Prostaglandin F2alpha (BioDeep_00000002977)
Secondary id: BioDeep_00000014601, BioDeep_00000629488, BioDeep_00001867856
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C20H34O5 (354.2406114)
中文名称: 前列腺素 F2a, 地诺前列素
谱图信息:
最多检出来源 Homo sapiens(feces) 0.01%
Last reviewed on 2024-09-13.
Cite this Page
Prostaglandin F2alpha. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/prostaglandin_f2alpha (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000002977). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CCCCCC(C=CC1C(CC(C1CC=CCCCC(=O)O)O)O)O
InChI: InChI=1S/C20H34O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h4,7,12-13,15-19,21-23H,2-3,5-6,8-11,14H2,1H3,(H,24,25)/b7-4+,13-12+/t15-,16+,17+,18-,19+/m0/s1
描述信息
Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins. It is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. It is used in medicine to induce labor and as an abortifacient. PGF2a binds to the Prostaglandin F2 receptor (PTGFR) which is a member of the G-protein coupled receptor family. PGF2-alpha mediates luteolysis. Luteolysis is the structural and functional degradation of the corpus luteum (CL) that occurs at the end of the luteal phase of both the estrous and menstrual cycles in the absence of pregnancy. PGF2 may also be involved in modulating intraocular pressure and smooth muscle contraction in the uterus and gastrointestinal tract sphincters. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
Prostaglandin F2a (PGF2) is one of the earliest discovered and most common prostaglandins. It is actively biosynthesized in various organs of mammals and exhibits a variety of biological activities, including contraction of pulmonary arteries. It is used in medicine to induce labor and as an abortifacient. PGF2a binds to the Prostaglandin F2 receptor (PTGFR) which is a member of the G-protein coupled receptor family. PGF2-alpha mediates luteolysis. Luteolysis is the structural and functional degradation of the corpus luteum (CL) that occurs at the end of the luteal phase of both the estrous and menstrual cycles in the absence of pregnancy. PGF2 may also be involved in modulating intraocular pressure and smooth muscle contraction in the uterus and gastrointestinal tract sphincters. PGF2 is mainly synthesized directly from PGH2 by PGH2 9,11-endoperoxide reductase. A small amount of PGF2 is also produced from PGE2 by PGE2 9-ketoreductase. A PGF2 epimer has been reported to exhibit various biological activities, and its levels are increased in bronchoalveolar lavage fluid, plasma, and urine in patients with mastocytosis and bronchial asthma. PGF2 is synthesized from PGD2 by PGD2 11-ketoreductase. (PMID: 16475787)
G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins
Chemical was purchased from CAY16010 (Lot 171332-126); Diagnostic ions: 353.2, 309.2, 281.1, 253.0, 193.1
D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents
D012102 - Reproductive Control Agents > D010120 - Oxytocics
C78568 - Prostaglandin Analogue
KEIO_ID P066
Dinoprost (Prostaglandin F2α) is an orally active, potent prostaglandin F (PGF) receptor (FP receptor) agonist. Dinoprost is a luteolytic hormone produced locally in the endometrial luminal epithelium and corpus luteum (CL). Dinoprost plays a key role in the onset and progression of labour[1][2].
同义名列表
60 个代谢物同义名
(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoic acid; (Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid; (5Z,13E)-(15S)-9-alpha,11-alpha,15-Trihydroxyprosta-5,13-dienoic acid; 7-[3,5-Dihydroxy-2-(3-hydroxy-1-octenyl)cyclopentyl]-5-heptenoic acid; 9,11,15-Trihydroxy-(5Z,9a,11a,13E,15S)-prosta-5,13-dien-1-Oic acid; (5Z,9a,11a,13E,15S)-9,11,15-Trihydroxy-prosta-5,13-dien-1-Oic acid; (5Z,9alpha,11alpha,13E,15S)-9,11,15-Trihydroxyprosta-5,13-dienoate; (5Z,13E)-(15S)-9-alpha,11-alpha,15-Trihydroxyprosta-5,13-dienoate; 7-[3,5-Dihydroxy-2-(3-hydroxy-1-octenyl)cyclopentyl]-5-heptenoate; (5Z,13E)-(15S)-9alpha,11alpha,15-Trihydroxyprosta-5,13-dienoate; 9,11,15-Trihydroxy-(5Z,9a,11a,13E,15S)-prosta-5,13-dien-1-Oate; (5Z,9a,11a,13E,15S)-9,11,15-Trihydroxy-prosta-5,13-dien-1-Oate; (9alpha,11alpha,15)-Trihydroxyprosta-(5Z,13E)-dien-1-Oic acid; (5Z,13E,15S)-9a,11a,15-Trihydroxyprosta-5,13-dien-1-Oic acid; 9a,11a,15(S)-Trihydroxy-5-cis-13-trans-prostadienoic acid; (9alpha,11alpha,15)-Trihydroxyprosta-(5Z,13E)-dien-1-Oate; (5Z,13E,15S)-9a,11a,15-Trihydroxyprosta-5,13-dien-1-Oate; 9a,11a,15(S)-Trihydroxy-5-cis-13-trans-prostadienoate; 9,11,15-Trihydroxyprosta-5Z,13E-dien-1-Oic acid; 9,11,15-Trihydroxyprosta-5Z,13E-dien-1-Oate; Prostaglandin F2a;PGF2alpha; L-Prostaglandin F2-alpha; F2 alpha, Prostaglandin; Prostaglandin F2 alpha; F2alpha, Prostaglandin; (+)-Prostaglandin F2a; Prostaglandin F2alpha; 9alpha,11beta PGF2; 9alpha,11beta-PGF2; Prostin F 2 alpha; Prostaglandin F2a; Prostaglandin F2; F2a Isoprostane; 5-trans-PGF2α; L-PGF2-alpha; 9a,11a-PGF2a; Prostarmon F; tromethamine; 9a,11a-PGF2; Enzaprost F; alpha, PGF2; Amoglandin; PGF2 alpha; PGF2α Prostamate; Protamodin; Dinifertin; Glandin N; Enzaprost; PGF2alpha; Panacelan; Dinoprost; Estrofan; Cyclosin; U 14583; PGF2a; PGF2; Prostaglandin F2α; PGF2α; Prostaglandin F2alpha
数据库引用编号
40 个数据库交叉引用编号
- ChEBI: CHEBI:15553
- KEGG: C00639
- KEGGdrug: D00081
- PubChem: 5280363
- PubChem: 160
- HMDB: HMDB0001139
- Metlin: METLIN36085
- DrugBank: DB12789
- ChEMBL: CHEMBL815
- Wikipedia: Prostaglandin F2alpha
- MeSH: Dinoprost
- foodb: FDB022448
- chemspider: 4446204
- CAS: 551-11-1
- MoNA: UT000356
- MoNA: KO001657
- MoNA: UT000355
- MoNA: KO001656
- MoNA: KO001658
- MoNA: KO001660
- MoNA: UT000360
- MoNA: UT000359
- MoNA: KO001659
- MoNA: UT000357
- MoNA: UT000353
- MoNA: UT000354
- MoNA: UT000358
- MoNA: MSJ00046
- MoNA: UT000352
- PMhub: MS000007589
- PubChem: 3912
- LipidMAPS: LMFA03010002
- PDB-CCD: UGU
- 3DMET: B01297
- NIKKAJI: J9.246K
- RefMet: PGF2
- RefMet: PGF2alpha
- medchemexpress: HY-12956
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-960
- KNApSAcK: 15553
分类词条
相关代谢途径
Reactome(10)
BioCyc(0)
PlantCyc(0)
代谢反应
175 个相关的代谢反应过程信息。
Reactome(169)
