NCBI Taxonomy: 1779152
Axinellida (ncbi_taxid: 1779152)
found 500 associated metabolites at order taxonomy rank level.
Ancestor: Heteroscleromorpha
Child Taxonomies: Axinellidae, Raspailiidae, Heteroxyidae, Stelligeridae, unclassified Axinellida
Thymidine
Deoxythymidine, also known as 2-deoxy-5-methyluridine or 5-methyl-2-deoxyuridine, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Deoxythymidine can be synthesized from thymine. Deoxythymidine is also a parent compound for other transformation products, including but not limited to, tritiated thymidine, alpha-tritiated thymidine, and 5,6-dihydrothymidine. Deoxythymidine can be found in a number of food items such as butternut squash, mammee apple, catjang pea, and climbing bean, which makes deoxythymidine a potential biomarker for the consumption of these food products. Deoxythymidine can be found primarily in most biofluids, including blood, amniotic fluid, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Deoxythymidine exists in all living species, ranging from bacteria to humans. In humans, deoxythymidine is involved in the pyrimidine metabolism. Deoxythymidine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, deoxythymidine is found to be associated with canavan disease and degenerative disc disease. Thymidine (deoxythymidine; other names deoxyribosylthymine, thymine deoxyriboside) is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in G1/early S phase . Thymidine, also known as deoxythymidine or deoxyribosylthymine or thymine deoxyriboside, is a pyrimidine deoxynucleoside. It consists of the nucleobase thymine attached to deoxyribose through a beta N- glycosidic bond. Thymidine also belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine (or thymidine) is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. Therefore, thymidine is essential to all life. Indeed, thymidine exists in all living species, ranging from bacteria to plants to humans. Within humans, thymidine participates in a number of enzymatic reactions. In particular, thymidine can be biosynthesized from 5-thymidylic acid through its interaction with the enzyme cytosolic purine 5-nucleotidase. In addition, thymidine can be converted into 5-thymidylic acid; which is catalyzed by the enzyme thymidine kinase. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP (deoxythymidine monophosphate), dTDP, or dTTP (for the di- and tri- phosphates, respectively). dTMP can be incorporated into DNA via DNA polymerases. In cell biology, thymidine can be used to synchronize the cells in S phase. Derivatives of thymidine are used in a number of drugs, including Azidothymidine (AZT), which is used in the treatment of HIV infection. AZT inhibits the process of reverse transcription in the human immunodeficiency virus. Thymidine is a pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a thymine. It is an enantiomer of a telbivudine. Thymidine is a pyrimidine deoxynucleoside. Thymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in S phase. Thymidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thymidine is a natural product found in Fritillaria thunbergii, Saussurea medusa, and other organisms with data available. Thymidine is a pyrimidine nucleoside that is composed of the pyrimidine base thymine attached to the sugar deoxyribose. As a constituent of DNA, thymidine pairs with adenine in the DNA double helix. (NCI04) Thymidine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside in which THYMINE is linked to DEOXYRIBOSE. A pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. KEIO_ID T014; [MS2] KO009272 KEIO_ID T014 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].
Allantoin
Allantoin is an imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. It has a role as a vulnerary, a human metabolite, a Saccharomyces cerevisiae metabolite and an Escherichia coli metabolite. It is a member of ureas and an imidazolidine-2,4-dione. It is functionally related to a hydantoin. It is a tautomer of a 1-(5-hydroxy-2-oxo-2,3-dihydroimidazol-4-yl)urea. Allantoin is a substance that is endogenous to the human body and also found as a normal component of human diets. In healthy human volunteers, the mean plasma concentration of allantoin is about 2-3 mg/l. During exercise, the plasma allantoin concentration rapidly increases about two fold and remains elevated. In human muscle, urate is oxidized to allantoin during such exercise. The concentration of allantoin in muscles increases from a resting value of about 5000 ug/kg to about 16000 ug/kg immediately after short-term exhaustive cycling exercise. More specifically, allantoin is a diureide of glyoxylic acid that is produced from uric acid. It is a major metabolic intermediate in most organisms. Allantoin is found in OTC cosmetic products and other commercial products such as oral hygiene products, in shampoos, lipsticks, anti-acne products, sun care products, and clarifying lotions. Allantoin has also demonstrated to ameliorate the wound healing process in some studies. Allantoin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Allantoin is a natural product found in Aristolochia gigantea, Rhinacanthus, and other organisms with data available. Allantoin is a mineral with formula of C4H6N4O3. The corresponding IMA (International Mineralogical Association) number is IMA2020-004a. The IMA symbol is Aan. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard Allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as shampoos, lipsticks, various cosmetic lotions and creams and other cosmetic and pharmaceutical products. Allantoin is a metabolite found in or produced by Saccharomyces cerevisiae. A urea hydantoin that is found in URINE and PLANTS and is used in dermatological preparations. See also: Alcloxa (active moiety of); Comfrey Leaf (part of); Comfrey Root (part of) ... View More ... Allantoin is a chemical compound with formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a diureide of glyoxylic acid. Named after the allantois, an amniote embryonic excretory organ in which it concentrates during development in most mammals except humans and higher apes, it is a product of oxidation of uric acid by purine catabolism. After birth, it is the predominant means by which nitrogenous waste is excreted in the urine of these animals. In humans and higher apes, the metabolic pathway for conversion of uric acid to allantoin is not present, so the former is excreted. Recombinant rasburicase is sometimes used as a drug to catalyze this metabolic conversion in patients. In fish, allantoin is broken down further (into ammonia) before excretion. Allantoin is a major metabolic intermediate in many other organisms including plants and bacteria.; Its chemical formula is C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a diureide of glyoxylic acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. Allantoin is a botanical extract of the comfrey plant and is used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulate growth of healthy tissue. This extract can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a product of the oxidation of uric acid. It is also a product of purine metabolism in most mammals except for higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard, allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as in shampoos, lipsticks, various cosmetic lotions and creams, and other cosmetic and pharmaceutical products. It is also a metabolite of Bacillus (PMID: 18302748) and Streptomyces (PMID: 24292080). An imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. Allantoin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5377-33-3 (retrieved 2024-06-29) (CAS RN: 97-59-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth.
4-Hydroxybenzaldehyde
4-Hydroxybenzaldehyde, also known as 4-formylphenol or 4-hydroxybenzenecarbonal, belongs to the class of organic compounds known as hydroxybenzaldehydes. These are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde exists in all living organisms, ranging from bacteria to humans. 4-Hydroxybenzaldehyde is a sweet, almond, and balsam tasting compound. 4-Hydroxybenzaldehyde is found, on average, in the highest concentration within vinegars and oats. 4-Hydroxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cardoons, colorado pinyons, oyster mushrooms, common chokecherries, and potato. This could make 4-hydroxybenzaldehyde a potential biomarker for the consumption of these foods. 4-hydroxybenzaldehyde is a hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. It has a role as a plant metabolite, a mouse metabolite and an EC 1.14.17.1 (dopamine beta-monooxygenase) inhibitor. 4-Hydroxybenzaldehyde is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. Occurs naturally combined in many glycosides. Constituent of vanillin. Isol. in free state from opium poppy (Papaver somniferum) A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-08-0 (retrieved 2024-07-02) (CAS RN: 123-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
Myristic acid
Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.
Palmitic acid
Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Ergosterol
Ergosterol is a phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. It has a role as a fungal metabolite and a Saccharomyces cerevisiae metabolite. It is a 3beta-sterol, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL. Ergosterol is a natural product found in Gladiolus italicus, Ramaria formosa, and other organisms with data available. ergosterol is a metabolite found in or produced by Saccharomyces cerevisiae. A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2). See also: Reishi (part of). Ergosterol, also known as provitamin D2, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, ergosterol is considered to be a sterol lipid molecule. Ergosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Ergosterol is the biological precursor to vitamin D2. It is turned into viosterol by ultraviolet light, and is then converted into ergocalciferol, which is a form of vitamin D. Ergosterol is a component of fungal cell membranes, serving the same function that cholesterol serves in animal cells. Ergosterol is not found in mammalian cell membranes. A phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. Ergosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-87-4 (retrieved 2024-07-12) (CAS RN: 57-87-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.
