyl ether

C15H10O5 (270.052821)


   
   

Glucose

(2S,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


D-Galactose (CAS: 59-23-4) is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. D-Galactose is an energy-providing nutrient and also a necessary basic substrate for the biosynthesis of many macromolecules in the body. Metabolic pathways for D-galactose are important not only for the provision of these pathways but also for the prevention of D-galactose metabolite accumulation. The main source of D-galactose is lactose in the milk of mammals, but it can also be found in some fruits and vegetables. Utilization of D-galactose in all living cells is initiated by the phosphorylation of the hexose by the enzyme galactokinase (E.C. 2.7.1.6) (GALK) to form D-galactose-1-phosphate. In the presence of D-galactose-1-phosphate uridyltransferase (E.C. 2.7.7.12) (GALT) D-galactose-1-phosphate is exchanged with glucose-1-phosphate in UDP-glucose to form UDP-galactose. Glucose-1-phosphate will then enter the glycolytic pathway for energy production. Deficiency of the enzyme GALT in galactosemic patients leads to the accumulation of D-galactose-1-phosphate. Classic galactosemia, a term that denotes the presence of D-galactose in the blood, is the rare inborn error of D-galactose metabolism, diagnosed by the deficiency of the second enzyme of the D-galactose assimilation pathway, GALT, which, in turn, is caused by mutations at the GALT gene (PMID: 15256214, 11020650, 10408771). Galactose in the urine is a biomarker for the consumption of milk. Alpha-D-Pyranose-form of the compound Galactose [CCD]. alpha-D-Galactose is found in many foods, some of which are kelp, fig, spelt, and rape. Galactose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-23-4 (retrieved 2024-07-16) (CAS RN: 59-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

alpha-D-Glucose

(2S,3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


alpha-D-Glucose, also known as alpha-dextrose or alpha-D-GLC, belongs to the class of organic compounds known as hexoses. These are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. alpha-D-Glucose exists in all living species, ranging from bacteria to humans. Outside of the human body, alpha-D-Glucose has been detected, but not quantified in several different foods, such as lemon grass, sourdoughs, mixed nuts, sweet rowanberries, and ginsengs. This could make alpha-D-glucose a potential biomarker for the consumption of these foods. D-Glucopyranose having alpha-configuration at the anomeric centre. A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Alizarin

1,2-dihydroxyanthracene-9,10-dione

C14H8O4 (240.0422568)


Alizarin is a dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2. It has a role as a chromophore, a dye and a plant metabolite. Alizarin is a natural product found in Oldenlandia umbellata, Rubia alata, and other organisms with data available. See also: Rubia tinctorum root (part of). A dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2.

   

Rubiadin

9,10-Anthracenedione, 1,3-dihydroxy-2-methyl-

C15H10O4 (254.057906)


Rubiadin is a dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 3 and a methyl group at position 2. It has been isolated from Rubia yunnanensis. It has a role as an antibacterial agent, an antioxidant, a hepatoprotective agent and a plant metabolite. Rubiadin is a natural product found in Coprosma tenuicaulis, Prismatomeris tetrandra, and other organisms with data available. A dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 3 and a methyl group at position 2. It has been isolated from Rubia yunnanensis. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].

   

Kaempferol 3-(6'-rhamnosylsophoroside)

3-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C33H40O20 (756.211284)


3-[4,5-Dihydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxymethyl]oxan-2-yl]oxy-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one is a natural product found in Camellia oleifera and Prunus avium with data available. Isolated from Solanum subspecies and soya beans. Astragalin 2-glucoside 6-rhamnoside is found in many foods, some of which are potato, soy bean, pulses, and oil-seed camellia. Camelliaside A is found in tea. Camelliaside A is isolated from China tea (Camellia sinensis) seeds. Camelliaside A is a flavonoid from the methanol extract of tea (Camellia oleifera) seed pomace[1]. Kaempferol-3-O-(2''-O-β-D-glucopyl)-β-D-rutinoside is a natural glycoside that could be found in Camellia oleifera seeds[1].

   

Pinoresinol

Phenol,4-(tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl)bis[2-methoxy-, [1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.)]-

C20H22O6 (358.1416312)


4-[6-(4-Hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenol is a natural product found in Zanthoxylum riedelianum, Forsythia suspensa, and other organisms with data available. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Kelampayoside A

(2R,3S,4S,5R,6S)-2-({[(2R,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-(3,4,5-trimethoxyphenoxy)oxane-3,4,5-triol

C20H30O13 (478.168633)


3,4,5-trimethoxyphenyl-1-O-beta-D-apiofuranosyl-(1->6)-O-beta-D-glucopyranoside is a glycoside. It has a role as a metabolite. Kelampayoside A is a natural product found in Strychnos axillaris, Cinnamomum iners, and other organisms with data available. Kelampayoside A is found in chinese cinnamon. Kelampayoside A is isolated from Cinnamomum cassia (Chinese cinnamon). A natural product found in Acer saccharum.

   

Hydroxyanthraquinone

InChI=1/C14H8O3/c15-11-7-3-6-10-12(11)14(17)9-5-2-1-4-8(9)13(10)16/h1-7,15

C14H8O3 (224.0473418)


1-hydroxyanthraquinone is a monohydroxyanthraquinone. 1-Hydroxyanthraquinone is a natural product found in Rheum palmatum, Handroanthus impetiginosus, and Morinda citrifolia with data available. D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].

   

MG(16:0/0:0/0:0)

(2S)-2,3-dihydroxypropyl hexadecanoate

C19H38O4 (330.2769948)


MG(16:0/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups: 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well. MG(16:0/0:0/0:0), in particular, consists of one chain of palmitic acid at the C-1 position. MG(16:0/0:0/0:0) is a minor component of olive oil and other vegetable oil. MG(16:0/0:0/0:0) belongs to the family of monoradyglycerols, which are glycerolipids lipids containing a common glycerol backbone to which at one fatty acyl group is attached. Their general formula is [R1]OCC(CO[R2])O[R3]. MG(16:0/0:0/0:0) is made up of one hexadecanoyl(R1). 1-Monopalmitin, a bitter melon extract, inhibits the P-glycoprotein (P-gp) activity in intestinal Caco-2 cells[1]. 1-Monopalmitin, a bitter melon extract, inhibits the P-glycoprotein (P-gp) activity in intestinal Caco-2 cells[1].

   

Biorobin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O15 (594.158463)


Isolated from Medicago subspecies, Trigonella subspecies and other plant subspecies Kaempferol 3-robinobioside is found in herbs and spices and pulses. Biorobin is found in herbs and spices. Biorobin is isolated from Medicago species, Trigonella species and other plant species.

   

Pomolic acid

1,10-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


Constituent of apple peel. Pomolic acid is found in many foods, some of which are rosemary, lemon balm, pomes, and spearmint. Pomolic acid is found in apple. Pomolic acid is a constituent of apple peel Randialic acid A (Pomolic acid) is a pentacyclic triterpene isolated from?Euscaphis japonica?(Tunb.). Randialic acid A (Pomolic acid) inhibits tumor cells growth and induces cell apoptosis. Randialic acid A (Pomolic acid) has a potential for the treatment of prostate cancer (PC)[2]. Randialic acid A (Pomolic acid) is a pentacyclic triterpene isolated from?Euscaphis japonica?(Tunb.). Randialic acid A (Pomolic acid) inhibits tumor cells growth and induces cell apoptosis. Randialic acid A (Pomolic acid) has a potential for the treatment of prostate cancer (PC)[2].

   

Americanol

4-[(2R,3R)-3-(hydroxymethyl)-6-[(1E)-3-hydroxyprop-1-en-1-yl]-2,3-dihydro-1,4-benzodioxin-2-yl]benzene-1,2-diol

C18H18O6 (330.11033280000004)


Constituent of Phytolacca americana (pokeberry). Americanol is found in fruits and green vegetables. Americanol is found in fruits. Americanol is a constituent of Phytolacca americana (pokeberry).

   

Americanin A

(2Z)-3-[2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enal

C18H16O6 (328.0946836)


Constituent of Phytolacca americana (pokeberry). Americanin A is found in fruits, green vegetables, and american pokeweed. Americanin A is found in american pokeweed. Americanin A is a constituent of Phytolacca americana (pokeberry)

   

Quercetin 3-(2G-glucosylrutinoside)

3-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C33H40O21 (772.206199)


Isolated from Solanum tuberosum (potato) and Glycine max (soybean). Quercetin 3-(2G-glucosylrutinoside) is found in many foods, some of which are potato, soy bean, pulses, and alcoholic beverages. Quercetin 3-(2G-glucosylrutinoside) is found in alcoholic beverages. Quercetin 3-(2G-glucosylrutinoside) is isolated from Solanum tuberosum (potato) and Glycine max (soybean).

   

1,5-Dihydroxy-2-methoxy-6-methylanthraquinone

1,5-dihydroxy-2-methoxy-6-methyl-9,10-dihydroanthracene-9,10-dione

C16H12O5 (284.0684702)


1,5-Dihydroxy-2-methoxy-6-methylanthraquinone is found in fruits. 1,5-Dihydroxy-2-methoxy-6-methylanthraquinone is isolated from the stem bark of Aegle marmelos (baelfruit). Isolated from the stem bark of Aegle marmelos (baelfruit). 1,5-Dihydroxy-2-methoxy-6-methylanthraquinone is found in fruits.

   

Luteolin 7-galactoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O11 (448.100557)


Luteolin 7-galactoside is found in fruits. Luteolin 7-galactoside is isolated from Capsella bursa-pastoris (shepherds purse). Isolated from Capsella bursa-pastoris (shepherds purse). Luteolin 7-galactoside is found in herbs and spices and fruits.

   

Carissic acid

10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Ustiloxin E is found in cereals and cereal products. Ustiloxin E is isolated from the false smut balls caused by Ustilaginoidea virens on rice. Constituent of Carissa carandas (karanda). Carissic acid is found in beverages and fruits.

   

1-Methylanthraquinone

1-methyl-9,10-dihydroanthracene-9,10-dione

C15H10O2 (222.06807600000002)


   

3-Palmitoyl-sn-glycerol

2,3-dihydroxypropyl hexadecanoate

C19H38O4 (330.2769948)


Minor component of olive oil and other vegetable oils. Glycerol 1-hexadecanoate is found in fats and oils. 1-Monopalmitin, a bitter melon extract, inhibits the P-glycoprotein (P-gp) activity in intestinal Caco-2 cells[1]. 1-Monopalmitin, a bitter melon extract, inhibits the P-glycoprotein (P-gp) activity in intestinal Caco-2 cells[1].

