NCBI Taxonomy: 83000

Olisthodiscus luteus (ncbi_taxid: 83000)

found 16 associated metabolites at species taxonomy rank level.

Ancestor: Olisthodiscus

Child Taxonomies: none taxonomy data.

Fucoxanthin

(3S,3′S,5R,5′R,6S,6′R)-3′-(Acetyloxy)-6′,7′-didehydro-5,6-epoxy-5,5′,6,6′,7,8-hexahydro-3,5′-dihydroxy-8-oxo-β,β-carotene

C42H58O6 (658.4233168)


Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia [HMDB] Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3351-86-8 (retrieved 2024-11-06) (CAS RN: 3351-86-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H56O2 (568.4280076)


Zeaxanthin is a carotenoid xanthophyll and is one of the most common carotenoid found in nature. It is the pigment that gives corn, saffron, and many other plants their characteristic color. Zeaxanthin breaks down to form picrocrocin and safranal, which are responsible for the taste and aroma of saffron Carotenoids are among the most common pigments in nature and are natural lipid soluble antioxidants. Zeaxanthin is one of the two carotenoids (the other is lutein) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli and eggs, are associated with a significant reduction in the risk for cataract (up to 20\\%) and for age-related macular degeneration (up to 40\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations. (PMID: 11023002). Zeaxanthin has been found to be a microbial metabolite, it can be produced by Algibacter, Aquibacter, Escherichia, Flavobacterium, Formosa, Gramella, Hyunsoonleella, Kordia, Mesoflavibacter, Muricauda, Nubsella, Paracoccus, Siansivirga, Sphingomonas, Zeaxanthinibacter and yeast (https://reader.elsevier.com/reader/sd/pii/S0924224417302571?token=DE6BC6CC7DCDEA6150497AA3E375097A00F8E0C12AE03A8E420D85D1AC8855E62103143B5AE0B57E9C5828671F226801). It is a marker for the activity of Bacillus subtilis and/or Pseudomonas aeruginosa in the intestine. Higher levels are associated with higher levels of Bacillus or Pseudomonas. (PMID: 17555270; PMID: 12147474) Zeaxanthin is a carotenol. It has a role as a bacterial metabolite, a cofactor and an antioxidant. It derives from a hydride of a beta-carotene. Zeaxanthin is a most common carotenoid alcohols found in nature that is involved in the xanthophyll cycle. As a coexistent isomer of lutein, zeaxanthin is synthesized in plants and some micro-organisms. It gives the distinct yellow color to many vegetables and other plants including paprika, corn, saffron and wolfberries. Zeaxanthin is one of the two primary xanthophyll carotenoids contained within the retina of the eye and plays a predominant component in the central macula. It is available as a dietary supplement for eye health benefits and potential prevention of age-related macular degeneration. Zeaxanthin is also added as a food dye. Zeaxanthin is a natural product found in Bangia fuscopurpurea, Erythrobacter longus, and other organisms with data available. Carotenoids found in fruits and vegetables. Zeaxanthin accumulates in the MACULA LUTEA. See also: Saffron (part of); Corn (part of); Lycium barbarum fruit (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Violaxanthin

(1R,3S,6S)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178376)


Violaxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Thus, violaxanthin is considered to be an isoprenoid lipid molecule. Violaxanthin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Violaxanthin is an orange-coloured pigment that is found in brown algae and various plants (e.g. pansies). It is biosynthesized from the epoxidation of zeaxanthin. Violaxanthin is a food additive that is only approved for use in Australia and New Zealand (INS: 161e) (PMID: 29890662). 3 (violaxanthin, zeaxanthin and antheraxanthin) participate in series of photo-induced interconversions known as violaxanthin cycle; Xanthophyll; a carotene epoxide that is precursor to capsanthin; cleavage of 9-cis-epoxycarotenoids (violaxanthin) to xanthoxin, catalyzed by 9-cis-epoxycarotenoid dioxygenase, is the key regulatory step of abscisic acid biosynthesis; one of 3 xanthophylls involved in evolution of plastids of green plants (oxygen evolution). (all-E)-Violaxanthin is found in many foods, some of which are orange bell pepper, passion fruit, pepper (c. annuum), and italian sweet red pepper. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Violaxanthin

(1S,4S,6R)-1-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-4-ol

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Cucurbitachrome 1 is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Cucurbitachrome 1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cucurbitachrome 1 can be found in a number of food items such as italian sweet red pepper, herbs and spices, fruits, and red bell pepper, which makes cucurbitachrome 1 a potential biomarker for the consumption of these food products. (all-e)-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone (all-e)-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (all-e)-violaxanthin can be found in a number of food items such as orange bell pepper, green bell pepper, passion fruit, and yellow bell pepper, which makes (all-e)-violaxanthin a potential biomarker for the consumption of these food products.

   

Zeaxanthin

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethyl-1-cyclohexenyl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethyl-cyclohex-3-en-1-ol

C40H56O2 (568.4280076)


Meso-zeaxanthin (3R,3´S-zeaxanthin) is a xanthophyll carotenoid, as it contains oxygen and hydrocarbons, and is one of the three stereoisomers of zeaxanthin. Of the three stereoisomers, meso-zeaxanthin is the second most abundant in nature after 3R,3´R-zeaxanthin, which is produced by plants and algae. To date, meso-zeaxanthin has been identified in specific tissues of marine organisms and in the macula lutea, also known as the "yellow spot", of the human retina . Meso-zeaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Meso-zeaxanthin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Meso-zeaxanthin can be found in channel catfish, crustaceans, and fishes, which makes meso-zeaxanthin a potential biomarker for the consumption of these food products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

Fucoxanthin

InChI=1/C42H58O6/c1-29(18-14-19-31(3)22-23-37-38(6,7)26-35(47-33(5)43)27-40(37,10)46)16-12-13-17-30(2)20-15-21-32(4)36(45)28-42-39(8,9)24-34(44)25-41(42,11)48-42/h12-22,34-35,44,46H,24-28H2,1-11H3/b13-12+,18-14+,20-15+,29-16+,30-17+,31-19+,32-21+/t23?,34-

C42H58O6 (658.4233168000001)


Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. An epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities.

   

(3s)-6-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

(3s)-6-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O3 (584.4229226)


   

(3e,5e,7e,9e,11e,13e,15e)-18-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-1-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

(3e,5e,7e,9e,11e,13e,15e)-18-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-1-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O5 (616.4127526)