NCBI Taxonomy: 6057

Haliclona (ncbi_taxid: 6057)

found 20 associated metabolites at genus taxonomy rank level.

Ancestor: Chalinidae

Child Taxonomies: Gellius, Halichoclona, Haliclona oculata, Haliclona xena, Haliclona fulva, Haliclona sarai, Haliclona rubens, Haliclona scotti, Haliclona toxius, Haliclona dancoi, Haliclona mucosa, Haliclona altera, Haliclona elegans, Haliclona fugidia, Haliclona cinerea, Haliclona cnidata, Haliclona viscosa, Haliclona tubifera, Haliclona urceolus, Haliclona amphioxa, Haliclona simulans, Haliclona melissae, Haliclona caerulea, Haliclona koremella, Haliclona vansoesti, Haliclona manglaris, Haliclona fascigera, Haliclona stilensis, Haliclona walentinae, Haliclona vermeuleni, Haliclona plakophila, Haliclona vanderlandi, Haliclona mucifibrosa, Haliclona aquaeductus, Haliclona indistincta, Haliclona mediterranea, Haliclona pigmentifera, unclassified Haliclona, Haliclona twincayensis, Haliclona curacaoensis, Haliclona implexiformis, Haliclona poecillastroides, Haliclona aff. aquaeductus, Haliclona cf. dancoi GF-2019, Haliclona cf. caerulea JV-2020, Haliclona cf. caerulea Hawaii AM 1, Haliclona cf. caerulea Hawaii AM 2, Haliclona cf. caerulea Hawaii AM 3, Haliclona cf. caerulea Hawaii AM 4, Haliclona cf. caerulea Hawaii AM 5, Haliclona cf. caerulea Hawaii AM 6, Haliclona cf. caerulea Hawaii AM 7, Haliclona (Haliclona) sp. KJP-2009, Haliclona cf. caerulea Hawaii Kan 8, Haliclona cf. caerulea Hawaii Kan 9, Haliclona cf. caerulea Hawaii Ke 21, Haliclona cf. caerulea Hawaii Ke 22, Haliclona cf. caerulea Hawaii Ke 23, Haliclona cf. caerulea Hawaii Ke 24, Haliclona cf. caerulea Hawaii Ke 25, Haliclona cf. caerulea Hawaii Ke 26, Haliclona cf. caerulea Hawaii Kan 10, Haliclona cf. caerulea Hawaii Kan 11, Haliclona cf. caerulea Hawaii Kan 12, Haliclona cf. caerulea Hawaii Kan 13, Haliclona cf. caerulea Hawaii Kan 14, Haliclona cf. caerulea Hawaii Kan 15, Haliclona cf. caerulea Hawaii Kan 16, Haliclona cf. caerulea Hawaii Kan 17, Haliclona cf. caerulea Hawaii Kan 18, Haliclona cf. caerulea Hawaii Kan 19, Haliclona cf. caerulea Hawaii Kan 20, Haliclona cf. caerulea Caribbean PR 1, Haliclona cf. caerulea Caribbean PR 2, Haliclona cf. caerulea Caribbean PR 3, Haliclona cf. caerulea Caribbean PR 4, Haliclona cf. caerulea Caribbean PR 5, Haliclona cf. caerulea Caribbean StJ 6, Haliclona cf. caerulea Caribbean StJ 7, Haliclona cf. caerulea Caribbean StJ 8, Haliclona cf. caerulea Caribbean StJ 9, Haliclona cf. caerulea Palmyra Atoll 1, Haliclona cf. caerulea Palmyra Atoll 2, Haliclona cf. caerulea Palmyra Atoll 3, Haliclona cf. caerulea Palmyra Atoll 4, Haliclona cf. caerulea Palmyra Atoll 5, Haliclona cf. caerulea Palmyra Atoll 6, Haliclona cf. caerulea Palmyra Atoll 7, Haliclona cf. caerulea Palmyra Atoll 8, Haliclona cf. caerulea Palmyra Atoll 9, Haliclona (Reniera) sp. CMNI 2018-0176, Haliclona cf. caerulea Caribbean StJ 10, Haliclona cf. caerulea Caribbean StJ 11, Haliclona cf. caerulea Caribbean StJ 12, Haliclona cf. caerulea Caribbean StT 13, Haliclona cf. caerulea Caribbean StT 14, Haliclona cf. caerulea Caribbean StT 15, Haliclona cf. caerulea Palmyra Atoll 10, Haliclona cf. caerulea Palmyra Atoll 11, Haliclona cf. caerulea Palmyra Atoll 12, Haliclona cf. caerulea Palmyra Atoll 13, Haliclona cf. caerulea Palmyra Atoll 14, Haliclona cf. caerulea Palmyra Atoll 15