   

7-Glucosyl-luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O10 (432.105642)


5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one can be found in a number of food items such as endive, linden, peach, and ginkgo nuts, which makes 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one a potential biomarker for the consumption of these food products. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Asperuloside

(2-oxo-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0,]undeca-1(10),5-dien-6-yl)methyl acetic acid

C18H22O11 (414.11620619999997)


   

Damnacanthal

3-hydroxy-1-methoxy-9,10-dioxo-9,10-dihydroanthracene-2-carbaldehyde

C16H10O5 (282.052821)


   

Deacetylasperulosidic acid

5-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.11620619999997)


   

Epipinoresinol

4-[4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H22O6 (358.1416312)


(+)-pinoresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-pinoresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-pinoresinol can be found in a number of food items such as chanterelle, pecan nut, pine nut, and common hazelnut, which makes (+)-pinoresinol a potential biomarker for the consumption of these food products. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Friedelin

4,4a,6b,8a,11,11,12b,14a-octamethyl-docosahydropicen-3-one

C30H50O (426.386145)


Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as apple, pear, mammee apple, and sugar apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Hederagenin

10-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


Hederagenin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Hederagenin is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Hederagenin can be found in a number of food items such as rye, dill, european cranberry, and black salsify, which makes hederagenin a potential biomarker for the consumption of these food products. Hederagenin is the aglycone part of numerous saponins found in Hedera helix (common ivy). The most prevalent of these being hederacoside C and alpha-hederin. It is also one of three primary triterpenoids extracted from the Chenopodium quinoa plant categorized by the EPA as a biopesticide. HeadsUp Plant Protectant is made up of approximately equal ratios of the saponin aglycones oleanolic acid, hederagenin, and phytolaccagenic acid and is intended for use as a seed treatment on tuber (e.g. potato seed pieces), legume, and cereal seeds or as a pre-plant root dip for roots of transplants, at planting, to prevent fungal growth, bacterial growth, and viral plant diseases .

   

Quercetin 3-O-rhamnoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O11 (448.100557)


   

Quercetin-3-o-rutinose

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.153378)


   

Rotundic acid

1,10-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3501558)


Rotundic acid, also known as rotundate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Rotundic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Rotundic acid can be found in olive, which makes rotundic acid a potential biomarker for the consumption of this food product. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1]. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1]. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1].

   

Kaempferol 3-rhamno-glucoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O15 (594.158463)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Nonioside B

(2S,3R,4S,5S,6R)-4,5-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl octanoate

C26H46O17 (630.2734866000001)


Constituent of the fruit of Indian mulberry (Morinda citrifolia), a plant eaten as a famine food and occasionally as a staple in the Pacific region [DFC]. Nonioside B is found in fruits.

   

Anthemoside

5-hydroxy-2-(4-hydroxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O10 (432.105642)


Constituent of Anthemis nobilis (Roman chamomile). Anthemoside is found in herbs and spices.

   

syringetin

7-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one

C28H32O15 (608.1741122)


   

dextrose

Isobar: glucose,fructose,mannose,galactose

C6H12O6 (180.0633852)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Citric Acid

Citric Acid

C6H8O7 (192.0270018)


A - Alimentary tract and metabolism > A09 - Digestives, incl. enzymes > A09A - Digestives, incl. enzymes > A09AB - Acid preparations D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents D006401 - Hematologic Agents > D000925 - Anticoagulants C26170 - Protective Agent > C275 - Antioxidant COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

Henine

1,3-dihydroxy-2-(hydroxymethyl)-9,10-dihydroanthracene-9,10-dione

C15H10O5 (270.052821)


Lucidin is a dihydroxyanthraquinone. Lucidin is a natural product found in Rubia argyi, Ophiorrhiza pumila, and other organisms with data available. Lucidin (NSC 30546) is a natural component of madder and can induce mutations in bacterial and mammalian cells. Lucidin (NSC 30546) is a natural component of madder and can induce mutations in bacterial and mammalian cells.

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.386145)


Taraxasterol is a pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. It has a role as a metabolite and an anti-inflammatory agent. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of a taraxastane. Taraxasterol is a natural product found in Eupatorium altissimum, Eupatorium perfoliatum, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

Hederagenin

(4AS,6AS,6BR,8AR,9R,10S,12AR,12BR,14BS)-10-HYDROXY-9-(HYDROXYMETHYL)-2,2,6A,6B,9,12A-HEXAMETHYL-1,2,3,4,4A,5,6,6A,6B,7,8,8A,9,10,11,12,12A,12B,13,14B-ICOSAHYDROPICENE-4A-CARBOXYLIC ACID

C30H48O4 (472.3552408)


Hederagenin is a sapogenin that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 3 and 23 (the 3beta stereoisomer). It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a dihydroxy monocarboxylic acid and a sapogenin. It is functionally related to an oleanolic acid. It is a conjugate acid of a hederagenin(1-). It derives from a hydride of an oleanane. Hederagenin is a natural product found in Zygophyllum obliquum, Sapindus emarginatus, and other organisms with data available. See also: Paeonia lactiflora root (part of); Caulophyllum robustum Root (part of); Medicago sativa whole (part of). A sapogenin that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 3 and 23 (the 3beta stereoisomer). Hederagenin is a triterpenoid saponin that can inhibit the expression of iNOS, COX-2, and NF-κB in cells caused by LPS stimulation. Hederagenin is a triterpenoid saponin that can inhibit the expression of iNOS, COX-2, and NF-κB in cells caused by LPS stimulation.

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.36032579999994)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   
   
   

Damnacanthal

9,10-Dihydroxy-3-hydroxy-1-methoxy-9,10-dioxo-2-anthracenecarboxaldehyde

C16H10O5 (282.052821)


3-hydroxy-1-methoxy-9,10-dioxo-2-anthracenecarboxaldehyde is a monohydroxyanthraquinone and an aldehyde. Damnacanthal is a natural product found in Damnacanthus major, Derris brevipes, and other organisms with data available. Damnacanthal is an alkaloid phytochemical found in the Morinda Citrifolia (Noni) that inhibits the growth of RAS cancer cells. The exact mechanism is unknown but may involve the inhibition of tyrosine kinase. (NCI)

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

6-HYDROXY-1,3-DIMETHOXY-7-METHYLANTHRACENE-9,10-DIONE

6-HYDROXY-1,3-DIMETHOXY-7-METHYLANTHRACENE-9,10-DIONE

C17H14O5 (298.0841194)


   

Deacetylasperulosidic acid

Deacetylasperulosidic acid

C16H22O11 (390.11620619999997)


Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia fruit. Deacetylasperulosidic acidhas antioxidant activity by increasing superoxide dismutase activity. Deacetylasperulosidic acid has anticlastogenic activity, suppressing the induction of chromosome aberrations in hamster ovary cells and mice[1]. Deacetylasperulosidic acid prevents 4-nitroquinoline 1-oxide (4NQO) induced DNA damage in vitro, suppresses IL-2 production along with the activation of natural killer cells[2]. Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia fruit. Deacetylasperulosidic acidhas antioxidant activity by increasing superoxide dismutase activity. Deacetylasperulosidic acid has anticlastogenic activity, suppressing the induction of chromosome aberrations in hamster ovary cells and mice[1]. Deacetylasperulosidic acid prevents 4-nitroquinoline 1-oxide (4NQO) induced DNA damage in vitro, suppresses IL-2 production along with the activation of natural killer cells[2].

   

Rotungenic acid

(+)-Rotungenic acid

C30H48O5 (488.3501558)


A natural product found in Euscaphis japonica.

   

Ombuin

4H-1-Benzopyran-4-one, 3,5-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-methoxy-

C17H14O7 (330.0739494)


Ombuin is a dimethoxyflavone that is quercetin in which the hydroxy groups at positions 7 and 4 are replaced by methoxy groups. Isolated from Cyperus teneriffae, it exhibits anti-inflammatory activity. It has a role as an anti-inflammatory agent and a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a dimethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 7,4-O-dimethylquercetin 3-olate. Ombuin is a natural product found in Chromolaena odorata, Clausena dunniana, and other organisms with data available. A dimethoxyflavone that is quercetin in which the hydroxy groups at positions 7 and 4 are replaced by methoxy groups. Isolated from Cyperus teneriffae, it exhibits anti-inflammatory activity. Ombuin, isolated from Zanthoxylum armatum, displays broad spectrum antibacterial effect with MIC ranges from 125 to 500 μg/mL[1]. Ombuin, isolated from Zanthoxylum armatum, displays broad spectrum antibacterial effect with MIC ranges from 125 to 500 μg/mL[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

physcion

9,10-Anthracenedione, 1,8-dihydroxy-3-methoxy-6-methyl- (9CI)

C16H12O5 (284.0684702)


Physcion, also known as emodin monomethyl ether or parienin, is a member of the class of compounds known as anthraquinones. Anthraquinones are organic compounds containing either anthracene-9,10-quinone, 1,4-anthraquinone, or 1,2-anthraquinone. Physcion is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Physcion can be synthesized from 2-methylanthraquinone. Physcion can also be synthesized into torososide B and physcion 8-gentiobioside. Physcion can be found in common sage, garden rhubarb, and sorrel, which makes physcion a potential biomarker for the consumption of these food products. Physcion has also been shown to protect lichens against UV-B light, at high altitudes in Alpine regions. The UV-B light stimulates production of parietin and the parietin protects the lichens from damage. Lichens in arctic regions such as Svarlbard retain this capability though they do not encounter damaging levels of UV-B, a capability that could help protect the lichens in case of Ozone layer thinning .

   

Kaempferol 3-(2G-glucosylrutinoside)

3-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C33H40O20 (756.211284)


Kaempferol-3-O-(2''-O-β-D-glucopyl)-β-D-rutinoside is a natural glycoside that could be found in Camellia oleifera seeds[1].

