linolenate(18:3)

(9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid

C18H30O2 (278.2246)


alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Myristic acid

tetradecanoic acid

C14H28O2 (228.2089)


Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H56O2 (568.428)


Zeaxanthin is a carotenoid xanthophyll and is one of the most common carotenoid found in nature. It is the pigment that gives corn, saffron, and many other plants their characteristic color. Zeaxanthin breaks down to form picrocrocin and safranal, which are responsible for the taste and aroma of saffron Carotenoids are among the most common pigments in nature and are natural lipid soluble antioxidants. Zeaxanthin is one of the two carotenoids (the other is lutein) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli and eggs, are associated with a significant reduction in the risk for cataract (up to 20\\%) and for age-related macular degeneration (up to 40\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations. (PMID: 11023002). Zeaxanthin has been found to be a microbial metabolite, it can be produced by Algibacter, Aquibacter, Escherichia, Flavobacterium, Formosa, Gramella, Hyunsoonleella, Kordia, Mesoflavibacter, Muricauda, Nubsella, Paracoccus, Siansivirga, Sphingomonas, Zeaxanthinibacter and yeast (https://reader.elsevier.com/reader/sd/pii/S0924224417302571?token=DE6BC6CC7DCDEA6150497AA3E375097A00F8E0C12AE03A8E420D85D1AC8855E62103143B5AE0B57E9C5828671F226801). It is a marker for the activity of Bacillus subtilis and/or Pseudomonas aeruginosa in the intestine. Higher levels are associated with higher levels of Bacillus or Pseudomonas. (PMID: 17555270; PMID: 12147474) Zeaxanthin is a carotenol. It has a role as a bacterial metabolite, a cofactor and an antioxidant. It derives from a hydride of a beta-carotene. Zeaxanthin is a most common carotenoid alcohols found in nature that is involved in the xanthophyll cycle. As a coexistent isomer of lutein, zeaxanthin is synthesized in plants and some micro-organisms. It gives the distinct yellow color to many vegetables and other plants including paprika, corn, saffron and wolfberries. Zeaxanthin is one of the two primary xanthophyll carotenoids contained within the retina of the eye and plays a predominant component in the central macula. It is available as a dietary supplement for eye health benefits and potential prevention of age-related macular degeneration. Zeaxanthin is also added as a food dye. Zeaxanthin is a natural product found in Bangia fuscopurpurea, Erythrobacter longus, and other organisms with data available. Carotenoids found in fruits and vegetables. Zeaxanthin accumulates in the MACULA LUTEA. See also: Saffron (part of); Corn (part of); Lycium barbarum fruit (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Palmitoleic acid

cis-Delta(9)-Hexadecenoic acid

C16H30O2 (254.2246)


Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as mixed nuts, carrot, hedge mustard, and chanterelle, which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH that is a common constituent of the glycerides of human adipose tissue. Present in all tissues, it is generally found in higher concentrations in the liver. Macadamia oil (Macadamia integrifolia) and sea buckthorn oil (Hippophae rhamnoides) are botanical sources of palmitoleic acid, containing 22 and 40\\\\\% respectively. Palmitoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Palmitoleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=373-49-9 (retrieved 2024-07-15) (CAS RN: 373-49-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2559)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Vaccenic acid

11-Octadecenoic acid, (e)-isomer

C18H34O2 (282.2559)


Vaccenic acid is a naturally occurring trans fatty acid. It is the predominant kind of trans-fatty acid found in human milk, in the fat of ruminants, and in dairy products such as milk, butter, and yogurt. Trans fat in human milk may depend on trans fat content in food. Its IUPAC name is (11E)-11-octadecenoic acid, and its lipid shorthand name is 18:1 trans-11. The name was derived from the Latin vacca (cow). Vaccenic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Vaccenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

echinenone

Echinenone/ (Myxoxanthin)

C40H54O (550.4174)


A carotenone that is beta-carotene in which the 4 position has undergone formal oxidation to afford the corresponding ketone. Isolated as orange-red crystals, it is widely distributed in marine invertebrates. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

cis-vaccenic acid

Vaccenic acid, cis-

C18H34O2 (282.2559)


The cis- isomer of vaccenic acid.

