NCBI Taxonomy: 1131320

Euglenaceae (ncbi_taxid: 1131320)

found 100 associated metabolites at family taxonomy rank level.

Ancestor: Euglenales

Child Taxonomies: Euglena, Khawkinea, Euglenaria, Cryptoglena, Monomorphina, Strombomonas, Euglenaformis, Trachelomonas

beta-Carotene

1,3,3-trimethyl-2-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4381776)


Beta-carotene is a cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. It has a role as a biological pigment, a provitamin A, a plant metabolite, a human metabolite, a mouse metabolite, a cofactor, a ferroptosis inhibitor and an antioxidant. It is a cyclic carotene and a carotenoid beta-end derivative. Beta-carotene, with the molecular formula C40H56, belongs to the group of carotenoids consisting of isoprene units. The presence of long chains of conjugated double bonds donates beta-carotene with specific colors. It is the most abundant form of carotenoid and it is a precursor of the vitamin A. Beta-carotene is composed of two retinyl groups. It is an antioxidant that can be found in yellow, orange and green leafy vegetables and fruits. Under the FDA, beta-carotene is considered as a generally recognized as safe substance (GRAS). Beta-Carotene is a natural product found in Epicoccum nigrum, Lonicera japonica, and other organisms with data available. Beta-Carotene is a naturally-occurring retinol (vitamin A) precursor obtained from certain fruits and vegetables with potential antineoplastic and chemopreventive activities. As an anti-oxidant, beta carotene inhibits free-radical damage to DNA. This agent also induces cell differentiation and apoptosis of some tumor cell types, particularly in early stages of tumorigenesis, and enhances immune system activity by stimulating the release of natural killer cells, lymphocytes, and monocytes. (NCI04) beta-Carotene is a metabolite found in or produced by Saccharomyces cerevisiae. A carotenoid that is a precursor of VITAMIN A. Beta carotene is administered to reduce the severity of photosensitivity reactions in patients with erythropoietic protoporphyria (PORPHYRIA, ERYTHROPOIETIC). See also: Lycopene (part of); Broccoli (part of); Lycium barbarum fruit (part of). Beta-Carotene belongs to the class of organic compounds known as carotenes. These are a type of polyunsaturated hydrocarbon molecules containing eight consecutive isoprene units. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Beta-carotene is therefore considered to be an isoprenoid lipid molecule. Beta-carotene is a strongly coloured red-orange pigment abundant in fungi, plants, and fruits. It is synthesized biochemically from eight isoprene units and therefore has 40 carbons. Among the carotenes, beta-carotene is distinguished by having beta-rings at both ends of the molecule. Beta-Carotene is biosynthesized from geranylgeranyl pyrophosphate. It is the most common form of carotene in plants. In nature, Beta-carotene is a precursor (inactive form) to vitamin A. Vitamin A is produed via the action of beta-carotene 15,15-monooxygenase on carotenes. In mammals, carotenoid absorption is restricted to the duodenum of the small intestine and dependent on a class B scavenger receptor (SR-B1) membrane protein, which is also responsible for the absorption of vitamin E. One molecule of beta-carotene can be cleaved by the intestinal enzyme Beta-Beta-carotene 15,15-monooxygenase into two molecules of vitamin A. Beta-Carotene contributes to the orange color of many different fruits and vegetables. Vietnamese gac and crude palm oil are particularly rich sources, as are yellow and orange fruits, such as cantaloupe, mangoes, pumpkin, and papayas, and orange root vegetables such as carrots and sweet potatoes. Excess beta-carotene is predominantly stored in the fat tissues of the body. The most common side effect of excessive beta-carotene consumption is carotenodermia, a physically harmless condition that presents as a conspicuous orange skin tint arising from deposition of the carotenoid in the outermost layer of the epidermis. Yellow food colour, dietary supplement, nutrient, Vitamin A precursor. Nutriceutical with antioxidation props. beta-Carotene is found in many foods, some of which are summer savory, gram bean, sunburst squash (pattypan squash), and other bread product. A cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H56O2 (568.4280076)