   

Vanillin

4-hydroxy-3-methoxybenzaldehyde

C8H8O3 (152.0473418)


CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3578 D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3566; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3549; ORIGINAL_PRECURSOR_SCAN_NO 3546 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3560; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3573; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3575 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.504 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.503 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.500 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

coniferyl aldehyde

4-Hydroxy-3-methoxy-trans-cinnamaldehyde

C10H10O3 (178.062991)


Annotation level-1 Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.105642)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Glucose

alpha-D-Glucose

C6H12O6 (180.0633852)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Isoquercetin

3,3,4,5,7-Pentahydroxyflavone 3-β-glucoside

C21H20O12 (464.09547200000003)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   
   

Cycloartenol

9beta,19-cyclolanost-24-en-3beta-ol

C30H50O (426.386145)


   

2-(Butoxymethyl)-1,3-dihydroxyanthracene-9,10-dione

2-(Butoxymethyl)-1,3-dihydroxyanthracene-9,10-dione

C19H18O5 (326.1154178)


   

2,5-dihydroxy-1-methoxyanthracene-9,10-dione

2,5-dihydroxy-1-methoxyanthracene-9,10-dione

C15H10O5 (270.052821)


   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.386145)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

1,3,5-trihydroxy-2-(methoxymethyl)anthracene-9,10-dione

1,3,5-trihydroxy-2-(methoxymethyl)anthracene-9,10-dione

C16H12O6 (300.06338519999997)


   

1-(Hydroxymethyl)anthracene-9,10-dione

1-(Hydroxymethyl)anthracene-9,10-dione

C15H10O3 (238.062991)


   

2-Hydroxy-3-methoxyanthracene-9,10-dione

2-Hydroxy-3-methoxyanthracene-9,10-dione

C15H10O4 (254.057906)


   

1,3-dihydroxy-2-methoxyanthracene-9,10-dione

1,3-dihydroxy-2-methoxyanthracene-9,10-dione

C15H10O5 (270.052821)


   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.153378)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   
   

Asperuloside

NCGC00380739-01_C18H22O11_1H-2,6-Dioxacyclopent[cd]inden-1-one, 4-[(acetyloxy)methyl]-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-, (2aS,4aS,5S,7bS)-

C18H22O11 (414.11620619999997)


Asperuloside is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Asperuloside is soluble (in water) and a very weakly acidic compound (based on its pKa). Asperuloside can be found in bilberry, which makes asperuloside a potential biomarker for the consumption of this food product. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].

   

Balanophonin

(2E)-3-[(2S,3R)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl] acrylaldehyde

C20H20O6 (356.125982)


(+)-Balanophonin is a natural product found in Balanophora japonica, Catunaregam spinosa, and other organisms with data available. Balanophonin is a natural product found in Lonicera insularis, Carya cathayensis, and other organisms with data available.

   

Luteolin 7-O-glucoside

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one mono-beta-D-glucopyranoside

C21H20O11 (448.100557)


   

1-HYDROXY-2-(HYDROXYMETHYL)-3-METHOXYANTHRACENE-9,10-DIONE

1-HYDROXY-2-(HYDROXYMETHYL)-3-METHOXYANTHRACENE-9,10-DIONE

C16H12O5 (284.0684702)


   

Syringaresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2,6-DIMETHOXY-, (1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.)-(+/-)-

C22H26O8 (418.1627596)


(+)-syringaresinol is the (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol. It has a role as an antineoplastic agent. It is an enantiomer of a (-)-syringaresinol. (+)-Syringaresinol is a natural product found in Dracaena draco, Diospyros eriantha, and other organisms with data available. See also: Acai fruit pulp (part of). The (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol.

   

CZODYZFOLUNSFR-UHFFFAOYSA-N

1-hydroxy-2-methyl-9,10-dihydroanthracene-9,10-dione

C15H10O3 (238.062991)


1-hydroxy-2-methyl-9,10-anthraquinone is a member of the class of hydroxyanthraquinones that is anthracene-9,10-dione substituted by a hydroxy group at position 1 and a methyl group at position 2. It has been isolated from the roots of Rubia yunnanensis. It has a role as a plant metabolite. 1-Hydroxy-2-methylanthraquinone is a natural product found in Prismatomeris tetrandra, Galium spurium, and other organisms with data available. A member of the class of hydroxyanthraquinones that is anthracene-9,10-dione substituted by a hydroxy group at position 1 and a methyl group at position 2. It has been isolated from the roots of Rubia yunnanensis.

   

2-Methylanthraquinone

InChI=1/C15H10O2/c1-9-6-7-12-13(8-9)15(17)11-5-3-2-4-10(11)14(12)16/h2-8H,1H

C15H10O2 (222.06807600000002)


2-methylanthraquinone is an anthraquinone that is 9,10-anthraquinone in which the hydrogen at position 2 is substituted by a methyl group. It is functionally related to a 9,10-anthraquinone. 2-Methylanthraquinone is a natural product found in Clausena heptaphylla, Ophiorrhiza pumila, and other organisms with data available. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2]. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2].

   

Scopoletin

Scopoletin

C10H8O4 (192.0422568)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Campesterol

Campesterol

C28H48O (400.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Chrysoeriol

Chrysoeriol (Luteolin 3-methyl ether)

C16H12O6 (300.06338519999997)


Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Cytidine

Cytidine,cell culture tested

C9H13N3O5 (243.0855168)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; UHDGCWIWMRVCDJ_STSL_0155_Cytidine_8000fmol_180506_S2_LC02_MS02_107; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.307899)


Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Citric Acid

Citric acid,anhydrous

C6H8O7 (192.0270018)


Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

Apigetrin

Apigenin-7-O-glucoside

C21H20O10 (432.105642)


Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

2-hydroxy-1-methoxyanthracene-9,10-dione

NCGC00380473-01!2-hydroxy-1-methoxyanthracene-9,10-dione

C15H10O4 (254.057906)


   

Caprylic acid

Caprylic acid

C8H16O2 (144.1150236)


Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes. Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes.

   

dextrose

alpha-D-Glucose

C6H12O6 (180.0633852)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Alizarin

InChI=1\C14H8O4\c15-10-6-5-9-11(14(10)18)13(17)8-4-2-1-3-7(8)12(9)16\h1-6,15,18

C14H8O4 (240.0422568)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Rubiadin

9,10-Anthracenedione, 1,3-dihydroxy-2-methyl-

C15H10O4 (254.057906)


Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].

   

syringaresinol

4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1627596)


   

kaempferol 3-O-sophoroside

kaempferol 3-O-sophoroside

C27H30O16 (610.153378)


Annotation level-1

   

coniferaldehyde

coniferaldehyde

C10H10O3 (178.062991)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 13

   

1-hexadecanoyl-sn-glycerol

1-hexadecanoyl-sn-glycerol

C19H38O4 (330.2769948)


A 1-acyl-sn-glycerol that has hexadecanoyl (palmitoyl) as the 1-acyl group.

   

Americanin

(2Z)-3-[2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enal

C18H16O6 (328.0946836)


   

Pomolic acid

(1R,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-1,10-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


Randialic acid A (Pomolic acid) is a pentacyclic triterpene isolated from?Euscaphis japonica?(Tunb.). Randialic acid A (Pomolic acid) inhibits tumor cells growth and induces cell apoptosis. Randialic acid A (Pomolic acid) has a potential for the treatment of prostate cancer (PC)[2]. Randialic acid A (Pomolic acid) is a pentacyclic triterpene isolated from?Euscaphis japonica?(Tunb.). Randialic acid A (Pomolic acid) inhibits tumor cells growth and induces cell apoptosis. Randialic acid A (Pomolic acid) has a potential for the treatment of prostate cancer (PC)[2].

   

Americanol

4-[(2R,3R)-3-(hydroxymethyl)-6-[(1E)-3-hydroxyprop-1-en-1-yl]-2,3-dihydro-1,4-benzodioxin-2-yl]benzene-1,2-diol

C18H18O6 (330.11033280000004)


   

Carissic acid

10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


   

Kelampayoside A

2-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-(3,4,5-trimethoxyphenoxy)oxane-3,4,5-triol

C20H30O13 (478.168633)


Isolated from Cinnamomum cassia (Chinese cinnamon). Kelampayoside A is found in chinese cinnamon and herbs and spices.

   

1,5-dihydroxy-2-methoxy-6-methylanthraquinone

1,5-dihydroxy-2-methoxy-6-methyl-9,10-dihydroanthracene-9,10-dione

C16H12O5 (284.0684702)


   

HENTRIACONTANE

HENTRIACONTANE

C31H64 (436.5007744)


   

2-hydroxypropane-1,2,3-tricarboxylic acid

2-hydroxypropane-1,2,3-tricarboxylic acid

C6H8O7 (192.0270018)


   

D(+)-Glucose

(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents

   

3-Palmitoyl-sn-glycerol

3-Palmitoyl-sn-glycerol

C19H38O4 (330.2769948)


A 3-acyl-sn-glycerol in which the acyl group is specified as palmitoyl (hexadecanoyl).

   

(2S,3S,4S,5R)-2,5-bis(hydroxymethyl)-2-methoxyoxolane-3,4-diol

(2S,3S,4S,5R)-2,5-bis(hydroxymethyl)-2-methoxyoxolane-3,4-diol

C7H14O6 (194.0790344)


   

Isoscopoletin

2H-1-Benzopyran-2-one, 6-hydroxy-7-methoxy-

C10H8O4 (192.0422568)


Isoscopoletin is a hydroxycoumarin that is esculetin in which the hydroxy group at position 7 is replaced by a methoxy group. It is the major primary metabolite of scoparone. It has a role as a plant metabolite. It is a hydroxycoumarin and an aromatic ether. It is functionally related to an esculetin. Isoscopoletin is a natural product found in Clausena dunniana, Olea capensis, and other organisms with data available. A hydroxycoumarin that is esculetin in which the hydroxy group at position 7 is replaced by a methoxy group. It is the major primary metabolite of scoparone. Isoscopoletin, also known as 6-hydroxy-7-methoxycoumarin or 7-methoxyesculetin, is a member of the class of compounds known as hydroxycoumarins. Hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the coumarin skeleton. Isoscopoletin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoscopoletin can be found in coriander and eggplant, which makes isoscopoletin a potential biomarker for the consumption of these food products. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) is an active constituent in Artemisia argyi leaves. Isoscopoletin shows substantial inhibition against cell proliferation, with IC50s of 4.0 μM and 1.6 μM for human CCRF-CEM leukaemia cells and multidrug resistant subline CEM/ADR5000, respectively[1]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) possesses inhibitory activity against HBV replication[2]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) is an active constituent in Artemisia argyi leaves. Isoscopoletin shows substantial inhibition against cell proliferation, with IC50s of 4.0 μM and 1.6 μM for human CCRF-CEM leukaemia cells and multidrug resistant subline CEM/ADR5000, respectively[1]. Isoscopoletin (6-Hydroxy-7-methoxycoumarin) possesses inhibitory activity against HBV replication[2].

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215226)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

maltodextrin

(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents

   

Monotropein

(1S,4aS,7R,7aS)-7-hydroxy-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4a,7a-dihydro-1H-cyclopenta[d]pyran-4-carboxylic acid

C16H22O11 (390.11620619999997)


Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].