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (q) signalling events:
GTP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive) ⟶ GDP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (active)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
GTP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive) ⟶ GDP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (active)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (q) signalling events:
GTP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive) ⟶ GDP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (active)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + TPNH + prostaglandin D2 ⟶ 11epi-PGF2a + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin D2
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin D2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
prostaglandin H2 ⟶ prostaglandin E2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin E2
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + TPNH + prostaglandin D2 ⟶ 11epi-PGF2a + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Fatty acid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin E2
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Fatty acid metabolism:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + TPNH + prostaglandin D2 ⟶ 11epi-PGF2a + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
prostaglandin H2 ⟶ prostaglandin E2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin E2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- GPCR ligand binding:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + F1MCJ0 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + F1PUR8 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + Homologues of OXER1 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
Homologues of PTGDR2 + prostaglandin D2 ⟶ PTGDR2:PGD2
- GPCR ligand binding:
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + OXER1_HUMAN ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
Ptgdr + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
Ptgdr + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
F1RIB0 + prostaglandin D2 ⟶ PTGDR2:PGD2
- GPCR ligand binding:
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + A0A6I8PVP2 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- Eicosanoid ligand-binding receptors:
CrzR + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
BioCyc(0)
WikiPathways(5)
- Eicosanoid lipid synthesis map:
PGH2 ⟶ PGE2
- Eicosanoid metabolism via cyclooxygenases (COX):
Arachidonic acid ⟶ 15(S)-HETE
- Eicosanoid synthesis:
PGD2 ⟶ PGJ2
- Eicosanoid metabolism via cyclooxygenases (COX):
Arachidonic acid ⟶ 15(S)-HETE
- Arachidonic acid (AA, ARA) oxylipin metabolism:
HXB3 ⟶ Trioxilin B3
Plant Reactome(0)
INOH(1)
- Prostaglandin and Leukotriene metabolism ( Prostaglandin and Leukotriene metabolism ):
Glutathione + Leucotriene A4 ⟶ Leucotriene C4
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
5 个相关的物种来源信息
- 9863 - Cervus nippon: 10.1007/BF02219253
- 134440 - Gersemia fruticosa: 10.1016/S0040-4039(00)73658-6
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 62751 - Larix sibirica: 10.1007/BF00598571
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yazhen Xie, Haifeng Xu, Zhijuan Gu. Ge-gen decoction alleviates primary dysmenorrhoea symptoms in a rat model.
Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology.
2024 Dec; 44(1):2337691. doi:
10.1080/01443615.2024.2337691
. [PMID: 38594870] - Xu Yang, Yunyuan Tian, Jincai Liu, Yaoyao Kou, Yanhua Xie, Siwang Wang, Ye Zhao. Peony Pollen Protects against Primary Dysmenorrhea in Mice by Inhibiting Inflammatory Response and Regulating the COX2/PGE2 Pathway.
International journal of molecular sciences.
2023 Dec; 24(24):. doi:
10.3390/ijms242417245
. [PMID: 38139073] - Liu-Jun Wu, Yan Chen, Zi-Wei Lin, Chen Sun, Liang Xiong, Xiao-Fang Xie, Cheng Peng. [Therapeutic effect of Leonuri Herba aqueous decoction on primary dysmenorrhea in rats and its metabolomic analysis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Nov; 48(22):6093-6106. doi:
10.19540/j.cnki.cjcmm.20230803.401
. [PMID: 38114217] - Piotr Kaczynski, Ewelina Goryszewska-Szczurek, Monika Baryla, Agnieszka Waclawik. Novel insights into conceptus-maternal signaling during pregnancy establishment in pigs.
Molecular reproduction and development.
2023 07; 90(7):658-672. doi:
10.1002/mrd.23567
. [PMID: 35385215] - Michele R Plewes, Emilia Przygrodzka, Corrine F Monaco, Alexandria P Snider, Jessica A Keane, Patrick D Burns, Jennifer R Wood, Andrea S Cupp, John S Davis. Prostaglandin F2α regulates mitochondrial dynamics and mitophagy in the bovine corpus luteum.
Life science alliance.
2023 07; 6(7):. doi:
10.26508/lsa.202301968
. [PMID: 37188480] - B Mion, G Madureira, J F W Spricigo, K King, B Van Winters, J LaMarre, S J LeBlanc, M A Steele, E S Ribeiro. Effects of source of supplementary trace minerals in pre- and postpartum diets on reproductive biology and performance in dairy cows.
Journal of dairy science.
2023 May; ?(?):. doi:
10.3168/jds.2022-22784
. [PMID: 37164845] - Ru Zhu, Xing-Hua Wang, Bo-Wen Wang, Xuan Ouyang, Ya-Yan You, Hua-Tao Xie, Ming-Chang Zhang, Fa-Gang Jiang. Prostaglandin F2α Regulates Adipogenesis by Modulating Extracellular Signal-Regulated Kinase Signaling in Graves' Ophthalmopathy.
International journal of molecular sciences.
2023 Apr; 24(8):. doi:
10.3390/ijms24087012
. [PMID: 37108173] - Xing Wang, Bin Wang, Man Cheng, Linling Yu, Wei Liu, Xiuquan Nie, Mengyi Wang, Min Zhou, Weihong Chen. Lipid peroxidation mediates the association between iron overload and liver injury: cross-sectional and longitudinal analyses in general Chinese urban adults.
Environmental science and pollution research international.
2023 Apr; ?(?):. doi:
10.1007/s11356-023-26702-1
. [PMID: 37022540] - Burcu Azak Pazarlar, Cansu Bilister Egilmez, Mumin Alper Erdogan, Oytun Erbas. Immunosuppressant Tacrolimus Treatment Delays Acute Seizure Occurrence, Reduces Elevated Oxidative Stress, and Reverses PGF2α Burst in the Brain of PTZ-Treated Rats.