Zeaxanthin is a carotenoid xanthophyll and is one of the most common carotenoid found in nature. It is the pigment that gives corn, saffron, and many other plants their characteristic color. Zeaxanthin breaks down to form picrocrocin and safranal, which are responsible for the taste and aroma of saffron Carotenoids are among the most common pigments in nature and are natural lipid soluble antioxidants. Zeaxanthin is one of the two carotenoids (the other is lutein) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli and eggs, are associated with a significant reduction in the risk for cataract (up to 20\\%) and for age-related macular degeneration (up to 40\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations. (PMID: 11023002). Zeaxanthin has been found to be a microbial metabolite, it can be produced by Algibacter, Aquibacter, Escherichia, Flavobacterium, Formosa, Gramella, Hyunsoonleella, Kordia, Mesoflavibacter, Muricauda, Nubsella, Paracoccus, Siansivirga, Sphingomonas, Zeaxanthinibacter and yeast (https://reader.elsevier.com/reader/sd/pii/S0924224417302571?token=DE6BC6CC7DCDEA6150497AA3E375097A00F8E0C12AE03A8E420D85D1AC8855E62103143B5AE0B57E9C5828671F226801). It is a marker for the activity of Bacillus subtilis and/or Pseudomonas aeruginosa in the intestine. Higher levels are associated with higher levels of Bacillus or Pseudomonas. (PMID: 17555270; PMID: 12147474) Zeaxanthin is a carotenol. It has a role as a bacterial metabolite, a cofactor and an antioxidant. It derives from a hydride of a beta-carotene. Zeaxanthin is a most common carotenoid alcohols found in nature that is involved in the xanthophyll cycle. As a coexistent isomer of lutein, zeaxanthin is synthesized in plants and some micro-organisms. It gives the distinct yellow color to many vegetables and other plants including paprika, corn, saffron and wolfberries. Zeaxanthin is one of the two primary xanthophyll carotenoids contained within the retina of the eye and plays a predominant component in the central macula. It is available as a dietary supplement for eye health benefits and potential prevention of age-related macular degeneration. Zeaxanthin is also added as a food dye. Zeaxanthin is a natural product found in Bangia fuscopurpurea, Erythrobacter longus, and other organisms with data available. Carotenoids found in fruits and vegetables. Zeaxanthin accumulates in the MACULA LUTEA. See also: Saffron (part of); Corn (part of); Lycium barbarum fruit (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Jasmonic acid

Cyclopentaneacetic acid, 3-oxo-2-(2-pentenyl)-, [1R-[1alpha,2beta(Z)]]-

C12H18O3 (210.1255878)


Jasmonic acid is an oxo monocarboxylic acid that is (3-oxocyclopentyl)acetic acid substituted by a (2Z)-pent-2-en-1-yl group at position 2 of the cyclopentane ring. It has a role as a plant metabolite and a member of jasmonates. It is a conjugate acid of a jasmonate(1-). It is an enantiomer of a (+)-jasmonic acid. Jasmonic acid is a natural product found in Ficus superba, Cleyera japonica, and other organisms with data available. Jasmonic acid is found in apple. Esters are present in Jasminum grandiflorum (royal jasmine) and are responsible for its odour. Jasmonic acid is a member of the jasmonate class of plant hormones. It is biosynthesized from linolenic acid by the octadecanoid pathway An oxo monocarboxylic acid that is (3-oxocyclopentyl)acetic acid substituted by a (2Z)-pent-2-en-1-yl group at position 2 of the cyclopentane ring. Esters are present in Jasminum grandiflorum (royal jasmine) and are responsible for its odour [DFC] D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

Neoxanthin

(1R,3S)-6-[(1M,3E,5E,7E,9E,11E,13E,15Z,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

C40H56O4 (600.4178376)


Neoxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Neoxanthin is an intermediate in the synthesis of abscisic acid from violaxanthin. Neoxanthin has been detected, but not quantified in, several different foods, such as apples, paprikas, Valencia oranges, kiwis, globe artichokes, sparkleberries, hard wheat, and cinnamon. This could make neoxanthin a potential biomarker for the consumption of these foods. Neoxanthin has been shown to exhibit apoptotic and anti-proliferative functions (PMID: 15333710, 15333710). Neoxanthin is a carotenoid and xanthophyll. In plants, it is an intermediate in the biosynthesis of the plant hormone abscisic acid. It is produced from violaxanthin by the action of neoxanthin synthase. It is a major xanthophyll found in green leafy vegetables such as spinach. [Wikipedia] D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Violaxanthin

(1R,3S,6S)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178376)


Violaxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Thus, violaxanthin is considered to be an isoprenoid lipid molecule. Violaxanthin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Violaxanthin is an orange-coloured pigment that is found in brown algae and various plants (e.g. pansies). It is biosynthesized from the epoxidation of zeaxanthin. Violaxanthin is a food additive that is only approved for use in Australia and New Zealand (INS: 161e) (PMID: 29890662). 3 (violaxanthin, zeaxanthin and antheraxanthin) participate in series of photo-induced interconversions known as violaxanthin cycle; Xanthophyll; a carotene epoxide that is precursor to capsanthin; cleavage of 9-cis-epoxycarotenoids (violaxanthin) to xanthoxin, catalyzed by 9-cis-epoxycarotenoid dioxygenase, is the key regulatory step of abscisic acid biosynthesis; one of 3 xanthophylls involved in evolution of plastids of green plants (oxygen evolution). (all-E)-Violaxanthin is found in many foods, some of which are orange bell pepper, passion fruit, pepper (c. annuum), and italian sweet red pepper. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Canthaxanthin

2,4,4-trimethyl-3-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-2-en-1-one

C40H52O2 (564.3967092)


Canthaxanthin, also known as Cantaxanthin, Cantaxanthine, or Canthaxanthine is a keto-carotenoid, a pigment widely distributed in nature. Carotenoids belong to a larger class of phytochemicals known as terpenoids. Canthaxanin is also classified as a xanthophyll. Xanthophylls are yellow pigments and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. Both are carotenoids. Xanthophylls and carotenes are similar in structure, but xanthophylls contain oxygen atoms while carotenes are purely hydrocarbons, which do not contain oxygen. Their content of oxygen causes xanthophylls to be more polar (in molecular structure) than carotenes and causes their separation from carotenes in many types of chromatography. (Carotenes are usually more orange in color than xanthophylls. Canthaxanthin is naturally found in bacteria, algae and some fungi. Canthaxanthin is associated with E number E161g and is approved for use as a food coloring agent in different countries, including the United States and the EU. Canthaxanthin is used as poultry feed additive to yield red color in skin and yolks. The European Union permits the use of canthaxanthin in feedstuff at a maximum content of 25 mg/kg of final feedstuff while the United States allows the use of this pigment in broiler chicken and salmonid fish feeds. Canthoxanthin was first isolated in edible chanterelle mushroom (Cantharellus cinnabarinus), from which it derived its name. It has also been found in green algae, bacteria, archea (a halophilic archaeon called Haloferax alexandrines), fungi and bioaccumulates in tissues and egg yolk from wild birds and at low levels in crustaceans and fish such as carp, golden grey mullet, and seabream. Canthaxanthin is not found in wild Atlantic Salmon, but is a minor carotenoid in Pacific Salmon. Canthaxanthin is used in farm-raised trout to give a red/orange color to their flesh similar to wild trout. Canthaxanthin has been used as a food additive for egg yolk, in cosmetics and as a pigmenting agent for human skin applications. It has also been used as a feed additive in fish and crustacean farms. Canthaxanthin is a potent lipid-soluble antioxidant (PMID: 2505240). Canthaxanthin increases resistance to lipid peroxidation primarily by enhancing membrane alpha-tocopherol levels and secondarily by providing weak direct antioxidant activity. Canthaxanthin biosynthesis in bacteria and algae proceeds from beta-carotene via the action of an enzyme known as a beta-carotene ketolase, that is able to add a carbonyl group to carbon 4 and 4 of the beta carotene molecule. Food colouring. Constituent of the edible mushroom (Cantharellus cinnabarinus), sea trout, salmon and brine shrimp. It is used in broiler chicken feed to enhance the yellow colour of chicken skin D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

echinenone

Echinenone/ (Myxoxanthin)

C40H54O (550.4174434)


A carotenone that is beta-carotene in which the 4 position has undergone formal oxidation to afford the corresponding ketone. Isolated as orange-red crystals, it is widely distributed in marine invertebrates. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

Diadinoxanthin

(3S,3R,5R,6S)-7,8-Didehydro-5,6-epoxy-5,6-dihydro-beta,beta-carotene-3,3-diol

C40H54O3 (582.4072734)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

(-)-alpha-Tocopherol

2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-3,4-dihydro-2H-1-benzopyran-6-ol

C29H50O2 (430.38106)


α-tocopherol is a member of the class of compounds known as tocopherols. Tocopherols are vitamin E derivatives containing a saturated trimethyltridecyl chain attached to the carbon C6 atom of a benzopyran ring system. The differ from tocotrienols that contain an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain. α-tocopherol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). α-tocopherol can be found in a number of food items such as lime, rowanberry, horseradish tree, and pineappple sage, which makes α-tocopherol a potential biomarker for the consumption of these food products. α-tocopherol is a form of vitamin E that is preferentially absorbed and accumulated in humans. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to α-tocopherol .