   

Isozeaxanthin

3-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-(3-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-2,4,4-trimethylcyclohex-2-en-1-ol

C40H56O2 (568.428)


Isozeaxanthin is found in fishes. Isozeaxanthin is widespread in marine animals. Additive for salmon feed. Widespread in marine animals. Additive for salmon feed. Isozeaxanthin is found in fishes.

   

cis-Vaccenic acid

(11Z)-octadec-11-enoic acid

C18H34O2 (282.2559)


cis-11-Octadecenoic acid, also known as (Z)-octadec-11-enoic acid or asclepic acid, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. cis-11-Octadecenoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Phorbol 12-myristate 13-acetate

13-(acetyloxy)-1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl tetradecanoate

C36H56O8 (616.3975)


D009676 - Noxae > D002273 - Carcinogens > D010703 - Phorbol Esters

   

C14:0

Tetradecanoic acid

C14H28O2 (228.2089)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Hierridin B

2,4-dimethoxy-6-pentadecylphenol

C23H40O3 (364.2977)


   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

VACCENIC ACID

trans-Vaccenic acid

C18H34O2 (282.2559)


An octadecenoic acid having a double bond at position 11; and which can occur in cis- or trans- configurations. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

9-Hexadecenoic acid

Hexadec-9-enoic acid

C16H30O2 (254.2246)


   

Myristic Acid

Tetradecanoic acid

C14H28O2 (228.2089)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Oleic acid

cis-9-Octadecenoic acid

C18H34O2 (282.2559)


An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Palmitoleic acid

Trans-Hexa-dec-2-enoic acid

C16H30O2 (254.2246)


A hexadec-9-enoic acid in which the double bond at position C-9 has cis configuration. In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. Trans-hexa-dec-2-enoic acid is an intermediate in fatty acid biosynthesis. Specifically, trans-hexa-dec-2-enoic acid converted from (R)-3-Hydroxy-hexadecanoic acid via two enzymes; fatty-acid Synthase and 3- Hydroxypalmitoyl- [acyl-carrier-protein] dehydratase (EC: 2.3.1.85 and EC: 4.2.1.61). [HMDB] Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as red huckleberry, highbush blueberry, butternut, and macadamia nut (m. tetraphylla), which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including blood, saliva, feces, and urine, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5949; ORIGINAL_PRECURSOR_SCAN_NO 5948 INTERNAL_ID 900; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5959; ORIGINAL_PRECURSOR_SCAN_NO 5958 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5959; ORIGINAL_PRECURSOR_SCAN_NO 5958 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5926; ORIGINAL_PRECURSOR_SCAN_NO 5924 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5944; ORIGINAL_PRECURSOR_SCAN_NO 5943 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5997; ORIGINAL_PRECURSOR_SCAN_NO 5996 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5943; ORIGINAL_PRECURSOR_SCAN_NO 5941 Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethyl-1-cyclohexenyl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethyl-cyclohex-3-en-1-ol

C40H56O2 (568.428)


Meso-zeaxanthin (3R,3´S-zeaxanthin) is a xanthophyll carotenoid, as it contains oxygen and hydrocarbons, and is one of the three stereoisomers of zeaxanthin. Of the three stereoisomers, meso-zeaxanthin is the second most abundant in nature after 3R,3´R-zeaxanthin, which is produced by plants and algae. To date, meso-zeaxanthin has been identified in specific tissues of marine organisms and in the macula lutea, also known as the "yellow spot", of the human retina . Meso-zeaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Meso-zeaxanthin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Meso-zeaxanthin can be found in channel catfish, crustaceans, and fishes, which makes meso-zeaxanthin a potential biomarker for the consumption of these food products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

α-Linolenic acid

alpha-Linolenic acid

C18H30O2 (278.2246)


α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402)


   

Tetradecanoic acid

Tetradecanoic acid

C14H28O2 (228.2089)


   

2-Methylisoborneol

(2R,4R)-1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol

C11H20O (168.1514)


   

Isozeaxanthin

beta,beta-Carotene-4,4-diol

C40H56O2 (568.428)


   

octadeca-9,12,15-trienoic acid

(9E,12E,15E)-octadeca-9,12,15-trienoic acid

C18H30O2 (278.2246)


   

linoleic

9,12-Octadecadienoic acid, (9E,12E)-

C18H32O2 (280.2402)


Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].