Neurochemical research.
2023 Feb; ?(?):. doi:
10.1007/s11064-023-03885-0
. [PMID: 36780043] - Xiao Xue, Yu Liu, Shao-Hua Wang, Han-Yu Yuan, Juan Li, Si-An Pan, Zeng-Hui Yue. [Effect of electroacupuncture intervention on relieving pain and inflammation by suppressing TLR4/NF-κB signaling in rats with primary dysmenorrhea].
Zhen ci yan jiu = Acupuncture research.
2023 Jan; 48(1):63-70. doi:
10.13702/j.1000-0607.20220224
. [PMID: 36734500] - Kuo-Shyang Jeng, Po-Yu Cheng, Yueh-Hsien Lin, Po-Chun Liu, Ping-Hui Tseng, Yu-Chao Wang, Chiung-Fang Chang, Chuen-Miin Leu. Aldo-keto reductase family member C3 (AKR1C3) promotes hepatocellular carcinoma cell growth by producing prostaglandin F2α.
Oncology research.
2023; 32(1):163-174. doi:
10.32604/or.2023.030975
. [PMID: 38188684] - Monika Jamioł, Magdalena Sozoniuk, Jacek Wawrzykowski, Marta Kankofer. Effect of Sex Steroids and PGF2α on the Expression of Their Receptors and Decorin in Bovine Caruncular Epithelial Cells in Early-Mid Pregnancy.
Molecules (Basel, Switzerland).
2022 Nov; 27(21):. doi:
10.3390/molecules27217420
. [PMID: 36364246] - Ana Maria Murta Santi, Juliana Martins Ribeiro, João Luís Reis-Cunha, Gabriela de Assis Burle-Caldas, Isabella Fernandes Martins Santos, Paula Alves Silva, Daniela de Melo Resende, Daniella Castanheira Bartholomeu, Santuza Maria Ribeiro Teixeira, Silvane Maria Fonseca Murta. Disruption of multiple copies of the Prostaglandin F2alpha synthase gene affects oxidative stress response and infectivity in Trypanosoma cruzi.
PLoS neglected tropical diseases.
2022 10; 16(10):e0010845. doi:
10.1371/journal.pntd.0010845
. [PMID: 36260546] - Lin Ma, Dongxiao Sun, Guangli Xiu, Philip Lazarus, Anil Vachani, Trevor M Penning, Alexander S Whitehead, Joshua E Muscat. Quantification of Plasma 8-Isoprostane by High-Performance Liquid Chromatography with Tandem Mass Spectrometry in a Case-Control Study of Lung Cancer.
International journal of environmental research and public health.
2022 09; 19(19):. doi:
10.3390/ijerph191912488
. [PMID: 36231826] - Yong-Moon Mark Park, Jenna Lilyquist, Thomas J Van't Erve, Katie M O'Brien, Hazel B Nichols, Ginger L Milne, Clarice R Weinberg, Dale P Sandler. Association of dietary and plasma carotenoids with urinary F2-isoprostanes.
European journal of nutrition.
2022 Aug; 61(5):2711-2723. doi:
10.1007/s00394-022-02837-8
. [PMID: 35253072] - Juan Carlos Tschopp, Alejandro J Macagno, Reuben J Mapletoft, Alejo Menchaca, Gabriel A Bó. Effect of the addition of GnRH and a second prostaglandin F2α treatment on pregnancy per artificial insemination in lactating dairy cows submitted to an estradiol/progesterone-based timed-AI protocol.
Theriogenology.
2022 Aug; 188(?):63-70. doi:
10.1016/j.theriogenology.2022.05.019
. [PMID: 35667231] - Abolfazl Hajibemani, Hossein Sheikhalislami, Mohammad Javad Behzadi Shahrbabak, Razi Jafari Jozani, Mohammad Mehdi Ommati. Effect of PGF2α and GnRH administration on reproductive performance in Ghezel ewes.
Prostaglandins & other lipid mediators.
2022 08; 161(?):106640. doi:
10.1016/j.prostaglandins.2022.106640
. [PMID: 35605836] - Ying Sun, Yan Yan, Xuejun Kang. Packed-Fiber Solid Phase-Extraction Coupled with HPLC-MS/MS for Rapid Determination of Lipid Oxidative Damage Biomarker 8-Iso-Prostaglandin F2α in Urine.
Molecules (Basel, Switzerland).
2022 Jul; 27(14):. doi:
10.3390/molecules27144417
. [PMID: 35889290] - Vanessa Peixoto de Souza, Jared Jensen, William Whitler, Charles T Estill, Cecily V Bishop. Increasing vitamin D levels to improve fertilization rates in cattle.
Journal of animal science.
2022 Jul; 100(7):. doi:
10.1093/jas/skac168
. [PMID: 35772760] - A M Hubner, I F Canisso, P M Peixoto, W M Coelho, L L Cunha, L Ribeiro, S Crump, F S Lima. Effect of nerve growth factor-β administered at insemination for lactating Holstein dairy cows bred after timed-artificial insemination protocol.
Journal of dairy science.
2022 Jul; 105(7):6353-6363. doi:
10.3168/jds.2022-21874
. [PMID: 35637004] - Jingjing Tian, Yihui Du, Ermeng Yu, Caixia Lei, Yun Xia, Peng Jiang, Hongyan Li, Kai Zhang, Zhifei Li, Wangbao Gong, Jun Xie, Guangjun Wang. Prostaglandin 2α Promotes Autophagy and Mitochondrial Energy Production in Fish Hepatocytes.
Cells.
2022 06; 11(12):. doi:
10.3390/cells11121870
. [PMID: 35740999] - Fernando Sánchez-Dávila, Víctor Adrián Hernández-Melo, Rogelio Alejandro Ledezma-Torres, Hugo Bernal-Barragán, Carlos Luna-Palomera, Rodolfo Ungerfeld. Cloprostenol enhances sexual behaviour and semen quality in growing lambs more effectively than Dinoprost.
Reproduction in domestic animals = Zuchthygiene.
2022 Jun; 57(6):611-615. doi:
10.1111/rda.14101
. [PMID: 35188980] - Kianna M Spencer, Giorgia Podico, Ameer A Megahed, Kristi L Jones, João H J Bittar, Igor F Canisso. Ovulatory response to GnRH agonist during early and late fall in mares.
Theriogenology.
2022 Jun; 185(?):140-148. doi:
10.1016/j.theriogenology.2022.03.003
. [PMID: 35405532] - Heike Braun, Michael Hauke, Robert Eckenstaler, Markus Petermann, Anne Ripperger, Niklas Kühn, Edzard Schwedhelm, Beatrice Ludwig-Kraus, Frank Bernhard Kraus, Virginie Dubourg, Alma Zernecke, Barbara Schreier, Michael Gekle, Ralf A Benndorf. The F2-isoprostane 8-iso-PGF2α attenuates atherosclerotic lesion formation in Ldlr-deficient mice - Potential role of vascular thromboxane A2 receptors.