Campesterol
Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
Stigmasterol
Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol
beta-Carotene
Beta-carotene is a cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. It has a role as a biological pigment, a provitamin A, a plant metabolite, a human metabolite, a mouse metabolite, a cofactor, a ferroptosis inhibitor and an antioxidant. It is a cyclic carotene and a carotenoid beta-end derivative. Beta-carotene, with the molecular formula C40H56, belongs to the group of carotenoids consisting of isoprene units. The presence of long chains of conjugated double bonds donates beta-carotene with specific colors. It is the most abundant form of carotenoid and it is a precursor of the vitamin A. Beta-carotene is composed of two retinyl groups. It is an antioxidant that can be found in yellow, orange and green leafy vegetables and fruits. Under the FDA, beta-carotene is considered as a generally recognized as safe substance (GRAS). Beta-Carotene is a natural product found in Epicoccum nigrum, Lonicera japonica, and other organisms with data available. Beta-Carotene is a naturally-occurring retinol (vitamin A) precursor obtained from certain fruits and vegetables with potential antineoplastic and chemopreventive activities. As an anti-oxidant, beta carotene inhibits free-radical damage to DNA. This agent also induces cell differentiation and apoptosis of some tumor cell types, particularly in early stages of tumorigenesis, and enhances immune system activity by stimulating the release of natural killer cells, lymphocytes, and monocytes. (NCI04) beta-Carotene is a metabolite found in or produced by Saccharomyces cerevisiae. A carotenoid that is a precursor of VITAMIN A. Beta carotene is administered to reduce the severity of photosensitivity reactions in patients with erythropoietic protoporphyria (PORPHYRIA, ERYTHROPOIETIC). See also: Lycopene (part of); Broccoli (part of); Lycium barbarum fruit (part of). Beta-Carotene belongs to the class of organic compounds known as carotenes. These are a type of polyunsaturated hydrocarbon molecules containing eight consecutive isoprene units. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Beta-carotene is therefore considered to be an isoprenoid lipid molecule. Beta-carotene is a strongly coloured red-orange pigment abundant in fungi, plants, and fruits. It is synthesized biochemically from eight isoprene units and therefore has 40 carbons. Among the carotenes, beta-carotene is distinguished by having beta-rings at both ends of the molecule. Beta-Carotene is biosynthesized from geranylgeranyl pyrophosphate. It is the most common form of carotene in plants. In nature, Beta-carotene is a precursor (inactive form) to vitamin A. Vitamin A is produed via the action of beta-carotene 15,15-monooxygenase on carotenes. In mammals, carotenoid absorption is restricted to the duodenum of the small intestine and dependent on a class B scavenger receptor (SR-B1) membrane protein, which is also responsible for the absorption of vitamin E. One molecule of beta-carotene can be cleaved by the intestinal enzyme Beta-Beta-carotene 15,15-monooxygenase into two molecules of vitamin A. Beta-Carotene contributes to the orange color of many different fruits and vegetables. Vietnamese gac and crude palm oil are particularly rich sources, as are yellow and orange fruits, such as cantaloupe, mangoes, pumpkin, and papayas, and orange root vegetables such as carrots and sweet potatoes. Excess beta-carotene is predominantly stored in the fat tissues of the body. The most common side effect of excessive beta-carotene consumption is carotenodermia, a physically harmless condition that presents as a conspicuous orange skin tint arising from deposition of the carotenoid in the outermost layer of the epidermis. Yellow food colour, dietary supplement, nutrient, Vitamin A precursor. Nutriceutical with antioxidation props. beta-Carotene is found in many foods, some of which are summer savory, gram bean, sunburst squash (pattypan squash), and other bread product. A cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins
Lutein
Lutein is a common carotenoid xanthophyll found in nature. Carotenoids are among the most common pigments in nature and are natural lipid-soluble antioxidants. Lutein is one of the two carotenoids (the other is zeaxanthin) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli, and eggs, are associated with a significant reduction in the risk for cataracts (up to 20\\\\\%) and age-related macular degeneration (up to 40\\\\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations (PMID: 11023002). Lutein is a carotenol. It has a role as a food colouring and a plant metabolite. It derives from a hydride of a (6R)-beta,epsilon-carotene. Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis. Lutein is a natural product found in Eupatorium cannabinum, Hibiscus syriacus, and other organisms with data available. Lutein is lutein (LOO-teen) is a oxygenated carotenoid found in vegetables and fruits. lutein is found in the macula of the eye, where it is believed to act as a yellow filter. Lutein acts as an antioxidant, protecting cells against the damaging effects of free radicals. A xanthophyll found in the major LIGHT-HARVESTING PROTEIN COMPLEXES of plants. Dietary lutein accumulates in the MACULA LUTEA. See also: Calendula Officinalis Flower (part of); Corn (part of); Chicken; lutein (component of) ... View More ... Pigment from egg yolk and leaves. Found in all higher plants. Nutriceutical with anticancer and antioxidation props. Potentially useful for the treatment of age-related macular degeneration (AMD) of the eye Lutein A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-40-2 (retrieved 2024-07-12) (CAS RN: 127-40-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].
Astaxanthin
Astaxanthin (pronounced as-tuh-zan-thin) is a carotenoid. It belongs to a larger class of phytochemicals known as terpenes. It is classified as a xanthophyll, which means "yellow leaves". Like many carotenoids, it is a colorful, lipid-soluble pigment. Astaxanthin is produced by microalgae, yeast, salmon, trout, krill, shrimp, crayfish, crustaceans, and the feathers of some birds. Professor Basil Weedon was the first to map the structure of astaxanthin.; Astaxanthin is the main carotenoid pigment found in aquatic animals. It is also found in some birds, such as flamingoes, quails, and other species. This carotenoid is included in many well-known seafoods such as salmon, trout, red seabream, shrimp, lobster, and fish eggs. Astaxanthin, similar to other carotenoids, cannot be synthesized by animals and must be provided in the diet. Mammals, including humans, lack the ability to synthesize astaxanthin or to convert dietary astaxanthin into vitamin A. Astaxanthin belongs to the xanthophyll class of carotenoids. It is closely related to beta-carotene, lutein, and zeaxanthin, sharing with them many of the general metabolic and physiological functions attributed to carotenoids. In addition, astaxanthin has unique chemical properties based on its molecular structure. The presence of the hydroxyl (OH) and keto (CdO) moieties on each ionone ring explains some of its unique features, namely, the ability to be esterified and a higher antioxidant activity and a more polar nature than other carotenoids. In its free form, astaxanthin is considerably unstable and particularly susceptible to oxidation. Hence it is found in nature either conjugated with proteins (e.g., salmon muscle or lobster exoskeleton) or esterified with one or two fatty acids (monoester and diester forms), which stabilize the molecule. Various astaxanthin isomers have been characterized on the basis of the configuration of the two hydroxyl groups on the molecule. the geometrical and optical isomers of astaxanthin are distributed selectively in different tissues and that levels of free astaxanthin in the liver are greater than the corresponding concentration in the plasma, suggesting concentrative uptake by the liver. Astaxanthin, similar to other carotenoids, is a very lipophilic compound and has a low oral bioavailability. This criterion has limited the ability to test this compound in well-defined rodent models of human disease. (PMID: 16562856); Astaxanthin is a carotenoid widely used in salmonid and crustacean aquaculture to provide the pink color characteristic of that species. This application has been well documented for over two decades and is currently the major market driver for the pigment. Additionally, astaxanthin also plays a key role as an intermediary in reproductive processes. Synthetic astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural astaxanthin are the green algae Haematococcus pluvialis, the red yeast, Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses an unusual antioxidant activity which has caused a surge in the nutraceutical market for the encapsulated productand is) also, health benefits such as cardiovascular disease prevention, immune system boosting, bioactivity against Helycobacter pylori, and cataract prevention, have been associated with astaxanthin consumption. Research on the health benefits of astaxanthin is very recent and has mostly been performed in vitro or at the pre-clinical level with humans. (PMID: 16431409); Astaxanthin, unlike some carotenoids, does not convert to Vitamin A (retinol) in the human body. Too much Vitamin A is toxic for a human, but astaxanthin is not. However, it is a powerful antioxidant; it is claimed to be 10 times more capable than other carotenoids. However, other sources suggest astaxanthin has slightly lower antioxidant activity than other carotenoids.; While astaxanthin is a natural nutr... Astaxanthin is the main carotenoid pigment found in aquatic animals. It is also found in some birds, such as flamingoes, quails, and other species. This carotenoid is