   

Phoenicoxanthin

6-hydroxy-2,4,4-trimethyl-3-[3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-2-en-1-one

C40H52O3 (580.3916242)


   

Siphonaxanthin

1-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-18-(4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl)-3-(hydroxymethyl)-7,12,16-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O4 (600.4178376)


   

siphonaxanthin

(3R,3R,6R)-7,8-Dihydro-8-oxo-beta,epsilon-carotene-3,3,19-triol

C40H56O4 (600.4178376)


   

Neoxanthin

(1R,3S)-6-[(3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenylidene]-1,5,5-trimethyl-cyclohexane-1,3-diol

C40H56O4 (600.4178376)


9-cis-neoxanthin is a neoxanthin in which all of the double bonds have trans geometry except for that at the 9 position, which is cis. It is a 9-cis-epoxycarotenoid and a neoxanthin. Neoxanthin is a natural product found in Hibiscus syriacus, Cladonia rangiferina, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Jasmonic acid

3-(Carboxymethyl)-2-(2-pentenyl)cyclopentanone

C12H18O3 (210.1255878)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.911 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.912 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910

   

β-Carotene

1-(1,2,3,4,5-Pentahydroxypent-1-yl)-1,2,3,4-tetrahydro-beta-carboline-3-carboxylate

C40H56 (536.4381776)


The novel carbohydrate-derived b-carboline, 1-pentahydroxypentyl-1,2,3,4-tetrahydro-b-carboline-3-carboxylic acid, was identified in fruit- and vegetable-derived products such as juices, jams, and tomato sauces. This compound occurred as two diastereoisomers, a cis isomer (the major compound) and a trans isomer, ranging from undetectable amounts to 6.5 ug/g. Grape, tomato, pineapple, and tropical juices exhibited the highest amount of this alkaloid (up to 3.8 mg/L), whereas apple, banana, and peach juices showed very low or nondetectable levels. This tetrahydro-b-carboline was also found in jams (up to 0.45 ug/g), and a relative high amount was present in tomato concentrate (6.5 ug/g) and sauce (up to 1.8 ug/g). This b-carboline occurred in fruit-derived products as a glycoconjugate from a chemical condensation of d-glucose and l-tryptophan that is highly favored at low pH values and high temperature. Production, processing treatments, and storage of fruit juices and jams can then release this b-carboline. Fruit-derived products and other foods containing this compound might be an exogenous dietary source of this glucose-derived tetrahydro-b-carboline.(PMID: 12137498) [HMDB] Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

Violaxanthin

(1S,4S,6R)-1-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-4-ol

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Cucurbitachrome 1 is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Cucurbitachrome 1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cucurbitachrome 1 can be found in a number of food items such as italian sweet red pepper, herbs and spices, fruits, and red bell pepper, which makes cucurbitachrome 1 a potential biomarker for the consumption of these food products. (all-e)-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone (all-e)-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (all-e)-violaxanthin can be found in a number of food items such as orange bell pepper, green bell pepper, passion fruit, and yellow bell pepper, which makes (all-e)-violaxanthin a potential biomarker for the consumption of these food products.

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethyl-1-cyclohexenyl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethyl-cyclohex-3-en-1-ol

C40H56O2 (568.4280076)


Meso-zeaxanthin (3R,3´S-zeaxanthin) is a xanthophyll carotenoid, as it contains oxygen and hydrocarbons, and is one of the three stereoisomers of zeaxanthin. Of the three stereoisomers, meso-zeaxanthin is the second most abundant in nature after 3R,3´R-zeaxanthin, which is produced by plants and algae. To date, meso-zeaxanthin has been identified in specific tissues of marine organisms and in the macula lutea, also known as the "yellow spot", of the human retina . Meso-zeaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Meso-zeaxanthin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Meso-zeaxanthin can be found in channel catfish, crustaceans, and fishes, which makes meso-zeaxanthin a potential biomarker for the consumption of these food products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

Loroxanthin/ 19-Hydroxylutein

Loroxanthin/ 19-Hydroxylutein

C40H56O3 (584.4229226)


   

Siphonaxanthin ester/ Siphonaxanthin dodecenoate/ (Siphonein)