   

Hexadec-9-enoic acid

Hexadec-9-enoic acid

C16H30O2 (254.2246)


A hexadecenoic acid in which the double bond is located at position 9.

   

Octadec-9-enoic acid

Octadec-9-enoic acid

C18H34O2 (282.2559)


An octadecenoic acid with a double bond at C-9.

   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

C47H84O15 (888.581)


   

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

C51H84O15 (936.581)


   

(2s,3s)-n-(1,3-dihydroxypropan-2-yl)-2,3-dihydroxy-3-[(4s,5s)-2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]propanimidic acid

(2s,3s)-n-(1,3-dihydroxypropan-2-yl)-2,3-dihydroxy-3-[(4s,5s)-2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]propanimidic acid

C16H22N2O7 (354.1427)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

C47H86O15 (890.5966)


   

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

C43H78O10 (754.5595)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

C41H74O10 (726.5282)


   

(2r,5s,9s,12s,18s,21s,24r,25r,28r,31r,34r)-9,21-dibenzyl-2-ethyl-4,27,30-trihydroxy-28-[(1r)-1-hydroxyethyl]-18-isopropyl-5,10,19,24,25,32-hexamethyl-31-(2-methylpropyl)-22-oxa-7,36-dithia-3,10,16,19,26,29,32,37,38-nonaazatetracyclo[32.2.1.1⁵,⁸.0¹²,¹⁶]octatriaconta-1(37),3,8(38),26,29-pentaene-11,17,20,23,33-pentone

(2r,5s,9s,12s,18s,21s,24r,25r,28r,31r,34r)-9,21-dibenzyl-2-ethyl-4,27,30-trihydroxy-28-[(1r)-1-hydroxyethyl]-18-isopropyl-5,10,19,24,25,32-hexamethyl-31-(2-methylpropyl)-22-oxa-7,36-dithia-3,10,16,19,26,29,32,37,38-nonaazatetracyclo[32.2.1.1⁵,⁸.0¹²,¹⁶]octatriaconta-1(37),3,8(38),26,29-pentaene-11,17,20,23,33-pentone

C57H81N9O10S2 (1115.5548)


   

(1s,2s,4s)-1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol

(1s,2s,4s)-1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol

C11H20O (168.1514)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C47H82O15 (886.5653)


   

2-(hexadec-9-enoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-(hexadec-9-enoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C43H76O10 (752.5438)


   

(2s)-2-[(9e)-hexadec-9-enoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-[(9e)-hexadec-9-enoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C43H74O10 (750.5282)


   

(3s)-3-[(4r,5r)-2-(5-chloro-2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]-3-hydroxypropanoic acid

(3s)-3-[(4r,5r)-2-(5-chloro-2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]-3-hydroxypropanoic acid

C13H14ClNO5 (299.056)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadec-9-enoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadec-9-enoate

C41H76O10 (728.5438)


   

(3s,6s,9s,12r,13s,16s,19r,22s,25s,28s,33as)-22,28-bis[(2r)-butan-2-yl]-4,10,20,26-tetrahydroxy-9,16,25-triisopropyl-2,6,8,13,18,19,24-heptamethyl-3-(2-methylpropyl)-12-(pent-4-yn-1-yl)-3h,6h,9h,12h,13h,16h,19h,22h,25h,28h,31h,32h,33h,33ah-pyrrolo[1,2-p]1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclohentriacontane-1,7,14,17,23,29-hexone

(3s,6s,9s,12r,13s,16s,19r,22s,25s,28s,33as)-22,28-bis[(2r)-butan-2-yl]-4,10,20,26-tetrahydroxy-9,16,25-triisopropyl-2,6,8,13,18,19,24-heptamethyl-3-(2-methylpropyl)-12-(pent-4-yn-1-yl)-3h,6h,9h,12h,13h,16h,19h,22h,25h,28h,31h,32h,33h,33ah-pyrrolo[1,2-p]1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclohentriacontane-1,7,14,17,23,29-hexone

C57H97N9O11 (1083.7307)


   