included in many well-known seafoods such as salmon, trout, red seabream, shrimp, lobster, and fish eggs. Astaxanthin, similar to other carotenoids, cannot be synthesized by animals and must be provided in the diet. Mammals, including humans, lack the ability to synthesize astaxanthin or to convert dietary astaxanthin into vitamin A. Astaxanthin belongs to the xanthophyll class of carotenoids. It is closely related to beta-carotene, lutein, and zeaxanthin, sharing with them many of the general metabolic and physiological functions attributed to carotenoids. In addition, astaxanthin has unique chemical properties based on its molecular structure. The presence of the hydroxyl (OH) and keto (CdO) moieties on each ionone ring explains some of its unique features, namely, the ability to be esterified and a higher antioxidant activity and a more polar nature than other carotenoids. In its free form, astaxanthin is considerably unstable and particularly susceptible to oxidation. Hence it is found in nature either conjugated with proteins (e.g. salmon muscle or lobster exoskeleton) or esterified with one or two fatty acids (monoester and diester forms) which stabilize the molecule. Various astaxanthin isomers have been characterized on the basis of the configuration of the two hydroxyl groups on the molecule. The geometrical and optical isomers of astaxanthin are distributed selectively in different tissues and levels of free astaxanthin in the liver are greater than the corresponding concentration in the plasma, suggesting concentrative uptake by the liver. Astaxanthin, similar to other carotenoids, is a very lipophilic compound and has a low oral bioavailability. This criterion has limited the ability to test this compound in well-defined rodent models of human disease (PMID: 16562856). Astaxanthin is a carotenoid widely used in salmonid and crustacean aquaculture to provide the pink colour characteristic of that species. This application has been well documented for over two decades and is currently the major market driver for the pigment. Additionally, astaxanthin also plays a key role as an intermediary in reproductive processes. Synthetic astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural astaxanthin are the green algae Haematococcus pluvialis (the red yeast), Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses an unusual antioxidant activity which has caused a surge in the nutraceutical market for the encapsulated product. Also, health benefits such as cardiovascular disease prevention, immune system boosting, bioactivity against Helicobacter pylori, and cataract prevention, have been associated with astaxanthin consumption. Research on the health benefits of astaxanthin is very recent and has mostly been performed in vitro or at the pre-clinical level with humans (PMID: 16431409). Astaxanthin is used in fish farming to induce trout flesh colouring. Astaxanthin is a carotenone that consists of beta,beta-carotene-4,4-dione bearing two hydroxy substituents at positions 3 and 3 (the 3S,3S diastereomer). A carotenoid pigment found mainly in animals (crustaceans, echinoderms) but also occurring in plants. It can occur free (as a red pigment), as an ester, or as a blue, brown or green chromoprotein. It has a role as an anticoagulant, an antioxidant, a food colouring, a plant metabolite and an animal metabolite. It is a carotenone and a carotenol. It derives from a hydride of a beta-carotene. Astaxanthin is a keto-carotenoid in the terpenes class of chemical compounds. It is classified as a xanthophyll but it is a carotenoid with no vitamin A activity. It is found in the majority of aquatic organisms with red pigment. Astaxanthin has shown to mediate anti-oxidant and anti-inflammatory actions. It may be found in fish feed or some animal food as a color additive. Astaxanthin is a natural product found in Ascidia zara, Linckia laevigata, and other organisms with data available. Astaxanthin is a natural and synthetic xanthophyll and nonprovitamin A carotenoid, with potential antioxidant, anti-inflammatory and antineoplastic activities. Upon administration, astaxanthin may act as an antioxidant and reduce oxidative stress, thereby preventing protein and lipid oxidation and DNA damage. By decreasing the production of reactive oxygen species (ROS) and free radicals, it may also prevent ROS-induced activation of nuclear factor-kappa B (NF-kB) transcription factor and the production of inflammatory cytokines such as interleukin-1beta (IL-1b), IL-6 and tumor necrosis factor-alpha (TNF-a). In addition, astaxanthin may inhibit cyclooxygenase-1 (COX-1) and nitric oxide (NO) activities, thereby reducing inflammation. Oxidative stress and inflammation play key roles in the pathogenesis of many diseases, including cardiovascular, neurological, autoimmune and neoplastic diseases. A carotenone that consists of beta,beta-carotene-4,4-dione bearing two hydroxy substituents at positions 3 and 3 (the 3S,3S diastereomer). A carotenoid pigment found mainly in animals (crustaceans, echinoderms) but also occurring in plants. It can occur free (as a red pigment), as an ester, or as a blue, brown or green chromoprotein. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant C2140 - Adjuvant
Stigmastanol
Stigmastanol is a 3-hydroxy steroid that is 5alpha-stigmastane which is substituted at the 3beta position by a hydroxy group. It has a role as an anticholesteremic drug and a plant metabolite. It is a 3-hydroxy steroid and a member of phytosterols. It derives from a hydride of a 5alpha-stigmastane. Stigmastanol is a natural product found in Alnus japonica, Dracaena cinnabari, and other organisms with data available. Stigmastanol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and a saturated bond in position 5-6 of the B ring. See also: Saw Palmetto (part of). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents C1907 - Drug, Natural Product > C28178 - Phytosterol > C68422 - Saturated Phytosterol D009676 - Noxae > D000963 - Antimetabolites Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2]. Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2].
Zeaxanthin
Zeaxanthin is a carotenoid xanthophyll and is one of the most common carotenoid found in nature. It is the pigment that gives corn, saffron, and many other plants their characteristic color. Zeaxanthin breaks down to form picrocrocin and safranal, which are responsible for the taste and aroma of saffron Carotenoids are among the most common pigments in nature and are natural lipid soluble antioxidants. Zeaxanthin is one of the two carotenoids (the other is lutein) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli and eggs, are associated with a significant reduction in the risk for cataract (up to 20\\%) and for age-related macular degeneration (up to 40\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations. (PMID: 11023002). Zeaxanthin has been found to be a microbial metabolite, it can be produced by Algibacter, Aquibacter, Escherichia, Flavobacterium, Formosa, Gramella, Hyunsoonleella, Kordia, Mesoflavibacter, Muricauda, Nubsella, Paracoccus, Siansivirga, Sphingomonas, Zeaxanthinibacter and yeast (https://reader.elsevier.com/reader/sd/pii/S0924224417302571?token=DE6BC6CC7DCDEA6150497AA3E375097A00F8E0C12AE03A8E420D85D1AC8855E62103143B5AE0B57E9C5828671F226801). It is a marker for the activity of Bacillus subtilis and/or Pseudomonas aeruginosa in the intestine. Higher levels are associated with higher levels of Bacillus or Pseudomonas. (PMID: 17555270; PMID: 12147474) Zeaxanthin is a carotenol. It has a role as a bacterial metabolite, a cofactor and an antioxidant. It derives from a hydride of a beta-carotene. Zeaxanthin is a most common carotenoid alcohols found in nature that is involved in the xanthophyll cycle. As a coexistent isomer of lutein, zeaxanthin is synthesized in plants and some micro-organisms. It gives the distinct yellow color to many vegetables and other plants including paprika, corn, saffron and wolfberries. Zeaxanthin is one of the two primary xanthophyll carotenoids contained within the retina of the eye and plays a predominant component in the central macula. It is available as a dietary supplement for eye health benefits and potential prevention of age-related macular degeneration. Zeaxanthin is also added as a food dye. Zeaxanthin is a natural product found in Bangia fuscopurpurea, Erythrobacter longus, and other organisms with data available. Carotenoids found in fruits and vegetables. Zeaxanthin accumulates in the MACULA LUTEA. See also: Saffron (part of); Corn (part of); Lycium barbarum fruit (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Benzyl isothiocyanate
Benzyl isothiocyanate, also known as alpha-isothiocyanatotoluene or isothiocyanic acid, benzyl ester, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Benzyl isothiocyanate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Benzyl isothiocyanate is a mild, dusty, and horseradish tasting compound and can be found in a number of food items such as cabbage, garden onion, garden cress, and papaya, which makes benzyl isothiocyanate a potential biomarker for the consumption of these food products. Benzyl isothiocyanate (BITC) is an isothiocyanate found in plants of the mustard family . Benzyl isothiocyanate is an isothiocyanate and a member of benzenes. It has a role as an antibacterial drug. Benzyl isothiocyanate is a natural product found in Erucaria microcarpa, Simicratea welwitschii, and other organisms with data available. See also: Lepidium meyenii root (part of). Benzyl isothiocyanate is found in brassicas. Benzyl isothiocyanate is isolated from Tropaeolum majus (garden nasturtium) and Lepidium sativum (garden cress), also in other plants especially in the Cruciferae. Potential nutriceutical. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2]. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2].