Free radical biology & medicine.
2022 05; 185(?):36-45. doi:
10.1016/j.freeradbiomed.2022.04.010
. [PMID: 35470061] - Zahra Esmaeily, Gity Sotoudeh, Masoumeh Rafiee, Fariba Koohdani. ApoA2-256T > C polymorphism interacts with Healthy Eating Index, Dietary Quality Index-International and Dietary Phytochemical Index to affect biochemical markers among type 2 diabetic patients.
The British journal of nutrition.
2022 05; 127(9):1343-1351. doi:
10.1017/s0007114521002348
. [PMID: 34167597] - Eric M Zwiefelhofer, Will Lillico, Gregg P Adams. Development of a letrozole-based synchronization protocol for fixed-time artificial insemination in beef cattle.
Animal reproduction science.
2022 May; 240(?):106975. doi:
10.1016/j.anireprosci.2022.106975
. [PMID: 35483319] - Abir Salloum, Mohammed Saleh. Comparison of GnRH and hCG effects on oestradiol, progesterone and premature luteolysis in Ovsynch-synchronized ewes.
Reproduction in domestic animals = Zuchthygiene.
2022 May; 57(5):550-555. doi:
10.1111/rda.14094
. [PMID: 35137458] - Thiago O Cunha, Leah R Statz, Rafael R Domingues, João Paulo N Andrade, Milo C Wiltbank, João Paulo N Martins. Accessory corpus luteum induced by human chorionic gonadotropin on day 7 or days 7 and 13 of the estrous cycle affected follicular and luteal dynamics and luteolysis in lactating Holstein cows.
Journal of dairy science.
2022 Mar; 105(3):2631-2650. doi:
10.3168/jds.2021-20619
. [PMID: 34955260] - Ryosuke Sakumoto, Ken-Go Hayashi, Kosuke Iga. Direct effects of linoleic and linolenic acids on bovine uterine function using in vivo and in vitro studies.
The Journal of reproduction and development.
2022 Feb; 68(1):62-67. doi:
10.1262/jrd.2021-107
. [PMID: 34803128] - Wei Liu, Bin Wang, Shijie Yang, Tao Xu, Linling Yu, Xing Wang, Man Cheng, Min Zhou, Weihong Chen. Associations of propylene oxide exposure with fasting plasma glucose and diabetes: Roles of oxidative DNA damage and lipid peroxidation.
Environmental pollution (Barking, Essex : 1987).
2022 Jan; 292(Pt B):118453. doi:
10.1016/j.envpol.2021.118453
. [PMID: 34737025] - A M Hubner, I F Canisso, P M Peixoto, A J Conley, F S Lima. Effect of gonadotropin-releasing hormone administered at the time of artificial insemination for cows detected in estrus by conventional estrus detection or an automated activity-monitoring system.
Journal of dairy science.
2022 Jan; 105(1):831-841. doi:
10.3168/jds.2021-21011
. [PMID: 34756436] - Rani Sauriasari, Afina Irsyania Zulfa, Andisyah Putri Sekar, Nuriza Ulul Azmi, Xian Wen Tan, Eiji Matsuura. Role of urinary H2O2, 8-iso-PGF2α, and serum oxLDL/β2GP1 complex in the diabetic kidney disease.
PloS one.
2022; 17(4):e0263113. doi:
10.1371/journal.pone.0263113
. [PMID: 35381015] - Abu Saleh Md Moin, Manjula Nandakumar, Hassan Kahal, Thozhukat Sathyapalan, Stephen L Atkin, Alexandra E Butler. Heat Shock-Related Protein Responses and Inflammatory Protein Changes Are Associated with Mild Prolonged Hypoglycemia.
Cells.
2021 11; 10(11):. doi:
10.3390/cells10113109
. [PMID: 34831332] - Ning Ma, Yujian Zhang, Binbin Liu, Xiaojiao Jia, Rui Wang, Qiang Lu. Associations of plasma 8-iso-prostaglandin F2αlevels with fasting blood glucose (FBG) and intra-abdominal fat (IAF) area in various Glycometabolism populations.
BMC endocrine disorders.
2021 Oct; 21(1):215. doi:
10.1186/s12902-021-00879-3
. [PMID: 34711211] - Ai Lin Daphne Teh, Jaime Jacqueline Jayapalan, Mun Fai Loke, Azida Juana Wan Abdul Kadir, Visvaraja Subrayan. Identification of potential serum metabolic biomarkers for patient with keratoconus using untargeted metabolomics approach.
Experimental eye research.
2021 10; 211(?):108734. doi:
10.1016/j.exer.2021.108734
. [PMID: 34428458] - João Paulo N Martins, Melisa J T Acevedo, Christian G Piterini, Thiago O Cunha, J Richard Pursley. Effect of PGF2α treatments during early corpus luteum development on circulating progesterone concentrations and ovulation in breeding-age Holstein heifers.
Theriogenology.
2021 Oct; 173(?):12-18. doi:
10.1016/j.theriogenology.2021.06.002
. [PMID: 34126407] - Camila Kochi, Ankita Salvi, Fatin Atrooz, Samina Salim. Simulated vehicle exhaust exposure induces sex-dependent behavioral deficits in rats.
Environmental toxicology and pharmacology.
2021 Aug; 86(?):103660. doi:
10.1016/j.etap.2021.103660
. [PMID: 33865999] - Aliaa Abdelmoniem Bedeir Eita, Azza Mohamed Zaki, Sabah Abdelhady Mahmoud. Serum 8-isoprostane levels in patients with resistant oral lichen planus before and after treatment with lycopene: a randomized clinical trial.
BMC oral health.
2021 07; 21(1):343. doi:
10.1186/s12903-021-01711-z
. [PMID: 34266435] - I G Motta, C C Rocha, D Z Bisinotto, G D Melo, G A A Júnior, T K Nishimura, A M G Diaza, T Castro, O J Ginther, G Pugliesi. Effects of estradiol treatments on PGF2α release in beef heifers submitted to estrous resynchronization 14 days after timed-AI.
Domestic animal endocrinology.
2021 07; 76(?):106625. doi:
10.1016/j.domaniend.2021.106625
. [PMID: 33878540] - Paweł Sutkowy, Jolanta Czuczejko, Bogdan Małkowski, Karolina Szewczyk-Golec, Rita Łopatto, Marta Maruszak, Alina Woźniak. Redox State and Lysosomal Activity in Women with Ovarian Cancer with Tumor Recurrence and Multiorgan Metastasis.
Molecules (Basel, Switzerland).