   

Deacetylasperulosidic acid

5-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.11620619999997)


   

citrifolinoside

citrifolinoside

C28H30O15 (606.158463)


An unusual iridoid monoterpenoid isolated from the leaves of Morinda citrifolia. It exhibits significant inhibition of UVB-induced Activator Protein-1 (AP-1) activity in cell cultures.

   

Monotropein

(1S,4aS,7R,7aS)-7-Hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.11620619999997)


Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). An iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].

   

5-(1-hydroxyethyl)oxolan-2-one

5-(1-hydroxyethyl)oxolan-2-one

C6H10O3 (130.062991)


   

methyl (1s,4as,7r,7as)-4'-(4-hydroxy-3-methoxybenzoyl)-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4as,7r,7as)-4'-(4-hydroxy-3-methoxybenzoyl)-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C27H28O14 (576.1478988)


   

1,3,5,6-tetrahydroxy-2-(hydroxymethyl)anthracene-9,10-dione

1,3,5,6-tetrahydroxy-2-(hydroxymethyl)anthracene-9,10-dione

C15H10O7 (302.042651)


   

1,5-dihydroxy-2-methyl-6-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

1,5-dihydroxy-2-methyl-6-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

C26H28O14 (564.1478988)


   

methyl (1s,4as,7r,7as)-4'-[(s)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4as,7r,7as)-4'-[(s)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C26H28O13 (548.1529838)


   

methyl (1s,4as,5r,6r,7s,7as)-5,6-dihydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4as,5r,6r,7s,7as)-5,6-dihydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O12 (422.14241960000004)


   

1,2,7-trihydroxy-6-methylanthracene-9,10-dione

1,2,7-trihydroxy-6-methylanthracene-9,10-dione

C15H10O5 (270.052821)


   

2-hydroxy-1-methoxy-7-methylanthracene-9,10-dione

2-hydroxy-1-methoxy-7-methylanthracene-9,10-dione

C16H12O4 (268.0735552)


   

4-[(2s,3s,4r)-4-[(s)-(3,4-dihydroxyphenyl)(hydroxy)methyl]-3-(hydroxymethyl)oxolan-2-yl]benzene-1,2-diol

4-[(2s,3s,4r)-4-[(s)-(3,4-dihydroxyphenyl)(hydroxy)methyl]-3-(hydroxymethyl)oxolan-2-yl]benzene-1,2-diol

C18H20O7 (348.120897)


   

methyl 4-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5-oxo-7'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl 4-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5-oxo-7'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C27H30O15 (594.158463)


   

4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl hexanoate

4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl hexanoate

C24H42O17 (602.2421882000001)


   

methyl (1s,4as,7r,7as)-4'-(4-hydroxybenzoyl)-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4as,7r,7as)-4'-(4-hydroxybenzoyl)-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C26H26O13 (546.1373346)


   

methyl (1's,2r,2's,3r,4's,6's,7's)-3-hydroxy-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxirane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2r,2's,3r,4's,6's,7's)-3-hydroxy-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxirane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C17H22O12 (418.1111212)


   

[(4r,7s,8s,11s)-2-oxo-8-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0⁴,¹¹]undeca-1(10),5-dien-6-yl]methyl acetate

[(4r,7s,8s,11s)-2-oxo-8-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0⁴,¹¹]undeca-1(10),5-dien-6-yl]methyl acetate

C18H22O11 (414.11620619999997)


   

3-hydroxy-1-methoxy-2-(methoxymethyl)anthracene-9,10-dione

3-hydroxy-1-methoxy-2-(methoxymethyl)anthracene-9,10-dione

C17H14O5 (298.0841194)


   

3-hydroxy-1-methoxyanthracene-9,10-dione

3-hydroxy-1-methoxyanthracene-9,10-dione

C15H10O4 (254.057906)


   

methyl (1r,4as,7r,7as)-4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1r,4as,7r,7as)-4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C26H28O13 (548.1529838)


   

(3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (2-²h₁)octanoate

(3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (2-²h₁)octanoate

C20H36O12 (468.2206656)


   

(2e)-3-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enal

(2e)-3-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enal

C18H16O6 (328.0946836)


   

methyl 5-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 5-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O11 (406.1475046)


   

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2s,3r,4s,5s,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2s,3r,4s,5s,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

2,6-dihydroxy-1,3-dimethoxyanthracene-9,10-dione

2,6-dihydroxy-1,3-dimethoxyanthracene-9,10-dione

C16H12O6 (300.06338519999997)


   

3-[2-(3,4-dihydroxyphenyl)-7-hydroxy-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]prop-2-enoic acid

3-[2-(3,4-dihydroxyphenyl)-7-hydroxy-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]prop-2-enoic acid

C18H16O7 (344.0895986)


   

3,5-dihydroxy-2-(hydroxymethyl)-1-methoxyanthracene-9,10-dione

3,5-dihydroxy-2-(hydroxymethyl)-1-methoxyanthracene-9,10-dione

C16H12O6 (300.06338519999997)


   

(5s)-5-hydroxyhexyl (2s)-2-hydroxypropanoate

(5s)-5-hydroxyhexyl (2s)-2-hydroxypropanoate

C9H18O4 (190.1205028)


   

1,2,5-trihydroxy-3-methylanthracene-9,10-dione

1,2,5-trihydroxy-3-methylanthracene-9,10-dione

C15H10O5 (270.052821)


   

2-(ethoxymethyl)-1,3,5-trihydroxyanthracene-9,10-dione

2-(ethoxymethyl)-1,3,5-trihydroxyanthracene-9,10-dione

C17H14O6 (314.0790344)


   

2',4,4'-trihydroxychalcone

2',4,4'-trihydroxychalcone

C15H12O4 (256.0735552)


   

4-{4-[3-(3,4-dihydroxyphenyl)-2-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]-hexahydrofuro[3,4-c]furan-1-yl}benzene-1,2-diol

4-{4-[3-(3,4-dihydroxyphenyl)-2-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]-hexahydrofuro[3,4-c]furan-1-yl}benzene-1,2-diol

C27H26O9 (494.15767460000006)


   

methyl (1's,2r,2'r,4'r,6's,7's)-4-(4-hydroxy-3-methoxybenzoyl)-5-oxo-7'-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2r,2'r,4'r,6's,7's)-4-(4-hydroxy-3-methoxybenzoyl)-5-oxo-7'-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C27H28O15 (592.1428138)


   

4-{4-[(3,4-dihydroxyphenyl)(hydroxy)methyl]-3-(hydroxymethyl)oxolan-2-yl}benzene-1,2-diol

4-{4-[(3,4-dihydroxyphenyl)(hydroxy)methyl]-3-(hydroxymethyl)oxolan-2-yl}benzene-1,2-diol

C18H20O7 (348.120897)


   

methyl (1s,4as,5s,7s,7ar)-5-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4as,5s,7s,7ar)-5-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O10 (390.1525896)


   

2-hydroxyethyl 5-hydroxy-2-(2-hydroxybenzoyl)-4-(hydroxymethyl)benzoate

2-hydroxyethyl 5-hydroxy-2-(2-hydroxybenzoyl)-4-(hydroxymethyl)benzoate

C17H16O7 (332.0895986)


   

methyl 4'-(4-hydroxy-3-methoxybenzoyl)-5'-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl 4'-(4-hydroxy-3-methoxybenzoyl)-5'-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C27H28O14 (576.1478988)


   

methyl 5-hydroxy-5-[hydroxy({[10-(methoxycarbonyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-en-5-ylidene]methoxy})methyl]-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-10-carboxylate

methyl 5-hydroxy-5-[hydroxy({[10-(methoxycarbonyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-en-5-ylidene]methoxy})methyl]-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-10-carboxylate

C34H44O23 (820.2273274)


   

butyl 3-(2,4-dihydroxy-5-methoxyphenyl)propanoate

butyl 3-(2,4-dihydroxy-5-methoxyphenyl)propanoate

C14H20O5 (268.13106700000003)


   

methyl (1's,2s,2's,4's,6's,7'r)-4-[(s)-hydroxy(4-hydroxyphenyl)methyl]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2s,2's,4's,6's,7'r)-4-[(s)-hydroxy(4-hydroxyphenyl)methyl]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C26H28O14 (564.1478988)


   

1-hydroxy-6-(hydroxymethyl)anthracene-9,10-dione

1-hydroxy-6-(hydroxymethyl)anthracene-9,10-dione

C15H10O4 (254.057906)


   

(5r)-5-[(1s)-1-hydroxyethyl]oxolan-2-one

(5r)-5-[(1s)-1-hydroxyethyl]oxolan-2-one

C6H10O3 (130.062991)


   

methyl 7-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 7-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C16H22O10 (374.1212912)


   

apigetrin

CHEMBL487995; SR-05000002285; Galactosyl-7-apigenin; EINECS 209-430-5; 5-Hydroxy-2-(4-hydroxyphenyl)-7-(4,5,6-trihydroxy-3-(hydroxymethyl)(2-oxanyloxy))-4H-chromen-4-one; Cosemetin; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; COSMOSIIN; 4H-1-Benzopyran-4-one, 7-(beta-D-glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)- (9CI); Apigenin, 7-beta-D-glucopyranoside; Apigenin 7-O-beta-D-glucopyranoside; 7-(beta-D-Glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; Cosmosiine; 7-O-(beta-D-Glucosyl)apigenin; Thalictiin; SR-05000002285-3; A831652; Cosmosioside; 23598-21-2; NSC 407303; Apigetrin; NCGC00163513-01; CCG-208379; 62532-75-6; 5-hydroxy-2-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-1-benzopyran-4-one; UNII-7OF2S66PCH; SR-05000002285-2; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; AC1NUZ8G; Apigenin, 7-beta-D-galactopyranoside; 7-[(2S,3R,4S,5R,6R)-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-2-(4-hydroxyphenyl)-5-oxidanyl-chromen-4-one; 7OF2S66PCH; Cosmosiin (8CI)

C21H20O10 (432.105642)