(8s,14s,17s,20s,25s)-17-benzyl-28-ethyl-3,9,18,26-tetrahydroxy-14-isopropyl-7,13,16,20,22,22,24,25,29-nonamethyl-8-(2-methylpropyl)-2-(sec-butyl)-1-oxa-4,7,10,13,16,19,24,27-octaazacyclotriaconta-3,9,18,26-tetraene-6,12,15,21,23,30-hexone

(8s,14s,17s,20s,25s)-17-benzyl-28-ethyl-3,9,18,26-tetrahydroxy-14-isopropyl-7,13,16,20,22,22,24,25,29-nonamethyl-8-(2-methylpropyl)-2-(sec-butyl)-1-oxa-4,7,10,13,16,19,24,27-octaazacyclotriaconta-3,9,18,26-tetraene-6,12,15,21,23,30-hexone

C50H80N8O11 (968.5946)


   

n-{2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}-3-hydroxy-2-({1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene}amino)butanimidic acid

n-{2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}-3-hydroxy-2-({1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene}amino)butanimidic acid

C50H72N8O13 (992.5219)


   

(2r,3r)-n-[(2s,5s,8s,11s,12s,15s,18s,21r)-2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-2-{[(2s)-1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene]amino}-3-{[(2s)-2-[(1-hydroxybutylidene)amino]propanoyl]oxy}butanimidic acid

(2r,3r)-n-[(2s,5s,8s,11s,12s,15s,18s,21r)-2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-2-{[(2s)-1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene]amino}-3-{[(2s)-2-[(1-hydroxybutylidene)amino]propanoyl]oxy}butanimidic acid

C57H83N9O15 (1133.6008)


   

(2s,3s)-n-[(2s,5s,8s,11r,12s,15s,18s,21r)-2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-3-hydroxy-2-{[(2s)-1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene]amino}butanimidic acid

(2s,3s)-n-[(2s,5s,8s,11r,12s,15s,18s,21r)-2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-3-hydroxy-2-{[(2s)-1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene]amino}butanimidic acid

C50H72N8O13 (992.5219)


   

methyl (3s,21s,22s)-16-ethenyl-11-ethyl-3,4-dihydroxy-12,17,21,26-tetramethyl-22-(3-oxo-3-{[(2e,7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-7,23,24,25-tetraazahexacyclo[18.2.1.1⁵,⁸.1¹⁰,¹³.1¹⁵,¹⁸.0²,⁶]hexacosa-1,4,6,8(26),9,11,13(25),14,16,18(24),19-undecaene-3-carboxylate

methyl (3s,21s,22s)-16-ethenyl-11-ethyl-3,4-dihydroxy-12,17,21,26-tetramethyl-22-(3-oxo-3-{[(2e,7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-7,23,24,25-tetraazahexacyclo[18.2.1.1⁵,⁸.1¹⁰,¹³.1¹⁵,¹⁸.0²,⁶]hexacosa-1,4,6,8(26),9,11,13(25),14,16,18(24),19-undecaene-3-carboxylate

C55H74N4O6 (886.5608)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

C41H76O10 (728.5438)


   

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C49H88O15 (916.6123)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadecanoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadecanoate

C45H84O15 (864.581)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C47H84O15 (888.581)


   

(2z)-n-[(2s,5s,8s,11r,12s,15s,18s,21r)-2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-2-{[(2s)-1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene]amino}but-2-enimidic acid

(2z)-n-[(2s,5s,8s,11r,12s,15s,18s,21r)-2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-2-{[(2s)-1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene]amino}but-2-enimidic acid

C50H70N8O12 (974.5113)


   

2-(octadeca-9,12-dienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(octadeca-9,12-dienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C51H86O15 (938.5966)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z)-hexadec-9-enoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z)-hexadec-9-enoate

C39H72O10 (700.5125)


   

(15e)-7,9,11,13,17-pentahydroxy-17-{9-hydroxy-5,7,11,15-tetramethyl-3-oxo-2,14-dioxabicyclo[11.2.1]hexadec-4-en-15-yl}-8,12,12,15-tetramethyl-3-methylidene-2-oxoheptadec-15-en-5-yl hexadecanoate