Siphonaxanthin ester/ Siphonaxanthin dodecenoate/ (Siphonein)

C52H76O5 (780.5692445999999)


   

canthaxanthin

canthaxanthin

C40H52O2 (564.3967092)


A carotenone that consists of beta,beta-carotene bearing two oxo substituents at positions 4 and 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

4-methoxy-2,3-dimethyl-6-[(2e,7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl]phenyl acetate

4-methoxy-2,3-dimethyl-6-[(2e,7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl]phenyl acetate

C31H52O3 (472.3916242)


   

(2r,3r,4s,5s)-2-(6-{[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]amino}purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

(2r,3r,4s,5s)-2-(6-{[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]amino}purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C15H21N5O5 (351.15426160000004)


   

2,6,6-trimethyl-1-[(9e,11e,13e,15e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohexa-1,3-diene

2,6,6-trimethyl-1-[(9e,11e,13e,15e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohexa-1,3-diene

C40H48 (528.3755808)


   

2,6,6-trimethyl-1-[(3z,5e,7e,9e,11e,13e,15e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohexa-1,3-diene

2,6,6-trimethyl-1-[(3z,5e,7e,9e,11e,13e,15e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohexa-1,3-diene

C40H48 (528.3755808)


   

(1r,3s)-6-[(3e,5e,7e,9e,11e,13e,15z)-16-[(6s,7ar)-6-hydroxy-4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-2-yl]-3,7,12-trimethylheptadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

(1r,3s)-6-[(3e,5e,7e,9e,11e,13e,15z)-16-[(6s,7ar)-6-hydroxy-4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-2-yl]-3,7,12-trimethylheptadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

C40H56O4 (600.4178376)


   

β-zeacarotene

NA

C40H58 (538.4538268)


{"Ingredient_id": "HBIN018356","Ingredient_name": "\u03b2-zeacarotene","Alias": "NA","Ingredient_formula": "C40H58","Ingredient_Smile": "CC1=C(C(CCC1)(C)C)C=CC(=CC=CC(=CC=CC=C(C)C=CC=C(C)CCC=C(C)CCC=C(C)C)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "22957","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(1r)-3,5,5-trimethyl-4-[(3e,5e,7e,9e,11e,13e,15e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohex-3-en-1-ol

(1r)-3,5,5-trimethyl-4-[(3e,5e,7e,9e,11e,13e,15e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohex-3-en-1-ol

C40H50O (546.3861449999999)


   

5-({1-[(3e)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl}oxy)-8-hydroxy-tetrahydro-4ah-pyrano[3,4-b][1,4]dioxine-2,3-dione

5-({1-[(3e)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl}oxy)-8-hydroxy-tetrahydro-4ah-pyrano[3,4-b][1,4]dioxine-2,3-dione

C35H50O7 (582.355635)


   

4-methoxy-2,3-dimethyl-6-[(7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl]phenyl acetate

4-methoxy-2,3-dimethyl-6-[(7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl]phenyl acetate

C31H52O3 (472.3916242)


   

3-[2-(dimethylamino)-4-hydroxypteridin-6-yl]-2,3-dihydroxypropoxyphosphonic acid

3-[2-(dimethylamino)-4-hydroxypteridin-6-yl]-2,3-dihydroxypropoxyphosphonic acid

C11H16N5O7P (361.0787316)


   

2-methylidenepyrrole

2-methylidenepyrrole

C5H5N (79.042197)


   

5-{[(7s,9ar,11ar)-2-[(2s,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-8-hydroxy-tetrahydro-4ah-pyrano[3,4-b][1,4]dioxine-2,3-dione

5-{[(7s,9ar,11ar)-2-[(2s,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-8-hydroxy-tetrahydro-4ah-pyrano[3,4-b][1,4]dioxine-2,3-dione

C35H50O7 (582.355635)


   

(1s,2s)-1-[2-(dimethylamino)-4-hydroxypteridin-6-yl]propane-1,2,3-triol

(1s,2s)-1-[2-(dimethylamino)-4-hydroxypteridin-6-yl]propane-1,2,3-triol

C11H15N5O4 (281.11239900000004)


   

2-[(2e,5s,7r,11r)-5-hydroxy-3,7,11,15-tetramethylhexadec-2-en-1-yl]-3-methylnaphthalene-1,4-dione

2-[(2e,5s,7r,11r)-5-hydroxy-3,7,11,15-tetramethylhexadec-2-en-1-yl]-3-methylnaphthalene-1,4-dione