{"Ingredient_id": "HBIN016480","Ingredient_name": "apigetrin","Alias": "CHEMBL487995; SR-05000002285; Galactosyl-7-apigenin; EINECS 209-430-5; 5-Hydroxy-2-(4-hydroxyphenyl)-7-(4,5,6-trihydroxy-3-(hydroxymethyl)(2-oxanyloxy))-4H-chromen-4-one; Cosemetin; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; COSMOSIIN; 4H-1-Benzopyran-4-one, 7-(beta-D-glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)- (9CI); Apigenin, 7-beta-D-glucopyranoside; Apigenin 7-O-beta-D-glucopyranoside; 7-(beta-D-Glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; Cosmosiine; 7-O-(beta-D-Glucosyl)apigenin; Thalictiin; SR-05000002285-3; A831652; Cosmosioside; 23598-21-2; NSC 407303; Apigetrin; NCGC00163513-01; CCG-208379; 62532-75-6; 5-hydroxy-2-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-1-benzopyran-4-one; UNII-7OF2S66PCH; SR-05000002285-2; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; AC1NUZ8G; Apigenin, 7-beta-D-galactopyranoside; 7-[(2S,3R,4S,5R,6R)-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-2-(4-hydroxyphenyl)-5-oxidanyl-chromen-4-one; 7OF2S66PCH; Cosmosiin (8CI)","Ingredient_formula": "C21H20O10","Ingredient_Smile": "C1=CC(=CC=C1C2=CC(=O)C3=C(C=C(C=C3O2)OC4C(C(C(C(O4)CO)O)O)O)O)O","Ingredient_weight": "432.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT19095","TCMID_id": "30618","TCMSP_id": "NA","TCM_ID_id": "21625","PubChem_id": "12304093","DrugBank_id": "NA"}

   

β-sitostenone

NA

C29H48O (412.37049579999996)


{"Ingredient_id": "HBIN018272","Ingredient_name": "\u03b2-sitostenone","Alias": "NA","Ingredient_formula": "C29H48O","Ingredient_Smile": "CCC(CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(=O)C4)C)C)C(C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "19965","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

methyl 4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl 4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C26H28O13 (548.1529838)


   

3-[5-hydroxy-10-(methoxycarbonyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-5-carbonyloxy]-2-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

3-[5-hydroxy-10-(methoxycarbonyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-5-carbonyloxy]-2-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C27H30O17 (626.148293)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-one

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-one

C29H48O2 (428.36541079999995)


   

methyl (1's,2r,2's,4's,6's,7's)-4-[(r)-hydroxy(4-hydroxyphenyl)methyl]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2r,2's,4's,6's,7's)-4-[(r)-hydroxy(4-hydroxyphenyl)methyl]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C26H28O14 (564.1478988)


   

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

methyl (1s,4as,7r,7as)-4'-[(r)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4as,7r,7as)-4'-[(r)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C27H30O14 (578.163548)


   

7-hydroxy-2h-anthra[1,2-d][1,3]dioxole-6,11-dione

7-hydroxy-2h-anthra[1,2-d][1,3]dioxole-6,11-dione

C15H8O5 (268.0371718)


   

methyl (1s,4as,5r,6r,7s,7ar)-5,6-dihydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4as,5r,6r,7s,7ar)-5,6-dihydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O12 (422.14241960000004)


   

7-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-3,5-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

7-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-3,5-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C33H40O20 (756.211284)


   

(1s,4as,5r,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5r,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

2-ethoxy-1-hydroxyanthracene-9,10-dione

2-ethoxy-1-hydroxyanthracene-9,10-dione

C16H12O4 (268.0735552)


   

methyl 3-hydroxy-4-[1-(4-hydroxy-3-methoxyphenyl)ethylidene]-5-oxo-7'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxolane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl 3-hydroxy-4-[1-(4-hydroxy-3-methoxyphenyl)ethylidene]-5-oxo-7'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxolane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C28H32O15 (608.1741122)


   

(4r,4as,5r,7as)-5-hydroxy-4,7-bis(hydroxymethyl)-1h,4h,4ah,5h,7ah-cyclopenta[c]pyran-3-one

(4r,4as,5r,7as)-5-hydroxy-4,7-bis(hydroxymethyl)-1h,4h,4ah,5h,7ah-cyclopenta[c]pyran-3-one

C10H14O5 (214.08411940000002)


   

7-[(acetyloxy)methyl]-5-hydroxy-1-{[4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

7-[(acetyloxy)methyl]-5-hydroxy-1-{[4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

methyl (1s,4as,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[(r)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4as,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[(r)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C28H30O14 (590.163548)


   

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

methyl (1r,4r,8r,11e,14s)-11-[(4-hydroxy-3-methoxyphenyl)methylidene]-12-oxo-7,9,13-trioxatetracyclo[6.5.1.0¹,¹⁰.0⁴,¹⁴]tetradeca-2,5-diene-5-carboxylate

methyl (1r,4r,8r,11e,14s)-11-[(4-hydroxy-3-methoxyphenyl)methylidene]-12-oxo-7,9,13-trioxatetracyclo[6.5.1.0¹,¹⁰.0⁴,¹⁴]tetradeca-2,5-diene-5-carboxylate

C21H18O8 (398.10016279999996)


   

(1r,3as,3bs,9ar,9bs,11ar)-1-(5-ethyl-6-methylheptan-2-yl)-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-one

(1r,3as,3bs,9ar,9bs,11ar)-1-(5-ethyl-6-methylheptan-2-yl)-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-one

C29H48O2 (428.36541079999995)


   
   

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H48O (400.37049579999996)


   

4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl octanoate

4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl octanoate

C26H46O17 (630.2734866000001)


   
   

2-(hydroxymethyl)-1-methoxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

2-(hydroxymethyl)-1-methoxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

C27H30O14 (578.163548)


   

4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl hexanoate

4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl hexanoate

C18H32O12 (440.1893672)


   

4-[(2s)-3-(hydroxymethyl)-6-[(1e)-3-hydroxyprop-1-en-1-yl]-2,3-dihydro-1,4-benzodioxin-2-yl]benzene-1,2-diol

4-[(2s)-3-(hydroxymethyl)-6-[(1e)-3-hydroxyprop-1-en-1-yl]-2,3-dihydro-1,4-benzodioxin-2-yl]benzene-1,2-diol

C18H18O6 (330.11033280000004)


   

3-[2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enoic acid

3-[2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enoic acid

C18H16O7 (344.0895986)


   

methyl (1s,4as,6r,7r,7as)-6-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4as,6r,7r,7as)-6-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O11 (406.1475046)


   

(2e)-3-[(2s,3r)-2-(3,4-dihydroxyphenyl)-7-hydroxy-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-6-yl]prop-2-enoic acid

(2e)-3-[(2s,3r)-2-(3,4-dihydroxyphenyl)-7-hydroxy-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-6-yl]prop-2-enoic acid

C18H16O7 (344.0895986)


   

1-hydroxy-2-methyl-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

1-hydroxy-2-methyl-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

C26H28O13 (548.1529838)


   

1-hydroxy-9,10-dioxoanthracene-2-carbaldehyde

1-hydroxy-9,10-dioxoanthracene-2-carbaldehyde

C15H8O4 (252.0422568)


   
   

(1s,4as,5s,7as)-5-(acetyloxy)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5s,7as)-5-(acetyloxy)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl octanoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl octanoate

C20H36O12 (468.2206656)


   

3-[2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]prop-2-enal

3-[2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]prop-2-enal

C20H20O6 (356.125982)


   

methyl (1's,2s,2's,3r,4e,4's,6's,7's)-3-hydroxy-4-[(4-hydroxyphenyl)methylidene]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxolane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2s,2's,3r,4e,4's,6's,7's)-3-hydroxy-4-[(4-hydroxyphenyl)methylidene]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxolane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C26H28O14 (564.1478988)


   

2-hydroxy-1-methylanthracene-9,10-dione

2-hydroxy-1-methylanthracene-9,10-dione

C15H10O3 (238.062991)


   

1,8-dihydroxy-2-(hydroxymethyl)-5-methoxyanthracene-9,10-dione

1,8-dihydroxy-2-(hydroxymethyl)-5-methoxyanthracene-9,10-dione

C16H12O6 (300.06338519999997)


   

1,5,6-trihydroxy-2-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

1,5,6-trihydroxy-2-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

C26H28O16 (596.1377288)


   

(1s,4as,7r,7as)-7-[(acetyloxy)methyl]-7-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,7r,7as)-7-[(acetyloxy)methyl]-7-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

1-hydroxy-2-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

1-hydroxy-2-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

C26H28O14 (564.1478988)


   

7-{[(2s,3s,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)chromen-4-one

7-{[(2s,3s,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)chromen-4-one

C28H32O15 (608.1741122)


   

(1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-(acetyloxy)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-(acetyloxy)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C32H50O5 (514.365805)


   

2-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-({1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl}oxy)oxane-3,4,5-triol

2-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-({1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl}oxy)oxane-3,4,5-triol

C21H36O10 (448.2308356)


   

1,5,6-trihydroxy-2-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

1,5,6-trihydroxy-2-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

C26H28O16 (596.1377288)


   

3-hydroxy-1-methylanthracene-9,10-dione

3-hydroxy-1-methylanthracene-9,10-dione

C15H10O3 (238.062991)


   

3-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

3-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C33H40O20 (756.211284)


   

4-[(1s,3ar,4s,6ar)-4-(3,4-dihydroxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol

4-[(1s,3ar,4s,6ar)-4-(3,4-dihydroxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol

C18H18O6 (330.11033280000004)


   

1,8-dihydroxy-3,7-dimethoxy-2-methylanthracene-9,10-dione

1,8-dihydroxy-3,7-dimethoxy-2-methylanthracene-9,10-dione

C17H14O6 (314.0790344)


   

(4s)-4-hydroxy-4-(3-hydroxybut-1-en-1-yl)-3,5,5-trimethylcyclohex-2-en-1-one

(4s)-4-hydroxy-4-(3-hydroxybut-1-en-1-yl)-3,5,5-trimethylcyclohex-2-en-1-one

C13H20O3 (224.14123700000002)


   

1,7-dihydroxy-6-methyl-2-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

1,7-dihydroxy-6-methyl-2-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

C26H28O14 (564.1478988)


   

(1s,4as,7r,7as)-4'-[(r)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylic acid

(1s,4as,7r,7as)-4'-[(r)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylic acid

C25H26O13 (534.1373346)


   

1,10-dihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

1,10-dihydroxy-9,9-bis(hydroxymethyl)-1,2,6a,6b,12a-pentamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O6 (504.3450708)


   

methyl 4-[hydroxy(4-hydroxyphenyl)methyl]-5-oxo-7'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl 4-[hydroxy(4-hydroxyphenyl)methyl]-5-oxo-7'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C26H28O14 (564.1478988)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.09547200000003)


   

methyl (1s,4as,7s,7as)-7-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4as,7s,7as)-7-hydroxy-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C16H22O10 (374.1212912)


   

4-[(1r,3ar,4r,6ar)-4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

4-[(1r,3ar,4r,6ar)-4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H22O6 (358.1416312)