4-hydroxyphenylacetate
p-Hydroxyphenylacetic acid, also known as 4-hydroxybenzeneacetate, is classified as a member of the 1-hydroxy-2-unsubstituted benzenoids. 1-Hydroxy-2-unsubstituted benzenoids are phenols that are unsubstituted at the 2-position. p-Hydroxyphenylacetic acid is considered to be slightly soluble (in water) and acidic. p-Hydroxyphenylacetic acid can be synthesized from acetic acid. It is also a parent compound for other transformation products, including but not limited to, methyl 2-(4-hydroxyphenyl)acetate, ixerochinolide, and lactucopicrin 15-oxalate. p-Hydroxyphenylacetic acid can be found in numerous foods such as olives, cocoa beans, oats, and mushrooms. p-Hydroxyphenylacetic acid can be found throughout all human tissues and in all biofluids. Within a cell, p-hydroxyphenylacetic acid is primarily located in the cytoplasm and in the extracellular space. p-Hydroxyphenylacetic acid is also a microbial metabolite produced by Acinetobacter, Clostridium, Klebsiella, Pseudomonas, and Proteus. Higher levels of this metabolite are associated with an overgrowth of small intestinal bacteria from Clostridia species including C. difficile, C. stricklandii, C. lituseburense, C. subterminale, C. putrefaciens, and C. propionicum (PMID: 476929, 12173102). p-Hydroxyphenylacetic acid is detected after the consumption of whole grain. 4-hydroxyphenylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. It has a role as a plant metabolite, a fungal metabolite, a human metabolite and a mouse metabolite. It is a monocarboxylic acid and a member of phenols. It is functionally related to an acetic acid. It is a conjugate acid of a 4-hydroxyphenylacetate. 4-Hydroxyphenylacetic acid is a natural product found in Guanomyces polythrix, Forsythia suspensa, and other organisms with data available. 4-Hydroxyphenylacetic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. Constituent of sweet clover (Melilotus officinalis) and yeast Hydroxyphenylacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=156-38-7 (retrieved 2024-07-02) (CAS RN: 156-38-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
Cycloartenol
Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)
Cholestenone
Cholestenone belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, cholestenone is considered to be a sterol lipid molecule. Cholestenone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Cholestenone is a dehydrocholestanone. It is a product of cholesterol oxidase {EC 1.1.3.6] in the Bile acid biosynthesis pathway (KEGG). [HMDB] Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].
Stearic acid
Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.
Griseofulvin
Griseofulvin is only found in individuals that have used or taken this drug. It is an antifungal antibiotic. Griseofulvin may be given by mouth in the treatment of tinea infections. [PubChem]Griseofulvin is fungistatic, however the exact mechanism by which it inhibits the growth of dermatophytes is not clear. It is thought to inhibit fungal cell mitosis and nuclear acid synthesis. It also binds to and interferes with the function of spindle and cytoplasmic microtubules by binding to alpha and beta tubulin. It binds to keratin in human cells, then once it reaches the fungal site of action, it binds to fungal microtubes thus altering the fungal process of mitosis. D - Dermatologicals > D01 - Antifungals for dermatological use > D01B - Antifungals for systemic use > D01BA - Antifungals for systemic use D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Griseofulvin(Gris-PEG; Grifulvin) is a spirocyclic fungal natural product used in treatment of fungal dermatophytes; Antifungal drug.
Oleic acid
Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Pentadecanoic acid
Pentadecanoic acid, also known as pentadecylic acid or C15:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Pentadecanoic acid (its ester is called pentadecanoate) is a saturated fatty acid that has 15 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. Pentadecanoic acid is found in plants and ruminants. Many "odd" length long-chain fatty acids, such as pentadecanoic acid, are derived from the consumption of cattle fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of pentadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID: 9701185; PMID: 11238766). A fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185; PMID 11238766). Pentadecanoic acid is found in many foods, some of which are common bean, coriander, pepper (c. annuum), and hamburger. CONFIDENCE standard compound; INTERNAL_ID 248 Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.
Lignoceric acid (C24)
Lignoceric acid, also known as N-tetracosanoic acid or tetraeicosanoate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, lignoceric acid is considered to be a fatty acid lipid molecule. Lignoceric acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lignoceric acid can be found in a number of food items such as hazelnut, cheese, rye bread, and cetacea (dolphin, porpoise, whale), which makes lignoceric acid a potential biomarker for the consumption of these food products. Lignoceric acid can be found primarily in blood and feces, as well as in human fibroblasts tissue. Lignoceric acid exists in all eukaryotes, ranging from yeast to humans. In humans, lignoceric acid is involved in a couple of metabolic pathways, which include adrenoleukodystrophy, x-linked and beta oxidation of very long chain fatty acids. Lignoceric acid is also involved in carnitine-acylcarnitine translocase deficiency, which is a metabolic disorder. Lignoceric acid, or tetracosanoic acid, is the saturated fatty acid with formula C23H47COOH. It is found in wood tar, various cerebrosides, and in small amounts in most natural fats. The fatty acids of peanut oil contain small amounts of lignoceric acid (1.1\\\\% – 2.2\\\\%). This fatty acid is also a byproduct of lignin production . Tetracosanoic acid is a C24 straight-chain saturated fatty acid. It has a role as a volatile oil component, a plant metabolite, a human metabolite and a Daphnia tenebrosa metabolite. It is a very long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetracosanoate. Tetracosanoic acid, also known as N-tetracosanoate or lignoceric acid, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tetracosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tetracosanoic acid is a potentially toxic compound. Acquisition and generation of the data is financially supported in part by CREST/JST. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].
Vaccenic acid
Vaccenic acid is a naturally occurring trans fatty acid. It is the predominant kind of trans-fatty acid found in human milk, in the fat of ruminants, and in dairy products such as milk, butter, and yogurt. Trans fat in human milk may depend on trans fat content in food. Its IUPAC name is (11E)-11-octadecenoic acid, and its lipid shorthand name is 18:1 trans-11. The name was derived from the Latin vacca (cow). Vaccenic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Vaccenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
Cholesterol
Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
Behenic acid
Behenic acid, also known as docosanoate or 1-docosanoic acid, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, behenic acid is considered to be a fatty acid lipid molecule. Behenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Behenic acid can be found in a number of food items such as rice, opium poppy, pepper (c. frutescens), and gram bean, which makes behenic acid a potential biomarker for the consumption of these food products. Behenic acid can be found primarily in blood, feces, and urine. Behenic acid (also docosanoic acid) is a carboxylic acid, the saturated fatty acid with formula C21H43COOH. In appearance, it consists of white to cream color crystals or powder with a melting point of 80 °C and boiling point of 306 °C . Behenic acid, also docosanoic acid, is a normal carboxylic acid, a fatty acid with formula C21H43COOH. It is an important constituent of the behen oil extracted from the seeds of the Ben-oil tree, and it is so named from the Persian month Bahman when the roots of this tree were harvested. Behenic acid has been identified in the human placenta (PMID:32033212). Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.