Thymidine

1-(2-Deoxy-beta-D-ribofuranosyl)-5-methyluracil; 1-(2-Deoxy-beta-D-ribofuranosyl)thymine; Thymine deoxyriboside; 2-Deoxythymidine; 5-Methyldeoxyuridine

C10H14N2O5 (242.09026740000002)


Deoxythymidine, also known as 2-deoxy-5-methyluridine or 5-methyl-2-deoxyuridine, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Deoxythymidine can be synthesized from thymine. Deoxythymidine is also a parent compound for other transformation products, including but not limited to, tritiated thymidine, alpha-tritiated thymidine, and 5,6-dihydrothymidine. Deoxythymidine can be found in a number of food items such as butternut squash, mammee apple, catjang pea, and climbing bean, which makes deoxythymidine a potential biomarker for the consumption of these food products. Deoxythymidine can be found primarily in most biofluids, including blood, amniotic fluid, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Deoxythymidine exists in all living species, ranging from bacteria to humans. In humans, deoxythymidine is involved in the pyrimidine metabolism. Deoxythymidine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, deoxythymidine is found to be associated with canavan disease and degenerative disc disease. Thymidine (deoxythymidine; other names deoxyribosylthymine, thymine deoxyriboside) is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in G1/early S phase . Thymidine, also known as deoxythymidine or deoxyribosylthymine or thymine deoxyriboside, is a pyrimidine deoxynucleoside. It consists of the nucleobase thymine attached to deoxyribose through a beta N- glycosidic bond. Thymidine also belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine (or thymidine) is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. Therefore, thymidine is essential to all life. Indeed, thymidine exists in all living species, ranging from bacteria to plants to humans. Within humans, thymidine participates in a number of enzymatic reactions. In particular, thymidine can be biosynthesized from 5-thymidylic acid through its interaction with the enzyme cytosolic purine 5-nucleotidase. In addition, thymidine can be converted into 5-thymidylic acid; which is catalyzed by the enzyme thymidine kinase. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP (deoxythymidine monophosphate), dTDP, or dTTP (for the di- and tri- phosphates, respectively). dTMP can be incorporated into DNA via DNA polymerases. In cell biology, thymidine can be used to synchronize the cells in S phase. Derivatives of thymidine are used in a number of drugs, including Azidothymidine (AZT), which is used in the treatment of HIV infection. AZT inhibits the process of reverse transcription in the human immunodeficiency virus. Thymidine is a pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a thymine. It is an enantiomer of a telbivudine. Thymidine is a pyrimidine deoxynucleoside. Thymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in S phase. Thymidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thymidine is a natural product found in Fritillaria thunbergii, Saussurea medusa, and other organisms with data available. Thymidine is a pyrimidine nucleoside that is composed of the pyrimidine base thymine attached to the sugar deoxyribose. As a constituent of DNA, thymidine pairs with adenine in the DNA double helix. (NCI04) Thymidine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside in which THYMINE is linked to DEOXYRIBOSE. A pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. KEIO_ID T014; [MS2] KO009272 KEIO_ID T014 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H56O2 (568.4280076)