(15e)-7,9,11,13,17-pentahydroxy-17-{9-hydroxy-5,7,11,15-tetramethyl-3-oxo-2,14-dioxabicyclo[11.2.1]hexadec-4-en-15-yl}-8,12,12,15-tetramethyl-3-methylidene-2-oxoheptadec-15-en-5-yl hexadecanoate

C56H98O12 (962.7058)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadecanoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadecanoate

C39H74O10 (702.5282)


   

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

C49H88O15 (916.6123)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadecanoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadecanoate

C45H84O15 (864.581)


   

9,21-dibenzyl-2-ethyl-4,27,30-trihydroxy-28-(1-hydroxyethyl)-18-isopropyl-5,10,19,24,25,32-hexamethyl-31-(2-methylpropyl)-22-oxa-7,36-dithia-3,10,16,19,26,29,32,37,38-nonaazatetracyclo[32.2.1.1⁵,⁸.0¹²,¹⁶]octatriaconta-1(37),3,8(38),26,29-pentaene-11,17,20,23,33-pentone

9,21-dibenzyl-2-ethyl-4,27,30-trihydroxy-28-(1-hydroxyethyl)-18-isopropyl-5,10,19,24,25,32-hexamethyl-31-(2-methylpropyl)-22-oxa-7,36-dithia-3,10,16,19,26,29,32,37,38-nonaazatetracyclo[32.2.1.1⁵,⁸.0¹²,¹⁶]octatriaconta-1(37),3,8(38),26,29-pentaene-11,17,20,23,33-pentone

C57H81N9O10S2 (1115.5548)


   

1-(octadeca-9,12,15-trienoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

1-(octadeca-9,12,15-trienoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

C45H74O10 (774.5282)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9e)-hexadec-9-enoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9e)-hexadec-9-enoate

C45H82O15 (862.5653)


   

(2s,3r,4r,5r,6s)-2-[2-(6-chlorododecyl)-5-(6-chloropentadecyl)-3-hydroxy-4-[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]phenoxy]-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-[2-(6-chlorododecyl)-5-(6-chloropentadecyl)-3-hydroxy-4-[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]phenoxy]-6-methyloxane-3,4,5-triol

C44H76Cl2O10 (834.4815)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadec-9-enoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadec-9-enoate

C39H72O10 (700.5125)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadec-9-enoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadec-9-enoate

C45H82O15 (862.5653)


   

(2s,8s,14s,17s,20s,25s,28r,29s)-17-benzyl-2-[(2s)-butan-2-yl]-3,9,18,26-tetrahydroxy-14-isopropyl-7,13,16,20,22,22,24,25,29-nonamethyl-8-(2-methylpropyl)-28-propyl-1-oxa-4,7,10,13,16,19,24,27-octaazacyclotriaconta-3,9,18,26-tetraene-6,12,15,21,23,30-hexone

(2s,8s,14s,17s,20s,25s,28r,29s)-17-benzyl-2-[(2s)-butan-2-yl]-3,9,18,26-tetrahydroxy-14-isopropyl-7,13,16,20,22,22,24,25,29-nonamethyl-8-(2-methylpropyl)-28-propyl-1-oxa-4,7,10,13,16,19,24,27-octaazacyclotriaconta-3,9,18,26-tetraene-6,12,15,21,23,30-hexone

C51H82N8O11 (982.6103)


   

(3r,6s,9s,12r,13s,16s,19s,22s,25s,28s,33as)-28-[(2r)-butan-2-yl]-4,10,20,26-tetrahydroxy-6,9,16,22,25-pentaisopropyl-2,3,8,13,18,19,24-heptamethyl-12-(pent-4-yn-1-yl)-3h,6h,9h,12h,13h,16h,19h,22h,25h,28h,31h,32h,33h,33ah-pyrrolo[1,2-p]1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclohentriacontane-1,7,14,17,23,29-hexone

(3r,6s,9s,12r,13s,16s,19s,22s,25s,28s,33as)-28-[(2r)-butan-2-yl]-4,10,20,26-tetrahydroxy-6,9,16,22,25-pentaisopropyl-2,3,8,13,18,19,24-heptamethyl-12-(pent-4-yn-1-yl)-3h,6h,9h,12h,13h,16h,19h,22h,25h,28h,31h,32h,33h,33ah-pyrrolo[1,2-p]1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclohentriacontane-1,7,14,17,23,29-hexone