Brassicasterol
Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].
Lanosterol
Lanosterol, also known as lanosterin, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Thus, lanosterol is considered to be a sterol lipid molecule. Lanosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Lanosterol is biochemically synthesized starting from acetyl-CoA by the HMG-CoA reductase pathway. The critical step is the enzymatic conversion of the acyclic terpene squalene to the polycylic lanosterol via 2,3-squalene oxide. Constituent of wool fat used e.g. as chewing-gum softenerand is) also from yeast COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
7-Dehydrocholesterol
7-Dehydrocholesterol (7-DHC), also known as provitamin D3 or 5,7-cholestadien-3-b-ol, belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, 7-dehydrocholesterol is also classified as a sterol. 7-Dehydrocholesterol is known as a zoosterol, meaning that it is a sterol isolated from animals (to distinguish those sterols isolated from plants which are called phytosterols). 7-DHC functions in the serum as a cholesterol precursor and is photochemically converted to vitamin D3 in the skin. Therefore 7-DHC functions as provitamin-D3. The presence of 7-DHC in human skin enables humans and other mammals to manufacture vitamin D3 (cholecalciferol) from ultraviolet rays in the sun light, via an intermediate isomer pre-vitamin D3. 7-DHC absorbs UV light most effectively at wavelengths between 290 and 320 nm and, thus, the production of vitamin D3 will occur primarily at those wavelengths (PMID: 9625080). The two most important factors that govern the generation of pre-vitamin D3 are the quantity (intensity) and quality (appropriate wavelength) of the UVB irradiation reaching the 7-dehydrocholesterol deep in the stratum basale and stratum spinosum (PMID: 9625080). 7-DHC is also found in the milk of several mammalian species, including cows (PMID: 10999630; PMID: 225459). It was discovered by Nobel-laureate organic chemist Adolf Windaus. 7-DHC can be produced by animals and plants via different pathways (PMID: 23717318). It is not produced by fungi in significant amounts. 7-DHC is made by some algae and can also be produced by some bacteria. 7-Dehydrocholesterol is a zoosterol (a sterol produced by animals rather than plants). It is a provitamin-D. The presence of this compound in skin enables humans to manufacture vitamin D3 from ultra-violet rays in the sun light, via an intermediate isomer provitamin D3. It is also found in breast milk. [HMDB] D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.
Lathosterol
Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID: 8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O [HMDB] Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID:8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.
Okadaic acid
Okadaic acid is found in mollusks. Okadaic acid is found in the marine sponges Halichondria okadai and Halichondria melanodocia and shellfish. It is a metabolite of Prorocentrum lima. It is a diarrhetic shellfish toxin. Okadaic acid is a toxin that accumulates in bivalves and causes diarrhetic shellfish poisoning. The molecular formula of okadaic acid, which is a derivative of a C38 fatty acid, is C44H68O13. The IUPAC name of okadaic acid is (2R)-2-hydroxy-3-{(2S,5R,6R,8S)-5-hydroxy-[(1R,2E)-3-((2R,5R,6S,8R,8aS)-8-hydroxy-6-{(1S,3S)-1-hydroxy-3-[(3R,6S)-3-methyl-1,7-dioxaspiro[5.5]undec-2-yl]butyl}-7-methyleneoctahydro-3H,3H-spiro[furan-2,2-pyrano[3,2-b]pyran]-5-yl)-1-methylprop-2-en-1-yl]-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl}-2-methylpropanoic acid. Okadaic acid was named from the marine sponge Halichondria okadai, from which okadaic acid was isolated for the first time. It has also been isolated from another marine sponge, H. malanodocia, as a cytotoxin. The real producer of okadaic acid is a marine dinoflagellate D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators D004791 - Enzyme Inhibitors D007476 - Ionophores
Fucosterol
Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosus. Fucosterol is found in lemon grass and coconut. Fucosterol is found in coconut. Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosu Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].
Parthenin
24-Methylenecholesterol
24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72). 24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol. 24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol having the structure of cholesterol with a methylene group at C-24. Constituent of clams and oysters 24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].
Campestanol
Campestanol is plant stanol. It can decrease the circulating LDL-cholesterol level by reducing intestinal cholesterol absorption. (PMID 8143759). Constituent of coffee and of pot marigold (Calendula officinalis)
Nonadecanoic acid
Nonadecanoic acid, also known as n-nonadecanoic acid or nonadecylic acid or C19:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms, with nonadecanoic acid (its ester is called nonadecanoate) having 19 carbon atoms. Nonadecanoic acid is a very hydrophobic molecule, practically insoluble (in water). It is a solid with a melting point of 69.4°C. It can be found in bacteria, plants, and animals (including animal milk) (Nature 176:882; PMID: 14168161). It is secreted by termites (Rhinotermes marginalis) as part of its defence mechanism (Comp. Biochem. Physiol. B 71:731). Nonadecanoic acid is a C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. It has a role as a fungal metabolite. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a nonadecanoate. Nonadecanoic acid is a natural product found in Staphisagria macrosperma, Malva sylvestris, and other organisms with data available. An odd-numbered long chain fatty acid, likely derived from bacterial or plant sources. Nonadecanoic acid has been found in ox fats and vegetable oils. It is also used by certain insects as a phermone. [HMDB]. A C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].
halichondrin B
D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents
Halistanol sulfate
C29H52O12S3 (688.2620751999999)
Sceptrin
Cerebronic acid
Constituent of various glycosphingolipids of wheat, corn and other plant subspecies Cerebronic acid is found in peanut and cereals and cereal products. D-Cerebronic acid is found in mushrooms. D-Cerebronic acid is isolated from Polyporus umbellatus (zhu ling).
Clionasterol
Clionasterol is a triterpenoid isolated from the Indian marine red alga Gracilaria edulis, the sponge Veronica aerophoba and the Kenyan Marine Green. Macroalga Halimeda macroloba. It is a potent inhibitor of complement component C1. (PMID 12624828). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites
5-Dehydroepisterol
5-Dehydroepisterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 5-dehydroepisterol is considered to be a sterol lipid molecule. 5-Dehydroepisterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 5-Dehydroepisterol is an intermediate in the biosynthesis of steroids and is converted from episterol via the enzyme lathosterol oxidase (EC 1.14.21.6). It is then converted into 24-methylenecholesterol via the enzyme 7-dehydrocholesterol reductase (EC 1.3.1.21). 5-Dehydroepisterol is an intermediate in the biosynthesis of steroids (KEGG ID C15780), and is converted from Episterol via the enzyme lathosterol oxidase [EC:1.14.21.6]. It is then converted to 24-Methylenecholesterol via the enzyme 7-dehydrocholesterol reductase [EC:1.3.1.21]. [HMDB]
delta7-Avenasterol
delta7-Avenasterol, also known as 7-dehydroavenasterol or 24Z-ethylidenelathosterol, belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, delta7-avenasterol is considered to be a sterol lipid molecule. delta7-Avenasterol has been detected, but not quantified in, several different foods, such as garden onions, fenugreeks, vaccinium (blueberry, cranberry, huckleberry), grapefruit/pummelo hybrids, and pulses. This could make delta7-avenasterol a potential biomarker for the consumption of these foods. delta7-Avenasterol is an intermediate in the biosynthesis of steroids. It is the fourth to last step in the synthesis of stigmasterol and is converted from 24-ethylidenelophenol. It is then converted into 5-dehydroavenasterol via the enzyme lathosterol oxidase (EC 1.14.21.6). Avenasterol, also known as (24z)-5alpha-stigmasta-7,24(28)-dien-3beta-ol or 7-dehydroavenasterol, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, avenasterol is considered to be a sterol lipid molecule. Avenasterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Avenasterol can be found in a number of food items such as rice, black chokeberry, dandelion, and common mushroom, which makes avenasterol a potential biomarker for the consumption of these food products. Avenasterol is a natural, non-cholesterol sterol . delta7-Avenasterol is a natural product found in Staphisagria macrosperma, Amaranthus cruentus, and other organisms with data available.