   

methyl 4'-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl 4'-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C27H30O14 (578.163548)


   

9-(acetyloxy)-8,8-dimethyl-2-oxo-9h,10h-pyrano[2,3-h]chromen-10-yl 2-methylbut-2-enoate

9-(acetyloxy)-8,8-dimethyl-2-oxo-9h,10h-pyrano[2,3-h]chromen-10-yl 2-methylbut-2-enoate

C21H22O7 (386.1365462)


   

methyl (1r,4as,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1r,4as,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C28H30O14 (590.163548)


   

methyl (1's,2r,2's,4's,6's,7'r)-4-[hydroxy(4-hydroxyphenyl)methyl]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2r,2's,4's,6's,7'r)-4-[hydroxy(4-hydroxyphenyl)methyl]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C26H28O14 (564.1478988)


   

(1r,4as,7r,7as)-4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylic acid

(1r,4as,7r,7as)-4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylic acid

C25H26O13 (534.1373346)


   

(1r,3as,3br,9as,9bs,11ar)-9a,11a-dimethyl-1-[(2r)-6-methylhept-3-en-2-yl]-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3br,9as,9bs,11ar)-9a,11a-dimethyl-1-[(2r)-6-methylhept-3-en-2-yl]-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol

C27H46O (386.3548466)


   

methyl (1r,4as,7r,7as)-4'-(4-hydroxybenzoyl)-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1r,4as,7r,7as)-4'-(4-hydroxybenzoyl)-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C26H26O13 (546.1373346)


   

lucidin ω-methyl ether

lucidin ω-methyl ether

C16H12O5 (284.0684702)


   

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5s,7as)-7-[(acetyloxy)methyl]-5-hydroxy-1-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

(1r,3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

(1r,3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

C30H50O (426.386145)


   

(2e)-3-[(2r,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enoic acid

(2e)-3-[(2r,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enoic acid

C19H18O7 (358.10524780000003)


   

3,4,5-tris(hydroxymethyl)-3h,3ah,4h,6ah-cyclopenta[b]furan-2-one

3,4,5-tris(hydroxymethyl)-3h,3ah,4h,6ah-cyclopenta[b]furan-2-one

C10H14O5 (214.08411940000002)


   

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C29H48O (412.37049579999996)


   

7-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3,5-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

7-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3,5-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C33H40O20 (756.211284)


   

4-[(2r,3r)-3-(hydroxymethyl)-6-(3-hydroxypropyl)-2,3-dihydro-1,4-benzodioxin-2-yl]-2-methoxyphenol

4-[(2r,3r)-3-(hydroxymethyl)-6-(3-hydroxypropyl)-2,3-dihydro-1,4-benzodioxin-2-yl]-2-methoxyphenol

C19H22O6 (346.1416312)


   

4-[4-(3,4-dihydroxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol

4-[4-(3,4-dihydroxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol

C18H18O6 (330.11033280000004)


   

4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylic acid

4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylic acid

C25H26O13 (534.1373346)


   

[(2s,3r,4s)-3-ethenyl-5-(methoxycarbonyl)-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]acetic acid

[(2s,3r,4s)-3-ethenyl-5-(methoxycarbonyl)-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]acetic acid

C17H24O11 (404.13185539999995)


   

1-hydroxy-3-(hydroxymethyl)anthracene-9,10-dione

1-hydroxy-3-(hydroxymethyl)anthracene-9,10-dione

C15H10O4 (254.057906)


   

(3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

(3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

C30H50O (426.386145)


   

3-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

3-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C33H40O21 (772.206199)


   

(4ar,7as)-7-(hydroxymethyl)-3h,4h,4ah,5h,7ah-cyclopenta[c]pyran-1-one

(4ar,7as)-7-(hydroxymethyl)-3h,4h,4ah,5h,7ah-cyclopenta[c]pyran-1-one

C9H12O3 (168.0786402)


   

(6ar,6br,8ar,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-ol

(6ar,6br,8ar,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-ol

C30H50O (426.386145)


   

(2z)-3-[(z)-(1s,2s,4s,5s,6s,7s)-5-hydroxy-10-(methoxycarbonyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-5-carbonyloxy]-2-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

(2z)-3-[(z)-(1s,2s,4s,5s,6s,7s)-5-hydroxy-10-(methoxycarbonyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-5-carbonyloxy]-2-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C27H30O17 (626.148293)


   

(1s,4as,5r,7as)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5r,7as)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.11620619999997)


   

methyl (1's,2s,2's,3r,4e,4's,6'r,7's)-3-hydroxy-4-[1-(4-hydroxy-3-methoxyphenyl)ethylidene]-5-oxo-7'-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxolane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2s,2's,3r,4e,4's,6'r,7's)-3-hydroxy-4-[1-(4-hydroxy-3-methoxyphenyl)ethylidene]-5-oxo-7'-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxolane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C28H32O15 (608.1741122)


   

3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl octanoate

3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl octanoate

C20H36O12 (468.2206656)


   

2,3-dihydroxy-1-methylanthracene-9,10-dione

2,3-dihydroxy-1-methylanthracene-9,10-dione

C15H10O4 (254.057906)


   

2-(4-hydroxy-3-methoxyphenyl)-3-[7-hydroxy-4-(methoxycarbonyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7ah-cyclopenta[c]pyran-7-carbonyloxy]prop-2-enoic acid

2-(4-hydroxy-3-methoxyphenyl)-3-[7-hydroxy-4-(methoxycarbonyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7ah-cyclopenta[c]pyran-7-carbonyloxy]prop-2-enoic acid

C27H30O16 (610.153378)


   

7-(hydroxymethyl)-3h,4h,4ah,5h,7ah-cyclopenta[c]pyran-1-one

7-(hydroxymethyl)-3h,4h,4ah,5h,7ah-cyclopenta[c]pyran-1-one

C9H12O3 (168.0786402)


   

methyl (1's,2r,2's,4's,6's,7's)-4-[(r)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2r,2's,4's,6's,7's)-4-[(r)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C27H30O15 (594.158463)


   

1-butyl 4-(5-formylfuran-2-yl)methyl butanedioate

1-butyl 4-(5-formylfuran-2-yl)methyl butanedioate

C14H18O6 (282.11033280000004)


   

1,3,5-trihydroxy-2-methyl-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

1,3,5-trihydroxy-2-methyl-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

C26H28O15 (580.1428138)


   

4-[(2s,3r,4r)-4-[(s)-(3,4-dihydroxyphenyl)(hydroxy)methyl]-3-(hydroxymethyl)oxolan-2-yl]benzene-1,2-diol

4-[(2s,3r,4r)-4-[(s)-(3,4-dihydroxyphenyl)(hydroxy)methyl]-3-(hydroxymethyl)oxolan-2-yl]benzene-1,2-diol

C18H20O7 (348.120897)


   

methyl 6-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 6-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O11 (406.1475046)


   

(3ar,3br,9ar,9bs,11ar)-1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(3ar,3br,9ar,9bs,11ar)-1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.386145)


   

methyl 3-hydroxy-4-[(4-hydroxyphenyl)methylidene]-5-oxo-7'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxolane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl 3-hydroxy-4-[(4-hydroxyphenyl)methylidene]-5-oxo-7'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxolane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C26H28O14 (564.1478988)


   

2-hydroxyethyl 2-(2,4-dihydroxy-3-methoxybenzoyl)-3-hydroxy-4-methylbenzoate

2-hydroxyethyl 2-(2,4-dihydroxy-3-methoxybenzoyl)-3-hydroxy-4-methylbenzoate

C18H18O8 (362.1001628)


   

methyl (2r,2's,3r,4's,7's)-3-hydroxy-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxirane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (2r,2's,3r,4's,7's)-3-hydroxy-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxirane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C17H22O12 (418.1111212)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O15 (594.158463)


   

(2r,3r,4s,5s,6s)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6s)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

5-methoxy-2,2-dimethyl-4h-1,3-dioxatetracene-6,11-dione

5-methoxy-2,2-dimethyl-4h-1,3-dioxatetracene-6,11-dione

C19H16O5 (324.0997686)


   

2-(hydroxymethyl)-1-methoxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

2-(hydroxymethyl)-1-methoxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

C27H30O14 (578.163548)


   
   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

1,3-dihydroxy-9,10-dioxoanthracene-2-carbaldehyde

1,3-dihydroxy-9,10-dioxoanthracene-2-carbaldehyde

C15H8O5 (268.0371718)


   

methyl (1s,4as,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[(s)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4as,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[(s)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C28H30O14 (590.163548)


   

(1s,4as,5s,7as)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5s,7as)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.11620619999997)


   

methyl (1s,4ar,7r,7as)-4'-(4-hydroxy-3-methoxybenzoyl)-5'-oxo-1-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4ar,7r,7as)-4'-(4-hydroxy-3-methoxybenzoyl)-5'-oxo-1-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C27H28O14 (576.1478988)


   

methyl (2r,2's,3s,4's,7's)-3-hydroxy-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxirane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (2r,2's,3s,4's,7's)-3-hydroxy-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxirane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C17H22O12 (418.1111212)


   

methyl (1s,4as,7r,7as)-4'-[(s)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4as,7r,7as)-4'-[(s)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C27H30O14 (578.163548)


   

(2e)-3-[(2r,3s)-2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enoic acid

(2e)-3-[(2r,3s)-2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enoic acid

C18H16O7 (344.0895986)


   

methyl (1r,4r,8r,10r,11e,14s)-11-[(4-hydroxy-3-methoxyphenyl)methylidene]-12-oxo-7,9,13-trioxatetracyclo[6.5.1.0¹,¹⁰.0⁴,¹⁴]tetradeca-2,5-diene-5-carboxylate

methyl (1r,4r,8r,10r,11e,14s)-11-[(4-hydroxy-3-methoxyphenyl)methylidene]-12-oxo-7,9,13-trioxatetracyclo[6.5.1.0¹,¹⁰.0⁴,¹⁴]tetradeca-2,5-diene-5-carboxylate

C21H18O8 (398.10016279999996)


   

5-(acetyloxy)-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

5-(acetyloxy)-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl hexanoate

3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl hexanoate

C18H32O12 (440.1893672)


   

1,3-bis{[(1s,6s,7s)-6-hydroxy-4-(methoxycarbonyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-7-yl]methyl} 2,4-bis(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate

1,3-bis{[(1s,6s,7s)-6-hydroxy-4-(methoxycarbonyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-7-yl]methyl} 2,4-bis(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate

C52H64O26 (1104.3685644)


   

methyl (1s,4as,5s,7s,7ar)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4as,5s,7s,7ar)-5-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O11 (406.1475046)