C31H46O3 (466.34467659999996)


   

2,6,6-trimethyl-1-[(3e,5e,7e,9e,11e,13e,15e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohexa-1,3-diene

2,6,6-trimethyl-1-[(3e,5e,7e,9e,11e,13e,15e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohexa-1,3-diene

C40H48 (528.3755808)


   

(3e,5e,7e,9e,11e,13e,15e,17e)-1-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-18-(4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl)-3-(hydroxymethyl)-7,12,16-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

(3e,5e,7e,9e,11e,13e,15e,17e)-1-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-18-(4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl)-3-(hydroxymethyl)-7,12,16-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O4 (600.4178376)


   

1-[2-(dimethylamino)-4-hydroxypteridin-6-yl]propane-1,2,3-triol

1-[2-(dimethylamino)-4-hydroxypteridin-6-yl]propane-1,2,3-triol

C11H15N5O4 (281.11239900000004)


   

(3s)-6-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

(3s)-6-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O3 (584.4229226)


   

2-(5-hydroxy-3,7,11,15-tetramethylhexadec-2-en-1-yl)-3-methylnaphthalene-1,4-dione

2-(5-hydroxy-3,7,11,15-tetramethylhexadec-2-en-1-yl)-3-methylnaphthalene-1,4-dione

C31H46O3 (466.34467659999996)


   

2,6,6-trimethyl-1-[(3z,9e,11e,13e,15z)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohexa-1,3-diene

2,6,6-trimethyl-1-[(3z,9e,11e,13e,15z)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohexa-1,3-diene

C40H48 (528.3755808)


   

4-{[2-(dimethylamino)-4-hydroxypteridin-6-yl](hydroxy)methyl}-2-hydroxy-1,3,2λ⁵-dioxaphospholan-2-one

4-{[2-(dimethylamino)-4-hydroxypteridin-6-yl](hydroxy)methyl}-2-hydroxy-1,3,2λ⁵-dioxaphospholan-2-one

C11H14N5O6P (343.06816740000005)


   

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H54O2 (566.4123584)


   

2,6,6-trimethyl-1-[(3z,5z,7e,9e,11e,13e,15z)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohexa-1,3-diene

2,6,6-trimethyl-1-[(3z,5z,7e,9e,11e,13e,15z)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohexa-1,3-diene

C40H48 (528.3755808)


   

4-methoxy-2,3-dimethyl-6-[(2e)-3-methylnonadec-2-en-1-yl]phenyl acetate

4-methoxy-2,3-dimethyl-6-[(2e)-3-methylnonadec-2-en-1-yl]phenyl acetate

C31H52O3 (472.3916242)


   

4-methoxy-2,3-dimethyl-6-(3-methylnonadec-2-en-1-yl)phenyl acetate

4-methoxy-2,3-dimethyl-6-(3-methylnonadec-2-en-1-yl)phenyl acetate

C31H52O3 (472.3916242)


   

(2s,3s)-3-[2-(dimethylamino)-4-hydroxypteridin-6-yl]-2,3-dihydroxypropoxyphosphonic acid

(2s,3s)-3-[2-(dimethylamino)-4-hydroxypteridin-6-yl]-2,3-dihydroxypropoxyphosphonic acid

C11H16N5O7P (361.0787316)


   

(2r,3s,4r,5r)-2-(6-{[(2e)-4-hydroxy-3-methylbut-2-en-1-yl]amino}-2-(methylsulfanyl)purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

(2r,3s,4r,5r)-2-(6-{[(2e)-4-hydroxy-3-methylbut-2-en-1-yl]amino}-2-(methylsulfanyl)purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C16H23N5O5S (397.14198280000005)


   

(4s)-4-[(s)-[2-(dimethylamino)-4-hydroxypteridin-6-yl](hydroxy)methyl]-2-hydroxy-1,3,2λ⁵-dioxaphospholan-2-one

(4s)-4-[(s)-[2-(dimethylamino)-4-hydroxypteridin-6-yl](hydroxy)methyl]-2-hydroxy-1,3,2λ⁵-dioxaphospholan-2-one

C11H14N5O6P (343.06816740000005)


   

3,5,5-trimethyl-4-[(9e,11e,13e,15e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohex-3-en-1-ol

3,5,5-trimethyl-4-[(9e,11e,13e,15e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)octadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]cyclohex-3-en-1-ol

C40H50O (546.3861449999999)