C55H93N9O11 (1055.6994)


   

(1s)-1-{[(1s)-1-{[(1s)-1-{[(3s,6s,9s,12s,15s,18s,21s,22r)-15-[(2s)-butan-2-yl]-8,14-dihydroxy-18-(methoxymethyl)-6-[(4-methoxyphenyl)methyl]-3,4,10,12,16,19,22-heptamethyl-9-(2-methylpropyl)-2,5,11,17,20-pentaoxo-1-oxa-4,7,10,13,16,19-hexaazacyclodocosa-7,13-dien-21-yl](methyl)carbamoyl}-3-methylbutyl](methyl)carbamoyl}-2-methoxyethyl](methyl)carbamoyl}-2-methylpropyl (2s)-2-(dimethylamino)-3-methylbutanoate

(1s)-1-{[(1s)-1-{[(1s)-1-{[(3s,6s,9s,12s,15s,18s,21s,22r)-15-[(2s)-butan-2-yl]-8,14-dihydroxy-18-(methoxymethyl)-6-[(4-methoxyphenyl)methyl]-3,4,10,12,16,19,22-heptamethyl-9-(2-methylpropyl)-2,5,11,17,20-pentaoxo-1-oxa-4,7,10,13,16,19-hexaazacyclodocosa-7,13-dien-21-yl](methyl)carbamoyl}-3-methylbutyl](methyl)carbamoyl}-2-methoxyethyl](methyl)carbamoyl}-2-methylpropyl (2s)-2-(dimethylamino)-3-methylbutanoate

C65H110N10O16 (1286.8101)


   

1-(octadeca-9,12-dienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12-dienoate

1-(octadeca-9,12-dienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12-dienoate

C51H88O15 (940.6123)


   

(2z)-n-{2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}-2-({1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene}amino)but-2-enimidic acid

(2z)-n-{2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}-2-({1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene}amino)but-2-enimidic acid

C50H70N8O12 (974.5113)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C41H74O10 (726.5282)


   

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C43H76O10 (752.5438)


   

1-({1-[(1-{[8,14-dihydroxy-18-(methoxymethyl)-6-[(4-methoxyphenyl)methyl]-3,4,10,12,16,19,22-heptamethyl-9-(2-methylpropyl)-2,5,11,17,20-pentaoxo-15-(sec-butyl)-1-oxa-4,7,10,13,16,19-hexaazacyclodocosa-7,13-dien-21-yl](methyl)carbamoyl}-3-methylbutyl)(methyl)carbamoyl]-2-methoxyethyl}(methyl)carbamoyl)-2-methylpropyl 2-(dimethylamino)-3-methylbutanoate

1-({1-[(1-{[8,14-dihydroxy-18-(methoxymethyl)-6-[(4-methoxyphenyl)methyl]-3,4,10,12,16,19,22-heptamethyl-9-(2-methylpropyl)-2,5,11,17,20-pentaoxo-15-(sec-butyl)-1-oxa-4,7,10,13,16,19-hexaazacyclodocosa-7,13-dien-21-yl](methyl)carbamoyl}-3-methylbutyl)(methyl)carbamoyl]-2-methoxyethyl}(methyl)carbamoyl)-2-methylpropyl 2-(dimethylamino)-3-methylbutanoate

C65H110N10O16 (1286.8101)


   

(2s,8s,14s,17s,20s,25s,28r,29s)-17-benzyl-2-[(2s)-butan-2-yl]-28-ethyl-3,9,18,26-tetrahydroxy-14-isopropyl-7,13,16,20,22,22,24,25,29-nonamethyl-8-(2-methylpropyl)-1-oxa-4,7,10,13,16,19,24,27-octaazacyclotriaconta-3,9,18,26-tetraene-6,12,15,21,23,30-hexone

(2s,8s,14s,17s,20s,25s,28r,29s)-17-benzyl-2-[(2s)-butan-2-yl]-28-ethyl-3,9,18,26-tetrahydroxy-14-isopropyl-7,13,16,20,22,22,24,25,29-nonamethyl-8-(2-methylpropyl)-1-oxa-4,7,10,13,16,19,24,27-octaazacyclotriaconta-3,9,18,26-tetraene-6,12,15,21,23,30-hexone