2021 Jul; 26(13):. doi:
10.3390/molecules26134039
. [PMID: 34279378] - Victor M Petrone-Garcia, Raquel Lopez-Arellano, Gabriela Rodríguez Patiño, Miriam Aide Castillo Rodríguez, Daniel Hernandez-Patlan, Bruno Solis-Cruz, Xochitl Hernandez-Velasco, Fernando Alba-Hurtado, Christine N Vuong, Inkar Castellanos-Huerta, Guillermo Tellez-Isaias. Curcumin reduces enteric isoprostane 8-iso-PGF2α and prostaglandin GF2α in specific pathogen-free Leghorn chickens challenged with Eimeria maxima.
Scientific reports.
2021 06; 11(1):11609. doi:
10.1038/s41598-021-90679-5
. [PMID: 34078952] - Wei-Te Wu, Wei-Ting Jung, Hui-Ling Lee. Lipid peroxidation metabolites associated with biomarkers of inflammation and oxidation stress in workers handling carbon nanotubes and metal oxide nanoparticles.
Nanotoxicology.
2021 06; 15(5):577-587. doi:
10.1080/17435390.2021.1879303
. [PMID: 33570441] - Huangjin Tong, Mengting Yu, Chenghao Fei, De Ji, Jiajia Dong, Lianlin Su, Wei Gu, Chunqin Mao, Lin Li, Zhenhua Bian, Tulin Lu, Min Hao, Bailin Zeng. Bioactive constituents and the molecular mechanism of Curcumae Rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2021 Jun; 86(?):153558. doi:
10.1016/j.phymed.2021.153558
. [PMID: 33866197] - Emma Fletcher, Paul M Gordon. Obesity-induced alterations to the immunoproteasome: a potential link to intramuscular lipotoxicity.
Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme.
2021 May; 46(5):485-493. doi:
10.1139/apnm-2020-0655
. [PMID: 33186056] - Kaku Itoh, Yosuke Ida, Hiroshi Ohguro, Fumihito Hikage. Prostaglandin F2α agonists induced enhancement in collagen1 expression is involved in the pathogenesis of the deepening of upper eyelid sulcus.
Scientific reports.
2021 04; 11(1):9002. doi:
10.1038/s41598-021-88562-4
. [PMID: 33903711] - Baolian Ma, Shilin Yang, Ting Tan, Junmao Li, Xiaoyong Zhang, Hui Ouyang, Mingzhen He, Yulin Feng. An integrated study of metabolomics and transcriptomics to reveal the anti-primary dysmenorrhea mechanism of Akebiae Fructus.
Journal of ethnopharmacology.
2021 Apr; 270(?):113763. doi:
10.1016/j.jep.2020.113763
. [PMID: 33383110] - Hyunok Choi, Miroslav Dostal, Anna Pastorkova, Pavel Rossner, Radim J Sram. Airborne Benzo[a]Pyrene may contribute to divergent Pheno-Endotypes in children.
Environmental health : a global access science source.
2021 04; 20(1):40. doi:
10.1186/s12940-021-00711-4
. [PMID: 33836759] - Abelardo Correa-Calderón, Juan A Hernández-Rivera, Leonel Avendaño-Reyes, Raúl Diaz-Molina, Ulises Macias-Cruz. Progesterone supplementation in Holstein heifers subjected to cooling and timed AI during summer: physiological and reproductive variables and thyroid hormone concentrations.
Tropical animal health and production.
2021 Apr; 53(2):249. doi:
10.1007/s11250-021-02688-1
. [PMID: 33822302] - L A Ciernia, G A Perry, M F Smith, J J Rich, E J Northrop, S D Perkins, J A Green, A L Zezeski, T W Geary. Effect of estradiol preceding and progesterone subsequent to ovulation on proportion of postpartum beef cows pregnant.
Animal reproduction science.
2021 Apr; 227(?):106723. doi:
10.1016/j.anireprosci.2021.106723
. [PMID: 33621845] - Guang Yang, Christopher Qian, Chao Zhang, Yong Bao, Meng-Yue Liu, Fei Jiang, Wei Li, Yong Liu, Ya Ke, Zhong-Ming Qian. Hepcidin attenuates the iron-mediated secondary neuronal injury after intracerebral hemorrhage in rats.
Translational research : the journal of laboratory and clinical medicine.
2021 03; 229(?):53-68. doi:
10.1016/j.trsl.2020.09.002
. [PMID: 32932001] - Farhad Gholami, Jose Antonio, Cassandra Evans, Khadijeh Cheraghi, Leila Rahmani, Fatemeh Amirnezhad. Tomato powder is more effective than lycopene to alleviate exercise-induced lipid peroxidation in well-trained male athletes: randomized, double-blinded cross-over study.
Journal of the International Society of Sports Nutrition.
2021 Feb; 18(1):17. doi:
10.1186/s12970-021-00415-7
. [PMID: 33639967] - Andrew C Stokes, Wubin Xie, Anna E Wilson, Hanqi Yang, Olusola A Orimoloye, Alyssa F Harlow, Jessica L Fetterman, Andrew P DeFilippis, Emelia J Benjamin, Rose Marie Robertson, Aruni Bhatnagar, Naomi M Hamburg, Michael J Blaha. Association of Cigarette and Electronic Cigarette Use Patterns With Levels of Inflammatory and Oxidative Stress Biomarkers Among US Adults: Population Assessment of Tobacco and Health Study.
Circulation.
2021 02; 143(8):869-871. doi:
10.1161/circulationaha.120.051551
. [PMID: 33390037] - Sandra Amalie Dybos, Åge Winje Brustad, Toril Rolfseng, Solveig Kvam, Oddrun Elise Olsen, Jostein Halgunset, Haakon Skogseth. RNA-Integrity and 8-Isoprostane Levels Are Stable in Prostate Tissue Samples Upon Long-Term Storage at -80°C.
Biopreservation and biobanking.
2021 Feb; 19(1):2-10. doi:
10.1089/bio.2019.0136
. [PMID: 32865438] - Naser Kakavandi, Shima Rezaee, Seyed Reza Hosseini-Fard, Ghasem Ghasempour, Mohsen Khosravi, Mohammad Shabani, Mohammad Najafi. Prostaglandin E2 (PGE2) synthesis pathway is involved in coronary artery stenosis and restenosis.
Gene.
2021 Jan; 765(?):145131. doi:
10.1016/j.gene.2020.145131
. [PMID: 32898608] - J N Ketchum, R C Bonacker, C M Andersen, E G Smith, K S Stoecklein, C M Spinka, J M Thomas. Evaluation of later timepoints for split-time artificial insemination when using sex-sorted semen among beef heifers following the 14-d CIDR®-PG protocol.
Animal reproduction science.