Pentacosanoic acid
Pentacosanoic acid, also known as pentacosanoate or hyenate, is a straight-chain saturated fatty acid and a very long-chain fatty acid. It is a conjugate acid of a pentacosanoate. Pentacosanoic acid belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Pentacosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Pentacosanoic acid is a potentially toxic compound. Pentacosanoic acid is a straight-chain saturated fatty acid and a very long-chain fatty acid. It is a conjugate acid of a pentacosanoate. Pentacosanoic acid is a natural product found in Staphisagria macrosperma, Rhizophora apiculata, and other organisms with data available. Isolated from Citrus bergamia (bergamot orange) Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1]. Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1].
Heneicosanoic acid
Henicosanoic acid, also known as N-heneicosanoate or 21:0,is a long-chain fatty acid that is henicosane in which one of the methyl groups has been oxidised to give the corresponding carboxylic acid. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a henicosanoate. Heneicosanoic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Heneicosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heneicosanoic acid is a potentially toxic compound. Isolated from olive oil (Olea europaea) Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3]. Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3].
Heptadecanoic acid
Heptadecanoic acid, or margaric acid, is a saturated fatty acid. It occurs as a trace component of the fat and milkfat of ruminants, but it does not occur in any natural animal or vegetable fat at concentrations over half a percent. Salts and esters of heptadecanoic acid are called heptadecanoates (Wikipedia). Heptadecanoic acid is found in many foods, some of which are dandelion, potato, ginger, and green bean. Heptadecanoic acid is a constituent of Erythrina crista-galli trunkwood and bark. Common constituent of lipids, e.g. present in Physalia physalis (Portuguese-man-of-war). Heptadecanoic acid is a fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Heptadecanoic acid constitutes 0.61\\\\% of milk fat and 0.83\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185). Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].
Isopalmitic acid
Isopalmitic acid is found in milk and milk products. Isopalmitic acid occurs in butterfa Occurs in butterfat. Isopalmitic acid is found in milk and milk products.
(+)-alpha-Muurolene
(+)-alpha-Muurolene is isolated from various plant oils including Pinus mugo (dwarf mountain pine). Isolated from various plant oils including Pinus mugo (dwarf mountain pine)
Aristolene
Constituent of calarene from sweet flag oil. Aristolene is found in herbs and spices and root vegetables. Aristolene is found in herbs and spices. Aristolene is a constituent of calarene from sweet flag oil
17-Methyloctadecanoic acid
17-Methyloctadecanoic acid, also known as 17-methylstearic acid, is a medium-chain saturated iso-fatty acid. 17-Methyloctadecanoic acid is found in fishes such as Baltic salmon. Occurs in Baltic salmon. xi-17-Methyloctadecanoic acid is found in fishes.
Turmeronol B
Turmeronol B is found in herbs and spices. Turmeronol B is a constituent of turmeric (Curcuma longa). Constituent of turmeric (Curcuma longa). Turmeronol B is found in turmeric and herbs and spices.
Chondrillasterol
Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. Chondrillasterol is found in tea. Chondrillasterol is found in tea. Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D003879 - Dermatologic Agents D003358 - Cosmetics
C-glycosyltryptophan
Tryptophan 2-C-mannoside, also known as 2-alpha-D-mannopyranosyl-L-tryptophan or C-mannosyltryptophan, belongs to the class of organic compounds known as indolyl carboxylic acids and derivatives. Indolyl carboxylic acids and derivatives are compounds containing a carboxylic acid chain (of at least 2 carbon atoms) linked to an indole ring. It is an L-tryptophan derivative and a C-glycosyl compound in which the hydrogen at position 2 on the indole portion has been replaced by an alpha-mannosyl residue. Tryptophan 2-C-mannoside is a very strong basic compound (based on its pKa). Tryptophan 2-C-mannoside has been identified in blood and urine and is a marker of kidney function (PMID: 29234020).
(-)-Abscisic acid
Dehydroergosterol
Poriferasterol
2-(beta-D-Mannopyranosyl)-L-tryptophan
Halichondrin B
D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents
Isobehenic acid
Isobehenic acid, also known as isobehenate, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, isobehenic acid is considered to be a fatty acid lipid molecule. Isobehenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Isobehenic acid can be found in corn, which makes isobehenic acid a potential biomarker for the consumption of this food product.
2-cis-abscisate
2-cis-abscisate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 2-cis-abscisate can be found in a number of food items such as common wheat, lemon thyme, black raspberry, and acorn, which makes 2-cis-abscisate a potential biomarker for the consumption of these food products.
C14:0
Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.
C17:0
Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].
PHENYLACETIC ACID
D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents
Palmitic Acid
COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
VACCENIC ACID
An octadecenoic acid having a double bond at position 11; and which can occur in cis- or trans- configurations. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
4-Hydroxyphenylacetic acid
4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
13-Methyltetradecanoic acid
13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2]. 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].
Benzyl isothiocyanate
Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2]. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2].
sitosterol
A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
Astaxanthin
Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant C2140 - Adjuvant
Fungisterol
An ergostanoid that is 5alpha-ergost-7-ene substituted by a beta-hydroxy group at position 3. It has been isolated from the mycelia of Cordyceps sinensis.
Stigmasterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.
Fucosterol
A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24 (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol can be found in horseradish tree and sunflower, which makes (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol a potential biomarker for the consumption of these food products. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].
18-Methylnonadecanoic acid
A methyl-branched fatty acid that is nonadecanoic acid substituted by a methyl group at position 18.
4,5-dibromo-N-(methoxymethyl)-1H-pyrrole-2-carboxamide
22-methyltetracosanoic acid
A methyl-branched fatty acid that is tetracosanoic acid (lignoceric acid) substituted by a methyl group at position 22.
2-hydroxyhenicosanoic acid
A 2-hydroxy fatty acid that is henicosanoic acid substituted by a hydroxy group at position 2.
20-methyldocosanoic acid
A methyl-branched fatty acid that is docosanoic acid (behenic acid) substituted by a methyl group at position 20.
okadaic acid
D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators D004791 - Enzyme Inhibitors D007476 - Ionophores A polycyclic ether that is produced by several species of dinoflagellates, and is known to accumulate in both marine sponges and shellfish. A polyketide, polyether derivative of a C38 fatty acid, it is one of the primary causes of diarrhetic shellfish poisoning (DSP). It is a potent inhibitor of specific protein phosphatases and is known to have a variety of negative effects on cells.
Cholesterol
A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
2-Methylhexadecanoic acid
A methyl-branched fatty acid that is hexadecanoic (palmitic) acid bearing a methyl substituent at position 2.
Stigmastanol
Stigmastanol is a 3-hydroxy steroid that is 5alpha-stigmastane which is substituted at the 3beta position by a hydroxy group. It has a role as an anticholesteremic drug and a plant metabolite. It is a 3-hydroxy steroid and a member of phytosterols. It derives from a hydride of a 5alpha-stigmastane. Stigmastanol is a natural product found in Alnus japonica, Dracaena cinnabari, and other organisms with data available. Stigmastanol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and a saturated bond in position 5-6 of the B ring. See also: Saw Palmetto (part of). A 3-hydroxy steroid that is 5alpha-stigmastane which is substituted at the 3beta position by a hydroxy group. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents C1907 - Drug, Natural Product > C28178 - Phytosterol > C68422 - Saturated Phytosterol D009676 - Noxae > D000963 - Antimetabolites Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2]. Stigmastanol is the 6-amino derivative isolated from Hypericum riparium. Hypericum riparium A. Chev. is a Cameroonian medicinal plant belonging to the family Guttiferae[1][2].
Brassicasterol
An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].
Campesterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
Ergosterol
Indicator of fungal contamination, especies in cereals. Occurs in yeast and fungi. The main fungal steroidand is also found in small amts. in higher plant prods., e.g. palm oil [DFC]. D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.