C50H80N8O11 (968.5946)


   

(2s,3s)-n-[(2s,5s,8r,11r,12s,15s,18s,21r)-2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-2-{[(2s)-1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene]amino}-3-{[(2s)-2-[(1-hydroxybutylidene)amino]propanoyl]oxy}butanimidic acid

(2s,3s)-n-[(2s,5s,8r,11r,12s,15s,18s,21r)-2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-2-{[(2s)-1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene]amino}-3-{[(2s)-2-[(1-hydroxybutylidene)amino]propanoyl]oxy}butanimidic acid

C57H83N9O15 (1133.6008)


   

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C43H78O10 (754.5595)


   

(2s,3r,4r,5r,6s)-2-[2-chloro-6-(6-chlorododecyl)-3-(6-chloropentadecyl)-5-hydroxy-4-[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]phenoxy]-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-[2-chloro-6-(6-chlorododecyl)-3-(6-chloropentadecyl)-5-hydroxy-4-[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]phenoxy]-6-methyloxane-3,4,5-triol

C44H75Cl3O10 (868.4426)


   

17-benzyl-3,9,18,26-tetrahydroxy-14-isopropyl-7,13,16,20,22,22,24,25,29-nonamethyl-8-(2-methylpropyl)-28-propyl-2-(sec-butyl)-1-oxa-4,7,10,13,16,19,24,27-octaazacyclotriaconta-3,9,18,26-tetraene-6,12,15,21,23,30-hexone

17-benzyl-3,9,18,26-tetrahydroxy-14-isopropyl-7,13,16,20,22,22,24,25,29-nonamethyl-8-(2-methylpropyl)-28-propyl-2-(sec-butyl)-1-oxa-4,7,10,13,16,19,24,27-octaazacyclotriaconta-3,9,18,26-tetraene-6,12,15,21,23,30-hexone

C51H82N8O11 (982.6103)


   

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C43H76O10 (752.5438)


   

(2s,3r,4r,5r,6s)-2-[5-(6-chloropentadecyl)-2-dodecyl-3-hydroxy-4-[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]phenoxy]-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-[5-(6-chloropentadecyl)-2-dodecyl-3-hydroxy-4-[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]phenoxy]-6-methyloxane-3,4,5-triol

C44H77ClO10 (800.5205)


   

n-{2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}-2-({1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene}amino)-3-({2-[(1-hydroxybutylidene)amino]propanoyl}oxy)butanimidic acid

n-{2-benzyl-6,13,16,21-tetrahydroxy-5-[(4-hydroxyphenyl)methyl]-8-isopropyl-4,11-dimethyl-15-(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}-2-({1-hydroxy-2-[(1-hydroxybutylidene)amino]propylidene}amino)-3-({2-[(1-hydroxybutylidene)amino]propanoyl}oxy)butanimidic acid

C57H83N9O15 (1133.6008)


   

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

C45H74O10 (774.5282)


   

(2r,3r,4s,5r)-2-[2-(6-chlorododecyl)-5-(6-chlorotridecyl)-3-hydroxyphenoxy]oxane-3,4,5-triol

(2r,3r,4s,5r)-2-[2-(6-chlorododecyl)-5-(6-chlorotridecyl)-3-hydroxyphenoxy]oxane-3,4,5-triol

C36H62Cl2O6 (660.3923)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C41H72O10 (724.5125)


   

2-(hexadec-9-enoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(hexadec-9-enoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C43H74O10 (750.5282)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C41H72O10 (724.5125)


   

(2r,3r)-3-[(4r,5r)-2-(5-chloro-2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]-n-(1,3-dihydroxypropan-2-yl)-2,3-dihydroxypropanimidic acid

(2r,3r)-3-[(4r,5r)-2-(5-chloro-2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]-n-(1,3-dihydroxypropan-2-yl)-2,3-dihydroxypropanimidic acid

C16H21ClN2O7 (388.1037)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C47H82O15 (886.5653)


   