2021 Jan; 224(?):106649. doi:
10.1016/j.anireprosci.2020.106649
. [PMID: 33302141] - Yusuke Miyazaki, Tatsuro Nakamura, Shinya Takenouchi, Akane Hayashi, Keisuke Omori, Takahisa Murata. Urinary 8-iso PGF2α and 2,3-dinor-8-iso PGF2α can be indexes of colitis-associated colorectal cancer in mice.
PloS one.
2021; 16(1):e0245292. doi:
10.1371/journal.pone.0245292
. [PMID: 33503019] - Eilidh M Wood, Kylie K Hornaday, Donna M Slater. Prostaglandins in biofluids in pregnancy and labour: A systematic review.
PloS one.
2021; 16(11):e0260115. doi:
10.1371/journal.pone.0260115
. [PMID: 34793529] - Tomas Almeida-Becerril, Maricela Rodríguez-Cruz, Juan Raúl Sánchez-González, Marco Antonio Villaldama-Soriano, Salvador Atilano-Miguel, Judith Villa-Morales, Alan Cárdenas-Conejo, René Cárdenas-Vázquez. Circulating markers of oxidative stress are associated with a muscle injury in patients with muscular dystrophy Duchenne.
Brain & development.
2021 Jan; 43(1):111-120. doi:
10.1016/j.braindev.2020.06.013
. [PMID: 32654955] - Asriani Tahir, Andi Wardihan Sinrang, Elizabet Catherine Jusuf, Saidah Syamsuddin, Stang, Aryadi Arsyad. The influence of macronutrient intake, stress and prostaglandin levels (pgf2α) of urine with the incidence of dysmenorrhea in adolescents.
Gaceta sanitaria.
2021 ; 35 Suppl 2(?):S298-S301. doi:
10.1016/j.gaceta.2021.10.039
. [PMID: 34929837] - Stephanie Hadley, Debora Cañizo Vazquez, Miriam Lopez Abad, Stefano Congiu, Dmytro Lushchencov, Marta Camprubí Camprubí, Joan Sanchez-de-Toledo. Oxidative stress response in children undergoing cardiac surgery: Utility of the clearance of isoprostanes.
PloS one.
2021; 16(7):e0250124. doi:
10.1371/journal.pone.0250124
. [PMID: 34228731] - Yuehuan Wu, Cong Fu, Bing Li, Chang Liu, Zhi He, Xing-Er Li, Ailing Wang, Genshan Ma, Yuyu Yao. Bradykinin Protects Human Endothelial Progenitor Cells from High-Glucose-Induced Senescence through B2 Receptor-Mediated Activation of the Akt/eNOS Signalling Pathway.
Journal of diabetes research.
2021; 2021(?):6626627. doi:
10.1155/2021/6626627
. [PMID: 34557552] - Demet Yalçın Kehribar, Mustafa Cihangiroğlu, Emine Sehmen, Bahattin Avcı, Mustafa Çapraz, Maruf Boran, Caner Günaydin, Metin Özgen. The assessment of the serum levels of TWEAK and prostaglandin F2α in COVID – 19.
Turkish journal of medical sciences.
2020 12; 50(8):1786-1791. doi:
10.3906/sag-2006-96
. [PMID: 32979900] - Lindomar Sousa Brito, Luiz Di Paolo Maggitti Junior, Priscila Assis Ferraz, Isabela Costa Vasconcelos, João Vitor Gomes da Silva Carvalho, Marcus Vinicius Galvão Loiola, Rodrigo Freitas Bittencourt, Mónica Madrigal-Valverde, Ana Karina da Silva Cavalcante, Larissa Pires Barbosa, Lilian Porto da Oliveira, Morgana Cardoso Brasileiro Borges Bastos, Osvaldo Santos de Brito, Antônio de Lisboa Ribeiro Filho. Effects of equine chorionic gonadotropin administered via the Baihui acupoint on follicular ovarian dynamics and the luteal function of cattle during an ovulation synchronization treatment regimen for fixed-time artificial insemination.
Animal reproduction science.
2020 Dec; 223(?):106631. doi:
10.1016/j.anireprosci.2020.106631
. [PMID: 33137692] - E Trevisol, H D Mogollón García, C L Ackermann, W Lacerda, R M L Pires, R Laufer-Amorin, R F Carvalho, F F Franchi, A C S Castilho, G Rizzoto, J P Kastelic, J C P Ferreira. Partial luteolysis during early diestrus in cattle downregulates VEGFA expression and reduces large luteal cell and corpus luteum sizes and plasma progesterone concentration.
Theriogenology.
2020 Dec; 158(?):188-195. doi:
10.1016/j.theriogenology.2020.09.015
. [PMID: 32961354] - P J Pinedo, L S Caixeta, E A Barrell, J Velez, D Manriquez, J Herman, T Holt. A randomized controlled clinical trial on the effect of acupuncture therapy in dairy cows affected by pyometra.
Research in veterinary science.
2020 Dec; 133(?):12-16. doi:
10.1016/j.rvsc.2020.08.011
. [PMID: 32916513] - R C Bonacker, K R Gray, C A Breiner, J M Anderson, D J Patterson, C M Spinka, J M Thomas. Comparison of the 7 & 7 Synch protocol and the 7-day CO-Synch + CIDR protocol among recipient beef cows in an embryo transfer program.
Theriogenology.
2020 Dec; 158(?):490-496. doi:
10.1016/j.theriogenology.2020.09.033
. [PMID: 33080452] - Qiyou Tan, Jixuan Ma, Min Zhou, Dongming Wang, Bin Wang, Xiuquan Nie, Ge Mu, Xiaomin Zhang, Weihong Chen. Heavy metals exposure, lipid peroxidation and heart rate variability alteration: Association and mediation analyses in urban adults.
Ecotoxicology and environmental safety.
2020 Dec; 205(?):111149. doi:
10.1016/j.ecoenv.2020.111149
. [PMID: 32829210] - Mohammed Ahmed Elmetwally, Gehad E Elshopakey, Ashraf M El-Desouky, Wael B Eldomany, Fuller W Bazer. Serum biochemical profile in buffalo endometritis and impact of treatment with PGF2α and intrauterine gentamicin infusion on postpartum reproductive performance.
Tropical animal health and production.
2020 Nov; 52(6):3697-3706. doi:
10.1007/s11250-020-02406-3
. [PMID: 32986188] - Toko Maehara, Fumiyoshi Higashitarumi, Risa Kondo, Ko Fujimori. Prostaglandin F2α receptor antagonist attenuates LPS-induced systemic inflammatory response in mice.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2020 11; 34(11):15197-15207. doi:
10.1096/fj.202001481r
. [PMID: 32985737] - R C Bonacker, K S Stoecklein, J W C Locke, J N Ketchum, E R Knickmeyer, C M Spinka, S E Poock, J M Thomas. Treatment with prostaglandin F2α and an intravaginal progesterone insert promotes follicular maturity in advance of gonadotropin-releasing hormone among postpartum beef cows.