Griseofulvin
An oxaspiro compound produced by Penicillium griseofulvum. It is used by mouth as an antifungal drug for infections involving the scalp, hair, nails and skin that do not respond to topical treatment. D - Dermatologicals > D01 - Antifungals for dermatological use > D01B - Antifungals for systemic use > D01BA - Antifungals for systemic use D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.075 Griseofulvin(Gris-PEG; Grifulvin) is a spirocyclic fungal natural product used in treatment of fungal dermatophytes; Antifungal drug.
Thymidine
C10H14N2O5 (242.09026740000002)
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.220 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.211 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.213 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].
β-Carotene
The novel carbohydrate-derived b-carboline, 1-pentahydroxypentyl-1,2,3,4-tetrahydro-b-carboline-3-carboxylic acid, was identified in fruit- and vegetable-derived products such as juices, jams, and tomato sauces. This compound occurred as two diastereoisomers, a cis isomer (the major compound) and a trans isomer, ranging from undetectable amounts to 6.5 ug/g. Grape, tomato, pineapple, and tropical juices exhibited the highest amount of this alkaloid (up to 3.8 mg/L), whereas apple, banana, and peach juices showed very low or nondetectable levels. This tetrahydro-b-carboline was also found in jams (up to 0.45 ug/g), and a relative high amount was present in tomato concentrate (6.5 ug/g) and sauce (up to 1.8 ug/g). This b-carboline occurred in fruit-derived products as a glycoconjugate from a chemical condensation of d-glucose and l-tryptophan that is highly favored at low pH values and high temperature. Production, processing treatments, and storage of fruit juices and jams can then release this b-carboline. Fruit-derived products and other foods containing this compound might be an exogenous dietary source of this glucose-derived tetrahydro-b-carboline.(PMID: 12137498) [HMDB] Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.
Trigonelline
MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WWNNZCOKKKDOPX-UHFFFAOYSA-N_STSL_0022_Trigonelline (chloride)_0125fmol_180416_S2_LC02_MS02_26; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.
Allantoin
C78284 - Agent Affecting Integumentary System > C29708 - Anti-psoriatic Agent C78284 - Agent Affecting Integumentary System > C29700 - Astringent D003879 - Dermatologic Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; POJWUDADGALRAB-UHFFFAOYSA-N_STSL_0150_Allantoin_8000fmol_180425_S2_LC02_MS02_50; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth.
PHENYLACETIC ACID
A monocarboxylic acid that is toluene in which one of the hydrogens of the methyl group has been replaced by a carboxy group. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents
Lignoceric acid
A C24 straight-chain saturated fatty acid. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].
PENTADECANOIC ACID
A straight-chain saturated fatty acid containing fifteen-carbon atoms. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.
Myristic Acid
Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.
Tridecylic acid
A C13 straight-chain saturated fatty acid. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].
Behenic acid
A straight-chain, C22, long-chain saturated fatty acid. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.
Margaric acid
A C17 saturated fatty acid and trace component of fats in ruminants. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].
stearic acid
Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.
Oleic acid
An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
trans-Vaccenic acid
The trans- isomer of vaccenic acid. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
Zeaxanthin
Meso-zeaxanthin (3R,3´S-zeaxanthin) is a xanthophyll carotenoid, as it contains oxygen and hydrocarbons, and is one of the three stereoisomers of zeaxanthin. Of the three stereoisomers, meso-zeaxanthin is the second most abundant in nature after 3R,3´R-zeaxanthin, which is produced by plants and algae. To date, meso-zeaxanthin has been identified in specific tissues of marine organisms and in the macula lutea, also known as the "yellow spot", of the human retina . Meso-zeaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Meso-zeaxanthin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Meso-zeaxanthin can be found in channel catfish, crustaceans, and fishes, which makes meso-zeaxanthin a potential biomarker for the consumption of these food products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.
p-Hydroxybenzaldehyde
p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
7-Dehydrocholesterol
D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.
Cholestenone
Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].
Arachidic acid
Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].
Pentacosylic acid
Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1]. Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1].
4-Hydroxybenzaldehyde
p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
2-deoxyuridine
C9H12N2O5 (228.07461819999997)
A pyrimidine 2-deoxyribonucleoside having uracil as the nucleobase. D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.
Octadecanoic acid
A C18 straight-chain saturated fatty acid component of many animal and vegetable lipids. As well as in the diet, it is used in hardening soaps, softening plastics and in making cosmetics, candles and plastics.
14-methyl Palmitic Acid
A methyl-branched fatty acid that is hexadecanoic acid (palmitic acid) substituted by a methyl group at position 14.
Dormin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D006133 - Growth Substances > D010937 - Plant Growth Regulators (±)-Abscisic acid is an orally active plant hormone that is present also in animals. (±)-Abscisic acid (ABA) contributes to the regulation of glycemia in mammals[1]. (±)-Abscisic acid is an orally active plant hormone that is present also in animals. (±)-Abscisic acid (ABA) contributes to the regulation of glycemia in mammals[1]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2].
C13:0
Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].
C22:0
Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.
Lathosterol
Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.
clionasterol
A member of the class of phytosterols that is poriferast-5-ene carrying a beta-hydroxy substituent at position 3. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites
spinasterol
α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].
5α-Ergosta-7,22-dien-3β-ol
A 3beta-sterol consisting of an ergostane skeleton with double bonds at 7- and 22-positions.
Tridecanoic acid
Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].
143-25-9
trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
20-methylhenicosanoic acid
A methyl-branched fatty acid that is henicosanoic acid substituted by a methyl group at position 20.
delta7-Avenasterol
Spinasterol
Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].
Cerebronic acid
A very long-chain hydroxy fatty acid composed of lignoceric acid having a 2-hydroxy substituent.
Coprostanol
A member of the class of phytosterols that is 5beta-cholestane carrying a hydroxy substituent at the 3beta-position.
Hexadec-9-enoic acid
A hexadecenoic acid in which the double bond is located at position 9.
14-Methylpentadecanoic acid
A methyl-branched fatty acid that is pentadecanoic acid substituted by a methyl group at position 14. It is a biomarker for rheumatoid arthritis.
(7R)-7-(5-carboxy-5-oxopentanamido)cephalosporanate(2-)
Dicarboxylate anion of (7R)-7-(5-carboxy-5-oxopentanamido)cephalosporanate acid.
Dihydrocholesterol
5α-Cholestan-3β-ol is a derivitized steroid compound. 5α-Cholestan-3β-ol is a derivitized steroid compound.
16-methyloctadecanoic acid
A methyl-branched fatty acid that is octadecanoic acid substituted by a methyl group at position 16.
2-hydroxyarachidic acid
A long-chain fatty acid that is arachidic (icosanoic) acid substituted at position 2 by a hydroxy group.
Dehydroergosterol
A phytosterol consiting of ergostane having double bonds at the 5,6-, 7,8- 9,11- and 22,23-positions as well as a 3beta-hydroxy group.
18-methylicosanoic acid
A methyl-branched fatty acid that is arachidic acid substituted by a methyl group at position 18.
Avenasterol
A stigmastane sterol that is 5alpha-stigmastane carrying a hydroxy group at position 3beta and double bonds at positions 7 and 24.
Hexadecenoate
A long-chain unsaturated fatty acid anion that is the conjugate base of hexadecenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
Henicosanoic acid
A long-chain fatty acid that is henicosane in which one of the methyl groups has been oxidised to give the corresponding carboxylic acid.
Icosanoic acid
A C20 striaght-chain saturated fatty acid which forms a minor constituent of peanut (L. arachis) and corn oils. Used as an organic thin film in the production of liquid crystals for a wide variety of technical applications.