   

(2r,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxine-6-carboxylic acid

(2r,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxine-6-carboxylic acid

C17H16O7 (332.0895986)


   

4-[(1s,3ar,4r,6ar)-4-(3,4-dihydroxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol

4-[(1s,3ar,4r,6ar)-4-(3,4-dihydroxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol

C18H18O6 (330.11033280000004)


   

3,5-dihydroxy-1-methoxy-9,10-dioxoanthracene-2-carbaldehyde

3,5-dihydroxy-1-methoxy-9,10-dioxoanthracene-2-carbaldehyde

C16H10O6 (298.047736)


   

methyl (1's,2s,2's,4's,6's,7's)-4-(4-hydroxy-3-methoxybenzoyl)-5-oxo-7'-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2s,2's,4's,6's,7's)-4-(4-hydroxy-3-methoxybenzoyl)-5-oxo-7'-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C27H28O15 (592.1428138)


   

7-[(acetyloxy)methyl]-7-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7ah-cyclopenta[c]pyran-4-carboxylic acid

7-[(acetyloxy)methyl]-7-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

(2e)-3-[2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enal

(2e)-3-[2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enal

C18H16O6 (328.0946836)


   

2-(hydroxymethyl)-6-[(3-methylbut-3-en-1-yl)oxy]oxane-3,4,5-triol

2-(hydroxymethyl)-6-[(3-methylbut-3-en-1-yl)oxy]oxane-3,4,5-triol

C11H20O6 (248.12598200000002)


   

(2s,3s,4r,5s)-2-(2-hydroxy-4-iminopyrimidin-1-yl)-5-(hydroxymethyl)oxolane-3,4-diol

(2s,3s,4r,5s)-2-(2-hydroxy-4-iminopyrimidin-1-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C9H13N3O5 (243.0855168)


   

(9z,11e,13r,15z)-13-hydroxyoctadeca-9,11,15-trienoic acid

(9z,11e,13r,15z)-13-hydroxyoctadeca-9,11,15-trienoic acid

C18H30O3 (294.21948299999997)


   
   

methyl 1,3-dihydroxy-9,10-dioxoanthracene-2-carboxylate

methyl 1,3-dihydroxy-9,10-dioxoanthracene-2-carboxylate

C16H10O6 (298.047736)


   

9,10-dimethoxyanthracene-2-carbaldehyde

9,10-dimethoxyanthracene-2-carbaldehyde

C17H14O3 (266.0942894)


   

methyl (1s,2s,4s,5s,6s,7s)-5-hydroxy-5-(hydroxymethyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-10-carboxylate

methyl (1s,2s,4s,5s,6s,7s)-5-hydroxy-5-(hydroxymethyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-10-carboxylate

C17H24O12 (420.1267704)


   

4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl decanoate

4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl decanoate

C28H50O17 (658.304785)


   

1,3,6-trihydroxy-2-methoxyanthracene-9,10-dione

1,3,6-trihydroxy-2-methoxyanthracene-9,10-dione

C15H10O6 (286.047736)


   

1,7-dihydroxy-6-methyl-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

1,7-dihydroxy-6-methyl-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

C26H28O14 (564.1478988)


   

1-hydroxy-2-methyl-6-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

1-hydroxy-2-methyl-6-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

C26H28O13 (548.1529838)


   

(2e)-3-[(2s,3r)-2-(3,4-dihydroxyphenyl)-7-hydroxy-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]prop-2-enoic acid

(2e)-3-[(2s,3r)-2-(3,4-dihydroxyphenyl)-7-hydroxy-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]prop-2-enoic acid

C18H16O7 (344.0895986)


   

1,3-dihydroxy-2-(methoxymethoxy)anthracene-9,10-dione

1,3-dihydroxy-2-(methoxymethoxy)anthracene-9,10-dione

C16H12O6 (300.06338519999997)


   

3-({6-[(hexanoyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-4,5-dihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl octanoate

3-({6-[(hexanoyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-4,5-dihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl octanoate

C32H56O18 (728.3466476000001)


   

7-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3,5-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

7-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-({[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3,5-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C33H40O20 (756.211284)


   
   

methyl 5,6-dihydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 5,6-dihydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O12 (422.14241960000004)


   

methyl (1s,4as,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[(s)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4as,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[(s)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C29H32O15 (620.1741122)


   

(2e)-3-[(2r,3s)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]prop-2-enal

(2e)-3-[(2r,3s)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]prop-2-enal

C20H20O6 (356.125982)


   

3-[2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enal

3-[2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enal

C18H16O6 (328.0946836)


   

methyl (1r,4ar,7r,7as)-4'-[(s)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1r,4ar,7r,7as)-4'-[(s)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C26H28O13 (548.1529838)


   

1,3,8-trihydroxy-2-methoxyanthracene-9,10-dione

1,3,8-trihydroxy-2-methoxyanthracene-9,10-dione

C15H10O6 (286.047736)


   

(2r,3s,4s,5r)-2,5-bis(hydroxymethyl)-2-methoxyoxolane-3,4-diol

(2r,3s,4s,5r)-2,5-bis(hydroxymethyl)-2-methoxyoxolane-3,4-diol

C7H14O6 (194.0790344)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

1,3-bis{[(1s,4as,6s,7s,7ar)-6-hydroxy-4-(methoxycarbonyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-7-yl]methyl} (1r,2r,3s,4s)-2,4-bis(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate

1,3-bis{[(1s,4as,6s,7s,7ar)-6-hydroxy-4-(methoxycarbonyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-7-yl]methyl} (1r,2r,3s,4s)-2,4-bis(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylate

C52H64O26 (1104.3685644)


   

5,6-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

5,6-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C28H32O16 (624.1690272)


   

methyl (1r,4ar,7r,7as)-1-{[(2s,3r,4s,5r,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[(r)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1r,4ar,7r,7as)-1-{[(2s,3r,4s,5r,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[(r)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C28H30O14 (590.163548)


   

methyl (1s,4as,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[(r)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4as,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4'-[(r)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C29H32O15 (620.1741122)


   

1,6-dihydroxy-5-methoxy-2-methylanthracene-9,10-dione

1,6-dihydroxy-5-methoxy-2-methylanthracene-9,10-dione

C16H12O5 (284.0684702)


   

1,6-dihydroxy-5-methoxy-2-(methoxymethyl)anthracene-9,10-dione

1,6-dihydroxy-5-methoxy-2-(methoxymethyl)anthracene-9,10-dione

C17H14O6 (314.0790344)


   

4-[3-(hydroxymethyl)-6-(3-hydroxyprop-1-en-1-yl)-2,3-dihydro-1,4-benzodioxin-2-yl]benzene-1,2-diol

4-[3-(hydroxymethyl)-6-(3-hydroxyprop-1-en-1-yl)-2,3-dihydro-1,4-benzodioxin-2-yl]benzene-1,2-diol

C18H18O6 (330.11033280000004)


   

(3r,3as,4s,6as)-3,4,5-tris(hydroxymethyl)-3h,3ah,4h,6ah-cyclopenta[b]furan-2-one

(3r,3as,4s,6as)-3,4,5-tris(hydroxymethyl)-3h,3ah,4h,6ah-cyclopenta[b]furan-2-one

C10H14O5 (214.08411940000002)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl hexanoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl hexanoate

C18H32O12 (440.1893672)


   

5-hydroxy-7-(hydroxymethyl)-1-{[4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

5-hydroxy-7-(hydroxymethyl)-1-{[4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.11620619999997)


   

10-(acetyloxy)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-(acetyloxy)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C32H50O5 (514.365805)


   

methyl 4-(4-hydroxy-3-methoxybenzoyl)-5-oxo-7'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl 4-(4-hydroxy-3-methoxybenzoyl)-5-oxo-7'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C27H28O15 (592.1428138)


   

(1r,3as,9ar,11ar)-1-[(3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-3a,9a,11a-trimethyl-1h,2h,3h,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1r,3as,9ar,11ar)-1-[(3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-3a,9a,11a-trimethyl-1h,2h,3h,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C30H48O (424.37049579999996)


   

(3r,4s,5s,6r)-6-(hydroxymethyl)-2-[3-methyl(2-²h₁)but-3-en-1-yl]oxane-2,3,4,5-tetrol

(3r,4s,5s,6r)-6-(hydroxymethyl)-2-[3-methyl(2-²h₁)but-3-en-1-yl]oxane-2,3,4,5-tetrol

C11H20O6 (248.12598200000002)


   

2-(2-hydroxy-4-iminopyrimidin-1-yl)-5-(hydroxymethyl)oxolane-3,4-diol

2-(2-hydroxy-4-iminopyrimidin-1-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C9H13N3O5 (243.0855168)


   

(2r,3s,4s,5r,6r)-2-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-{[(1r,2s,4r)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl]oxy}oxane-3,4,5-triol

(2r,3s,4s,5r,6r)-2-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-{[(1r,2s,4r)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl]oxy}oxane-3,4,5-triol

C21H36O10 (448.2308356)


   

(2z)-3-[(z)-(1r,2s,4s,5s,6r,7s)-5-hydroxy-10-(methoxycarbonyl)-7-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-5-carbonyloxy]-2-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

(2z)-3-[(z)-(1r,2s,4s,5s,6r,7s)-5-hydroxy-10-(methoxycarbonyl)-7-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-5-carbonyloxy]-2-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C27H30O17 (626.148293)


   

(3s,3as,4s,6ar)-3,4,5-tris(hydroxymethyl)-3h,3ah,4h,6ah-cyclopenta[b]furan-2-one

(3s,3as,4s,6ar)-3,4,5-tris(hydroxymethyl)-3h,3ah,4h,6ah-cyclopenta[b]furan-2-one

C10H14O5 (214.08411940000002)


   

5-hydroxy-4,7-bis(hydroxymethyl)-1h,4h,4ah,5h,7ah-cyclopenta[c]pyran-3-one

5-hydroxy-4,7-bis(hydroxymethyl)-1h,4h,4ah,5h,7ah-cyclopenta[c]pyran-3-one

C10H14O5 (214.08411940000002)


   

2-methoxy-9,10-anthracenedione

2-methoxy-9,10-anthracenedione

C15H10O3 (238.062991)


   

1,3,5-trihydroxy-9,10-dioxoanthracene-2-carbaldehyde

1,3,5-trihydroxy-9,10-dioxoanthracene-2-carbaldehyde

C15H8O6 (284.0320868)


   

6-hydroxy-1-methoxy-2-methylanthracene-9,10-dione

6-hydroxy-1-methoxy-2-methylanthracene-9,10-dione

C16H12O4 (268.0735552)