Theriogenology.
2020 Nov; 157(?):350-359. doi:
10.1016/j.theriogenology.2020.08.018
. [PMID: 32858443] - Fan Liang, Xiaona Huo, Wei Wang, Yan Li, Jun Zhang, Yan Feng, Yan Wang. Association of bisphenol A or bisphenol S exposure with oxidative stress and immune disturbance among unexplained recurrent spontaneous abortion women.
Chemosphere.
2020 Oct; 257(?):127035. doi:
10.1016/j.chemosphere.2020.127035
. [PMID: 32702804] - Yosuke Ida, Fumihito Hikage, Araya Umetsu, Haruka Ida, Hiroshi Ohguro. Omidenepag, a non-prostanoid EP2 receptor agonist, induces enlargement of the 3D organoid of 3T3-L1 cells.
Scientific reports.
2020 09; 10(1):16018. doi:
10.1038/s41598-020-72538-x
. [PMID: 32994409] - Hany Abdalla, Amanda M de Mestre, Shebl E Salem. Efficacy of ovulation synchronization with timed artificial insemination in treatment of follicular cysts in dairy cows.
Theriogenology.
2020 Sep; 154(?):171-180. doi:
10.1016/j.theriogenology.2020.05.029
. [PMID: 32622197] - Donghan Xu, Lizhen Wang, Lu Deng, Yehao Luo, Yan Wei, Peiyu Yan. Intradermal acupuncture for primary dysmenorrhea: A protocol of systematic review and meta-analysis of randomized clinical trials.
Medicine.
2020 Sep; 99(37):e22188. doi:
10.1097/md.0000000000022188
. [PMID: 32925792] - Li-Jun Wang, Yu Xiao, Jing Fang, Jun-Lin Wang, Hao Zhang, Xin-Xin Meng, Rui-Lan Gong, Ruimin Gu. PGF2α stimulates the 10-pS Cl- channel and thiazide-sensitive Na+-Cl- cotransporter in the distal convoluted tubule.
American journal of physiology. Renal physiology.
2020 09; 319(3):F414-F422. doi:
10.1152/ajprenal.00287.2020
. [PMID: 32715760] - Orhan Lepara, Asija Zaciragic, Almir Fajkic, Alma Dzubur Kulenovic, Amela Dervisevic, Amina Valjevac, Emina Kiseljakovic, Saida Ibragic. Peripheral 8-iso-PGF2α as a Biomarker in Bosnian Patients with Alzheimer's Disease and Vascular Dementia.
Psychiatria Danubina.
2020 Sep; 32(3-4):389-394. doi:
10.24869/psyd.2020.389
. [PMID: 33370737] - Min Zhou, Lili Xiao, Shijie Yang, Bin Wang, Tingming Shi, Aijun Tan, Xing Wang, Ge Mu, Weihong Chen. Cross-sectional and longitudinal associations between urinary zinc and lung function among urban adults in China.
Thorax.
2020 09; 75(9):771-779. doi:
10.1136/thoraxjnl-2019-213909
. [PMID: 32631935] - Juliana Dantas Rodrigues Santos, Rodolfo Ungerfeld, Mário Felipe Alvarez Balaro, Joanna Maria Gonçalves Souza-Fabjan, Isabel Oliveira Cosentino, Viviane Lopes Brair, Clara Vieira de Souza, Pedro Henrique Nicolau Pinto, Ana Luiza Cunha Bade, Jeferson Ferreira da Fonseca, Felipe Zandonadi Brandão. Transcervical vs. laparotomy embryo collection in ewes: The effectiveness and welfare implications of each technique.
Theriogenology.
2020 Sep; 153(?):112-121. doi:
10.1016/j.theriogenology.2020.05.004
. [PMID: 32450469] - Yu-Lien Tsai, Chih-Wei Liu, Chien-Fu Hsu, Chia-Chang Huang, Ming-Wei Lin, Shiang-Fen Huang, Tzu-Hao Li, Kuei-Chuan Lee, Yun-Cheng Hsieh, Ying-Ying Yang, Tzung-Yan Lee, Hsuan-Miao Liu, Yi-Hsiang Huang, Ming-Chih Hou, Han-Chieh Lin. Obeticholic acid ameliorates hepatorenal syndrome in ascitic cirrhotic rats by down-regulating the renal 8-iso-PGF2α-activated COX-TXA2 pathway.
Clinical science (London, England : 1979).
2020 08; 134(15):2055-2073. doi:
10.1042/cs20200452
. [PMID: 32725149] - Chan-Hee Lee, Hyun-Woo Shin, Dong-Gu Shin. Impact of Oxidative Stress on Long-Term Heart Rate Variability: Linear Versus Non-Linear Heart Rate Dynamics.
Heart, lung & circulation.
2020 Aug; 29(8):1164-1173. doi:
10.1016/j.hlc.2019.06.726
. [PMID: 31495726] - Serpil Ersan, Burhanettin Cigdem, Deniz Bakir, H Okan Dogan. Determination of levels of oxidative stress and nitrosative stress in patients with epilepsy.
Epilepsy research.
2020 08; 164(?):106352. doi:
10.1016/j.eplepsyres.2020.106352
. [PMID: 32446164] - Philipe Moriel, Elizabeth Palmer, Marcelo Vedovatto, Matheus B Piccolo, Juliana Ranches, Hiran Marcelo Silva, Vitor R G Mercadante, G Cliff Lamb, Joao M B Vendramini. Supplementation frequency and amount modulate postweaning growth and reproductive performance of Bos indicus-influenced beef heifers.
Journal of animal science.
2020 Aug; 98(8):. doi:
10.1093/jas/skaa236
. [PMID: 32697832] - M Graille, P Wild, J-J Sauvain, M Hemmendinger, I Guseva Canu, N B Hopf. Urinary 8-isoprostane as a biomarker for oxidative stress. A systematic review and meta-analysis.
Toxicology letters.
2020 Aug; 328(?):19-27. doi:
10.1016/j.toxlet.2020.04.006
. [PMID: 32320775] - F Fanti, F Vincenti, C Montesano, M Serafini, D Compagnone, M Sergi. dLLME-μSPE extraction coupled to HPLC-ESI-MS/MS for the determination of F2α-IsoPs in human urine.
Journal of pharmaceutical and biomedical analysis.
2020 Jul; 186(?):113302. doi:
10.1016/j.jpba.2020.113302
. [PMID: 32353681] - Limin Cao, Yun Zhou, Aijun Tan, Tingming Shi, Chunmei Zhu, Lili Xiao, Zhuang Zhang, Shijie Yang, Ge Mu, Xing Wang, Dongming Wang, Jixuan Ma, Weihong Chen. Oxidative damage mediates the association between polycyclic aromatic hydrocarbon exposure and lung function.