Zeaxanthin is a carotenoid xanthophyll and is one of the most common carotenoid found in nature. It is the pigment that gives corn, saffron, and many other plants their characteristic color. Zeaxanthin breaks down to form picrocrocin and safranal, which are responsible for the taste and aroma of saffron Carotenoids are among the most common pigments in nature and are natural lipid soluble antioxidants. Zeaxanthin is one of the two carotenoids (the other is lutein) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli and eggs, are associated with a significant reduction in the risk for cataract (up to 20\\%) and for age-related macular degeneration (up to 40\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations. (PMID: 11023002). Zeaxanthin has been found to be a microbial metabolite, it can be produced by Algibacter, Aquibacter, Escherichia, Flavobacterium, Formosa, Gramella, Hyunsoonleella, Kordia, Mesoflavibacter, Muricauda, Nubsella, Paracoccus, Siansivirga, Sphingomonas, Zeaxanthinibacter and yeast (https://reader.elsevier.com/reader/sd/pii/S0924224417302571?token=DE6BC6CC7DCDEA6150497AA3E375097A00F8E0C12AE03A8E420D85D1AC8855E62103143B5AE0B57E9C5828671F226801). It is a marker for the activity of Bacillus subtilis and/or Pseudomonas aeruginosa in the intestine. Higher levels are associated with higher levels of Bacillus or Pseudomonas. (PMID: 17555270; PMID: 12147474) Zeaxanthin is a carotenol. It has a role as a bacterial metabolite, a cofactor and an antioxidant. It derives from a hydride of a beta-carotene. Zeaxanthin is a most common carotenoid alcohols found in nature that is involved in the xanthophyll cycle. As a coexistent isomer of lutein, zeaxanthin is synthesized in plants and some micro-organisms. It gives the distinct yellow color to many vegetables and other plants including paprika, corn, saffron and wolfberries. Zeaxanthin is one of the two primary xanthophyll carotenoids contained within the retina of the eye and plays a predominant component in the central macula. It is available as a dietary supplement for eye health benefits and potential prevention of age-related macular degeneration. Zeaxanthin is also added as a food dye. Zeaxanthin is a natural product found in Bangia fuscopurpurea, Erythrobacter longus, and other organisms with data available. Carotenoids found in fruits and vegetables. Zeaxanthin accumulates in the MACULA LUTEA. See also: Saffron (part of); Corn (part of); Lycium barbarum fruit (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

5-(8-Pentadecenyl)-1,3-benzenediol

5-[(8E)-pentadec-8-en-1-yl]benzene-1,3-diol

C21H34O2 (318.2558664)


5-(8-Pentadecenyl)-1,3-benzenediol is found in cashew nut. 5-(8-Pentadecenyl)-1,3-benzenediol is isolated from Ginkgo biloba (ginkgo) fruit Isolated from Ginkgo biloba (ginkgo) fruits. 5-(8-Pentadecenyl)-1,3-benzenediol is found in cashew nut, ginkgo nuts, and fats and oils.

   

Grevillol

5-tridecylbenzene-1,3-diol

C19H32O2 (292.24021719999996)


   

Halistanol sulfate

[(2S,3S,5S,6S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-2,3-disulfooxy-17-[(2R,5S)-5,6,6-trimethylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-6-yl] hydrogensulfate

C29H52O12S3 (688.2620751999999)


   

Manzamine A

Keramamine A

C36H44N4O (548.3514934)


An alkaloid of the class of beta-carbolines isolated from Haliclona and Acanthostrongylophora. It exhibits inhibitory activity against Glycogen Synthase Kinase-3 (EC 2.7.11.26).

   

Xestoquinone

(+)-Xestoquinone

C20H14O4 (318.0892044)


   

Halaminol A

1-deoxy-tetradecasphing-13-enine

C14H29NO (227.2249024)


   

Bilobol

5-[(8Z)-Pentadec-8-en-1-yl]benzene-1,3-diol

C21H34O2 (318.2558664)


   

Thymidine

Thymidine

C10H14N2O5 (242.09026740000002)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.220 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.211 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.213 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethyl-1-cyclohexenyl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethyl-cyclohex-3-en-1-ol

C40H56O2 (568.4280076)


Meso-zeaxanthin (3R,3´S-zeaxanthin) is a xanthophyll carotenoid, as it contains oxygen and hydrocarbons, and is one of the three stereoisomers of zeaxanthin. Of the three stereoisomers, meso-zeaxanthin is the second most abundant in nature after 3R,3´R-zeaxanthin, which is produced by plants and algae. To date, meso-zeaxanthin has been identified in specific tissues of marine organisms and in the macula lutea, also known as the "yellow spot", of the human retina . Meso-zeaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Meso-zeaxanthin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Meso-zeaxanthin can be found in channel catfish, crustaceans, and fishes, which makes meso-zeaxanthin a potential biomarker for the consumption of these food products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

6-hydroxymanzamine A

6-hydroxymanzamine A

C36H44N4O2 (564.3464084)


An alkaloid that is manzamine A with a hydroxy substituent at position 6. Isolated from Haliclona and Acanthostrongylophora, it exhibits inhibitory activity against Glycogen Synthase Kinase-3 (EC 2.7.11.26).