   

methyl (1s,4as,6r,7s,7as)-6-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4as,6r,7s,7as)-6-hydroxy-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O11 (406.1475046)


   

(2e)-3-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enoic acid

(2e)-3-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enoic acid

C18H16O7 (344.0895986)


   

(4ar,7as)-5-(acetyloxy)-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(4ar,7as)-5-(acetyloxy)-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

(4s,7s,8s,11s)-6-(hydroxymethyl)-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0⁴,¹¹]undeca-1(10),5-dien-2-one

(4s,7s,8s,11s)-6-(hydroxymethyl)-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0⁴,¹¹]undeca-1(10),5-dien-2-one

C16H20O10 (372.105642)


   

1-hydroxy-2-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

1-hydroxy-2-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

C26H28O14 (564.1478988)


   

2,5-bis(hydroxymethyl)-2-methoxyoxolane-3,4-diol

2,5-bis(hydroxymethyl)-2-methoxyoxolane-3,4-diol

C7H14O6 (194.0790344)


   
   

4-[(1r,3as,4r,6as)-4-(3,4-dihydroxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol

4-[(1r,3as,4r,6as)-4-(3,4-dihydroxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol

C18H18O6 (330.11033280000004)


   

2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O11 (448.100557)


   

(2e)-3-[(2s,3s)-2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enal

(2e)-3-[(2s,3s)-2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enal

C18H16O6 (328.0946836)


   

4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl octanoate

4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl octanoate

C20H36O12 (468.2206656)


   

1,3,4-trihydroxy-5-methoxy-9,10-dioxoanthracene-2-carbaldehyde

1,3,4-trihydroxy-5-methoxy-9,10-dioxoanthracene-2-carbaldehyde

C16H10O7 (314.042651)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C21H20O11 (448.100557)


   

5,6-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

5,6-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

C28H32O16 (624.1690272)


   

(2e)-3-[(2s,3s)-2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enoic acid

(2e)-3-[(2s,3s)-2-(3,4-dihydroxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]prop-2-enoic acid

C18H16O7 (344.0895986)


   

methyl 4'-(4-hydroxybenzoyl)-5'-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl 4'-(4-hydroxybenzoyl)-5'-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C26H26O13 (546.1373346)


   

8-hydroxy-9,10-dimethoxyanthracene-2-carbaldehyde

8-hydroxy-9,10-dimethoxyanthracene-2-carbaldehyde

C17H14O4 (282.0892044)


   

1,8-dihydroxy-2-methoxy-7-methylanthracene-9,10-dione

1,8-dihydroxy-2-methoxy-7-methylanthracene-9,10-dione

C16H12O5 (284.0684702)


   

(3r,3as,4s,6ar)-3,4,5-tris(hydroxymethyl)-3h,3ah,4h,6ah-cyclopenta[b]furan-2-one

(3r,3as,4s,6ar)-3,4,5-tris(hydroxymethyl)-3h,3ah,4h,6ah-cyclopenta[b]furan-2-one

C10H14O5 (214.08411940000002)


   

(1s,4as,5r,7as)-5-(acetyloxy)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,5r,7as)-5-(acetyloxy)-7-(hydroxymethyl)-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H24O12 (432.1267704)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O16 (610.153378)


   

(3s,3ar,6s,6as)-3,6-bis(3,4-dihydroxyphenyl)-tetrahydro-3h-furo[3,4-c]furan-1-one

(3s,3ar,6s,6as)-3,6-bis(3,4-dihydroxyphenyl)-tetrahydro-3h-furo[3,4-c]furan-1-one

C18H16O7 (344.0895986)


   

methyl 3-(2,4-dihydroxy-5-methoxyphenyl)propanoate

methyl 3-(2,4-dihydroxy-5-methoxyphenyl)propanoate

C11H14O5 (226.08411940000002)


   

methyl (1's,2s,2's,4's,6's,7'r)-4-[(r)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2s,2's,4's,6's,7'r)-4-[(r)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C27H30O15 (594.158463)


   

methyl 5-hydroxy-5-(hydroxymethyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-10-carboxylate

methyl 5-hydroxy-5-(hydroxymethyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-10-carboxylate

C17H24O12 (420.1267704)


   

5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C28H32O16 (624.1690272)


   

methyl (1r,4ar,7r,7as)-4'-(4-hydroxybenzoyl)-5'-oxo-1-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1r,4ar,7r,7as)-4'-(4-hydroxybenzoyl)-5'-oxo-1-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C26H26O13 (546.1373346)


   

2-benzyl-1,3-dihydroxyanthracene-9,10-dione

2-benzyl-1,3-dihydroxyanthracene-9,10-dione

C21H14O4 (330.0892044)


   

methyl (1r,4ar,7r,7as)-4'-[(r)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1r,4ar,7r,7as)-4'-[(r)-hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C27H30O14 (578.163548)


   

1-hydroxy-2,3-dimethylanthracene-9,10-dione

1-hydroxy-2,3-dimethylanthracene-9,10-dione

C16H12O3 (252.0786402)


   

methyl 1-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-4'-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl 1-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-4'-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C29H32O15 (620.1741122)


   
   

3-hydroxy-9,10-dioxoanthracene-2-carbaldehyde

3-hydroxy-9,10-dioxoanthracene-2-carbaldehyde

C15H8O4 (252.0422568)


   

(6-{[4,5-dihydroxy-2-(octanoyloxy)-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl octanoate

(6-{[4,5-dihydroxy-2-(octanoyloxy)-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl octanoate

C34H60O18 (756.3779460000001)


   

methyl (1s,4as,7r,7as)-4'-[(r)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1s,4as,7r,7as)-4'-[(r)-hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C26H28O13 (548.1529838)


   

2-[(3-methylbut-3-en-1-yl)oxy]-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

2-[(3-methylbut-3-en-1-yl)oxy]-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C17H30O11 (410.178803)


   

methyl (1's,2s,2's,4's,6's,7's)-4-(4-hydroxy-3-methoxybenzoyl)-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2s,2's,4's,6's,7's)-4-(4-hydroxy-3-methoxybenzoyl)-5-oxo-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[furan-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C27H28O15 (592.1428138)


   

4-[(2s,3r,4r)-4-(4-hydroxy-3,5-dimethoxybenzoyl)-3-(hydroxymethyl)oxolan-2-yl]-2,6-dimethoxyphenol

4-[(2s,3r,4r)-4-(4-hydroxy-3,5-dimethoxybenzoyl)-3-(hydroxymethyl)oxolan-2-yl]-2,6-dimethoxyphenol

C22H26O9 (434.15767460000006)


   

1,2-dihydroxy-3-methylanthracene-9,10-dione

1,2-dihydroxy-3-methylanthracene-9,10-dione

C15H10O4 (254.057906)


   

3,6-bis(3,4-dihydroxyphenyl)-tetrahydro-3h-furo[3,4-c]furan-1-one

3,6-bis(3,4-dihydroxyphenyl)-tetrahydro-3h-furo[3,4-c]furan-1-one

C18H16O7 (344.0895986)


   

(2z)-3-[(z)-(1s,4ar,7s,7as)-7-hydroxy-4-(methoxycarbonyl)-1-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7ah-cyclopenta[c]pyran-7-carbonyloxy]-2-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

(2z)-3-[(z)-(1s,4ar,7s,7as)-7-hydroxy-4-(methoxycarbonyl)-1-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,7ah-cyclopenta[c]pyran-7-carbonyloxy]-2-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C27H30O16 (610.153378)


   

1,5-dihydroxy-2-(hydroxymethyl)anthracene-9,10-dione

1,5-dihydroxy-2-(hydroxymethyl)anthracene-9,10-dione

C15H10O5 (270.052821)


   

1,6-dihydroxy-2-methylanthracene-9,10-dione

1,6-dihydroxy-2-methylanthracene-9,10-dione

C15H10O4 (254.057906)


   

methyl (1r,4as,7r,7as)-4'-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl (1r,4as,7r,7as)-4'-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-5'-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C27H30O14 (578.163548)


   

methyl (1s,2s,4s,5r,6r,7s)-5-hydroxy-5-[(r)-hydroxy({[(1s,2s,4r,5z,6s,7s)-10-(methoxycarbonyl)-7-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-en-5-ylidene]methoxy})methyl]-7-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-10-carboxylate

methyl (1s,2s,4s,5r,6r,7s)-5-hydroxy-5-[(r)-hydroxy({[(1s,2s,4r,5z,6s,7s)-10-(methoxycarbonyl)-7-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-en-5-ylidene]methoxy})methyl]-7-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,8-dioxatricyclo[4.4.0.0²,⁴]dec-9-ene-10-carboxylate

C34H44O23 (820.2273274)


   

2-hydroxy-1,3-dimethoxyanthracene-9,10-dione

2-hydroxy-1,3-dimethoxyanthracene-9,10-dione

C16H12O5 (284.0684702)


   

methyl (1's,2r,2's,3s,4's,6's,7's)-3-hydroxy-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxirane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

methyl (1's,2r,2's,3s,4's,6's,7's)-3-hydroxy-7'-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3',8'-dioxaspiro[oxirane-2,5'-tricyclo[4.4.0.0²,⁴]decan]-9'-ene-10'-carboxylate

C17H22O12 (418.1111212)


   

1-(5-ethyl-6-methylheptan-2-yl)-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-one

1-(5-ethyl-6-methylheptan-2-yl)-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-one

C29H48O2 (428.36541079999995)


   

(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-[(3-methylbut-3-en-1-yl)oxy]oxane-3,4,5-triol

(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-[(3-methylbut-3-en-1-yl)oxy]oxane-3,4,5-triol

C11H20O6 (248.12598200000002)


   

6-(hydroxymethyl)-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0⁴,¹¹]undeca-1(10),5-dien-2-one

6-(hydroxymethyl)-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[5.3.1.0⁴,¹¹]undeca-1(10),5-dien-2-one

C16H20O10 (372.105642)


   

1,3,5-trihydroxy-2-methyl-6-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

1,3,5-trihydroxy-2-methyl-6-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]anthracene-9,10-dione

C26H28O15 (580.1428138)


   

methyl 1-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

methyl 1-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-4'-[hydroxy(4-hydroxyphenyl)methyl]-5'-oxo-4a,7a-dihydro-1h-spiro[cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C28H30O14 (590.163548)


   

(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-6-[(hexanoyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4,5-dihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl octanoate

(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-6-[(hexanoyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4,5-dihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl octanoate

C32H56O18 (728.3466476000001)