(2r,5s,9s,12s,18s,21s,24r,25r,28s,31s,34r)-9,21-dibenzyl-2-ethyl-4,27,30-trihydroxy-28-[(1r)-1-hydroxyethyl]-18-isopropyl-5,10,19,24,25,32-hexamethyl-31-(2-methylpropyl)-22-oxa-7,36-dithia-3,10,16,19,26,29,32,37,38-nonaazatetracyclo[32.2.1.1⁵,⁸.0¹²,¹⁶]octatriaconta-1(37),3,8(38),26,29-pentaene-11,17,20,23,33-pentone

(2r,5s,9s,12s,18s,21s,24r,25r,28s,31s,34r)-9,21-dibenzyl-2-ethyl-4,27,30-trihydroxy-28-[(1r)-1-hydroxyethyl]-18-isopropyl-5,10,19,24,25,32-hexamethyl-31-(2-methylpropyl)-22-oxa-7,36-dithia-3,10,16,19,26,29,32,37,38-nonaazatetracyclo[32.2.1.1⁵,⁸.0¹²,¹⁶]octatriaconta-1(37),3,8(38),26,29-pentaene-11,17,20,23,33-pentone

C57H81N9O10S2 (1115.5548)


   

(2s)-2-[(9z,12z)-octadeca-9,12-dienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-[(9z,12z)-octadeca-9,12-dienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C51H86O15 (938.5966)


   

(3r)-3-hydroxy-3-[(4s,5s)-2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]propanoic acid

(3r)-3-hydroxy-3-[(4s,5s)-2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]propanoic acid

C13H15NO5 (265.095)


   

(2s)-1-[(9z,12z)-octadeca-9,12-dienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z)-octadeca-9,12-dienoate

(2s)-1-[(9z,12z)-octadeca-9,12-dienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z)-octadeca-9,12-dienoate

C51H88O15 (940.6123)


   

(2s)-2-[(9e)-hexadec-9-enoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

(2s)-2-[(9e)-hexadec-9-enoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

C43H76O10 (752.5438)


   

2-heptadecyl-4,6-dimethoxyphenol

2-heptadecyl-4,6-dimethoxyphenol

C25H44O3 (392.329)


   

(15e)-7,9,11,13,17-pentahydroxy-17-{9-hydroxy-5,7,11,15-tetramethyl-3-oxo-2,14-dioxabicyclo[11.2.1]hexadec-4-en-15-yl}-2-methoxy-8,12,12,15-tetramethyl-3-methylideneheptadeca-1,15-dien-5-yl hexadecanoate

(15e)-7,9,11,13,17-pentahydroxy-17-{9-hydroxy-5,7,11,15-tetramethyl-3-oxo-2,14-dioxabicyclo[11.2.1]hexadec-4-en-15-yl}-2-methoxy-8,12,12,15-tetramethyl-3-methylideneheptadeca-1,15-dien-5-yl hexadecanoate

C57H100O12 (976.7214)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadecanoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadecanoate

C39H74O10 (702.5282)


   

(1e,15e)-1-bromo-7,9,11,13,17-pentahydroxy-17-{9-hydroxy-5,7,11,15-tetramethyl-3-oxo-2,14-dioxabicyclo[11.2.1]hexadec-4-en-15-yl}-2-methoxy-8,12,12,15-tetramethyl-3-methylideneheptadeca-1,15-dien-5-yl hexadecanoate

(1e,15e)-1-bromo-7,9,11,13,17-pentahydroxy-17-{9-hydroxy-5,7,11,15-tetramethyl-3-oxo-2,14-dioxabicyclo[11.2.1]hexadec-4-en-15-yl}-2-methoxy-8,12,12,15-tetramethyl-3-methylideneheptadeca-1,15-dien-5-yl hexadecanoate

C57H99BrO12 (1054.632)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadec-9-enoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadec-9-enoate

C47H86O15 (890.5966)


   

2-[(2e,7e,9r)-9-hydroxy-3,7-dimethyldeca-2,7-dien-1-yl]-6-methoxy-3,5-dimethylpyran-4-one

2-[(2e,7e,9r)-9-hydroxy-3,7-dimethyldeca-2,7-dien-1-yl]-6-methoxy-3,5-dimethylpyran-4-one

C20H30O4 (334.2144)


   

1-(octadeca-9,12,15-trienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

1-(octadeca-9,12,15-trienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

C51H84O15 (936.581)