Environmental health : a global access science source.
2020 07; 19(1):75. doi:
10.1186/s12940-020-00621-x
. [PMID: 32616062] - Virginia L Bass, Joleen M Soukup, Andrew J Ghio, Michael C Madden. Oleic acid and derivatives affect human endothelial cell mitochondrial function and vasoactive mediator production.
Lipids in health and disease.
2020 Jun; 19(1):128. doi:
10.1186/s12944-020-01296-6
. [PMID: 32505182] - Yukihisa Takada, Osamu Yamanaka, Yuka Okada, Takayoshi Sumioka, Peter S Reinach, Shizuya Saika. Effects of a prostaglandin F2alpha derivative glaucoma drug on EGF expression and E-cadherin expression in a corneal epithelial cell line.
Cutaneous and ocular toxicology.
2020 Jun; 39(2):75-82. doi:
10.1080/15569527.2020.1722152
. [PMID: 31986917] - Javier Diaz-Castro, Carlota Muriel-Neyra, Rafael Martin-Masot, Jorge Moreno-Fernandez, José Maldonado, Teresa Nestares. Oxidative stress, DNA stability and evoked inflammatory signaling in young celiac patients consuming a gluten-free diet.
European journal of nutrition.
2020 Jun; 59(4):1577-1584. doi:
10.1007/s00394-019-02013-5
. [PMID: 31144026] - Gong Su, Ming-Xi Gao, Gen-Ling Shi, Xi-Xi Dai, Wei-Feng Yao, Tao Zhang, Shao-Wei Zhuang. Effect of 1,5-anhydroglucitol levels on culprit plaque rupture in diabetic patients with acute coronary syndrome.
Cardiovascular diabetology.
2020 05; 19(1):71. doi:
10.1186/s12933-020-01045-0
. [PMID: 32473648] - Yara Shoman, Pascal Wild, Maud Hemmendinger, Melanie Graille, Jean-Jacques Sauvain, Nancy B Hopf, Irina Guseva Canu. Reference Ranges of 8-Isoprostane Concentrations in Exhaled Breath Condensate (EBC): A Systematic Review and Meta-Analysis.
International journal of molecular sciences.
2020 May; 21(11):. doi:
10.3390/ijms21113822
. [PMID: 32481492] - Inger-Lise Steffensen, Hubert Dirven, Stephan Couderq, Arthur David, Shereen Cynthia D'Cruz, Mariana F Fernández, Vicente Mustieles, Andrea Rodríguez-Carrillo, Tim Hofer. Bisphenols and Oxidative Stress Biomarkers-Associations Found in Human Studies, Evaluation of Methods Used, and Strengths and Weaknesses of the Biomarkers.
International journal of environmental research and public health.
2020 05; 17(10):. doi:
10.3390/ijerph17103609
. [PMID: 32455625] - Yosuke Ida, Fumihito Hikage, Kaku Itoh, Haruka Ida, Hiroshi Ohguro. Prostaglandin F2α agonist-induced suppression of 3T3-L1 cell adipogenesis affects spatial formation of extra-cellular matrix.
Scientific reports.
2020 05; 10(1):7958. doi:
10.1038/s41598-020-64674-1
. [PMID: 32409724] - J M Rheinberger, D D Colson, D S Beggs, P D Mansell, M A Stevenson, R J Rheinberger, M F Pyman. Effect of a second treatment of prostaglandin F2α during the Ovsynch program on fixed-time artificial insemination conception rates and luteolysis in split-calving, pasture-fed dairy cows.
Australian veterinary journal.
2020 May; 98(5):190-196. doi:
10.1111/avj.12918
. [PMID: 32189330] - Luciana Nicolau Aranha, Mariana Gomes Silva, Sofia Kimi Uehara, Ronir Raggio Luiz, José Firmino Nogueira Neto, Glorimar Rosa, Gláucia Maria Moraes de Oliveira. Effects of a hypoenergetic diet associated with açaí (Euterpe oleracea Mart.) pulp consumption on antioxidant status, oxidative stress and inflammatory biomarkers in overweight, dyslipidemic individuals.
Clinical nutrition (Edinburgh, Scotland).
2020 05; 39(5):1464-1469. doi:
10.1016/j.clnu.2019.06.008
. [PMID: 31307842] - Kira Trares, Xīn Gào, Laura Perna, Dan Rujescu, Hannah Stocker, Tobias Möllers, Konrad Beyreuther, Hermann Brenner, Ben Schöttker. Associations of urinary 8-iso-prostaglandin F2α levels with all-cause dementia, Alzheimer's disease, and vascular dementia incidence: results from a prospective cohort study.
Alzheimer's & dementia : the journal of the Alzheimer's Association.
2020 05; 16(5):804-813. doi:
10.1002/alz.12081
. [PMID: 32281305] - Thaiane Robeldo, Edione Fatima Canzi, Priscila Maria de Andrade, Jhonne Pedro Pedotte Santana, Felipe Roberti Teixeira, Valentine Spagnol, Beatriz Helena Lameiro Noronha Sales Maia, Maristela Carbol, Erika Gonçalves Caneira, Maria Fátima das Graças Fernandes Da Silva, Ricardo Carneiro Borra. Effect of Tahiti lime (Citrus latifolia) juice on the Production of the PGF2α/PGE2 and Pro-Inflammatory Cytokines involved in Menstruation.
Scientific reports.
2020 04; 10(1):7063. doi:
10.1038/s41598-020-63477-8
. [PMID: 32341436] - Rebecca Lapp, Volker Röttgen, Torsten Viergutz, Joachim M Weitzel, Andreas Vernunft. Induction of cystic ovarian follicles (COFs) in cattle by using an intrafollicular injection of indomethacin.
The Journal of reproduction and development.
2020 Apr; 66(2):181-188. doi:
10.1262/jrd.2019-107
. [PMID: 31983719] - Rahana Abd Rahman, Padma Murthi, Harmeet Singh, Seshini Gurungsinghe, Bryan Leaw, Joanne C Mockler, Rebecca Lim, Euan M Wallace. Hydroxychloroquine Mitigates the Production of 8-Isoprostane and Improves Vascular Dysfunction: Implications for Treating Preeclampsia.
International journal of molecular sciences.
2020 Apr; 21(7):. doi:
10.3390/ijms21072504
. [PMID: 32260307] - Richard J Elsworthy, Sarah Aldred. The effect of age and obesity on platelet amyloid precursor protein processing and plasma markers of oxidative stress and inflammation.
Experimental gerontology.
2020 04; 132(?):110838. doi:
10.1016/j.exger.2020.110838
. [PMID: 31981682]