(1s,7s,10s,19s,22s,25s,28s,36r)-10-benzyl-8,11,20,23,36-pentahydroxy-22-[(1r)-1-hydroxyethyl]-25-(2-methylpropyl)-3,9,12,15,21,24,27,29-octaazahexacyclo[25.10.0.0³,⁷.0¹⁵,¹⁹.0²⁸,³⁶.0³⁰,³⁵]heptatriaconta-8,11,20,23,30,32,34-heptaene-2,14,26-trione
7,8-dibromo-3-imino-2,4,6,12-tetraazatetracyclo[10.3.0.0¹,⁵.0⁶,¹⁰]pentadeca-7,9-dien-11-one
(1r,3ar,3bs,5as,7r,9as,9br,11ar)-11a-methyl-1-[(2r)-6-methylheptan-2-yl]-hexadecahydrocyclopenta[a]phenanthren-7-ol
6-isocyano-7-isopropyl-2,10-dimethylspiro[4.5]dec-1-ene
(2r,5z)-10-[(1s,2s)-2-decylcyclopropyl]-n-[(2s,3r,7z)-12-[(1s,2s)-2-decylcyclopropyl]-1-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-3-[(3-methylbut-2-en-1-yl)oxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3-hydroxydodec-7-en-2-yl]-2-hydroxydec-5-enimidic acid
C65H117NO14 (1135.8473622000001)
(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a,11a-dimethyl-1-[(1r)-1-[(1r,2r)-2-[(2r)-3-methylbutan-2-yl]cyclopropyl]ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol
9a,11a-dimethyl-1-(5-methylhept-3-en-2-yl)-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1s,2s,4ar,5r,8r,8ar)-8-[(2s,5r)-5-chloro-2,6,6-trimethyloxan-2-yl]-1,5-diisocyano-2,5-dimethyl-octahydronaphthalen-2-ol
C22H33ClN2O2 (392.22304280000003)
(1r,3ar,7s,9as,11ar)-9a,11a-dimethyl-1-[(2r,3e)-6-methylhept-3-en-2-yl]-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-ol
(1r,9r,10s,14s)-3-bromo-12,14-dihydroxy-13-methyl-2,8,11,13-tetraazatetracyclo[7.6.0.0²,⁶.0¹⁰,¹⁴]pentadeca-3,5,11-trien-7-one
(2s,3r,4s,5r)-2-[(2r)-3-[(17z)-tetracos-17-en-1-yloxy]-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}propoxy]oxane-3,4,5-triol
(1r,2r,4as,5s,8as)-1,5-diisocyano-8-[(2r,5s)-5-(2-isocyanopropan-2-yl)-2-methyloxolan-2-yl]-2,5-dimethyl-octahydronaphthalen-2-ol
C23H33N3O2 (383.25726380000003)
4-(4-bromo-1h-pyrrole-2-carbonyloxy)piperidine-2-carboxylic acid
C11H13BrN2O4 (316.00586380000004)
1,5-diisocyano-2,5-dimethyl-8-[2-methyl-5-(prop-1-en-2-yl)oxolan-2-yl]-octahydronaphthalen-2-ol
C22H32N2O2 (356.24636519999996)
7-(2-isothiocyanatopropan-2-yl)-1,4a-dimethyl-2,3,4,5,6,7-hexahydro-1h-naphthalene
(4e,8ar)-7-bromo-1,8a-dihydroxy-4-[(2-imino-1,3-dihydroimidazol-4-yl)methylidene]-3h-pyrrolo[1,2-a]pyrazin-6-one
C11H10BrN5O3 (338.99669700000004)
(5r,6s,7r,10s)-7-isopropyl-6-isothiocyanato-2,10-dimethylspiro[4.5]dec-1-ene
10-{[2-(4-hydroxyphenyl)ethyl]azanidyl}-7-methyl-11-oxo-2,7-diazatricyclo[6.3.1.0⁴,¹²]dodeca-1,3,8(12),9-tetraen-7-ium-7-yl
1-(5-ethyl-6-methylheptan-2-yl)-11a-methyl-hexadecahydrocyclopenta[a]phenanthren-7-ol
n-{2,8-dioxo-1,7-diazatricyclo[7.3.0.0³,⁷]dodec-9-en-6-yl}guanidine
C11H15N5O2 (249.12256900000003)
(1s,2s,4ar,8as)-1-isothiocyanato-4a-methyl-8-methylidene-2-(prop-1-en-2-yl)-octahydronaphthalene
2-(2-hydroxy-4-methylphenyl)-6-methylheptan-4-yl acetate
[(2e)-3-[(1r,3ar,7r,7ar)-3a,7-dimethyl-octahydroinden-1-yl]-2-methylprop-2-en-1-yl]sulfanylcarbonitrile
(1r,3ar,5r,5ar,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-5-methylhex-3-en-2-yl]-1h,2h,3h,3ah,5h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,5a,7-triol
(3s,6r,9s,12s,14e,16r,18s)-6-[(3-bromo-4-hydroxyphenyl)methyl]-5,11-dihydroxy-9-(hydroxymethyl)-3,7,12,14,16,18-hexamethyl-1-oxa-4,7,10-triazacyclooctadeca-4,10,14-triene-2,8-dione
C28H40BrN3O7 (609.2049470000001)
9a,11a-dimethyl-1-(5-methylhex-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1ar,4r,4as,7r,7as,7bs)-4-isothiocyanato-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulene
5-[(1s,2r,4ar,8ar)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]-3-methylpent-1-en-3-ol
(5's,5ar,6s,7s,9as)-5'-[(3s,5as,6s,8as)-3-hydroxy-2,2,5a,6-tetramethyl-hexahydrocyclopenta[b]oxepin-6-yl]-2,2,5a,7-tetramethyl-hexahydrospiro[1-benzoxepine-6,2'-oxolan]-3-one
7-isopropyl-6-isothiocyanato-2,10-dimethylspiro[4.5]dec-1-ene
(3s,6r,9s,12s,14e,16r,18s)-5,11-dihydroxy-6-[(4-hydroxy-3-iodophenyl)methyl]-9-(hydroxymethyl)-3,7,12,14,16,18-hexamethyl-1-oxa-4,7,10-triazacyclooctadeca-4,10,14-triene-2,8-dione
1-(5,6-dimethylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-ol
[(1r,2s,3as,3br,5ar,6r,7r,8s,9ar,9bs,11as)-1-ethenyl-2,6,7-trihydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-8-yl]oxidanesulfonic acid
C21H34O7S (430.20251340000004)
15'-(aminomethyl)-16'-chloro-5-hydroxy-2,3'-diimino-2',4',6',12'-tetraazaspiro[imidazolidine-4,17'-pentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹⁴,¹⁸]octadecane]-7',9'-dien-11'-one
(1'r,4r,5r,5's,14'r,15's,16'r,18's)-15'-(aminomethyl)-16'-chloro-5-hydroxy-2,3'-diimino-2',4',6',12'-tetraazaspiro[imidazolidine-4,17'-pentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹⁴,¹⁸]octadecane]-7',9'-dien-11'-one
{2-[(2r,5s)-5-[(1r,4r,4as,8ar)-4,7-dimethyl-4-(methylideneamino)-2,3,4a,5,6,8a-hexahydro-1h-naphthalen-1-yl]-5-methyloxolan-2-yl]propan-2-yl}(methylidene)amine
n-[(1s,4s,4as,5r,6r,8as)-4-[(2r,5s)-5-chloro-2,6,6-trimethyloxan-2-yl]-6-hydroxy-5-isothiocyanato-1,6-dimethyl-octahydronaphthalen-1-yl]carboximidic acid
C22H35ClN2O3S (442.20567900000003)
9a,11a-dimethyl-1-(5-methylhex-3-en-2-yl)-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
9a,11a-dimethyl-1-(5-methylhept-3-en-2-yl)-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-ol
(2r,14r)-n-[(2s,3s,16s)-1-{[(2r,3r,4r,5s)-5-[(1r)-1,2-dihydroxyethyl]-3,4-dihydroxyoxolan-2-yl]oxy}-3-hydroxy-16-methyloctadecan-2-yl]-2-hydroxy-14-methylhexadecanimidic acid
4-[(1e)-but-1-en-1-yl]-5,6,8-trimethyl-1h,6h,7h,8h-cyclopenta[g]indole
(4r,4as,8ar)-1,6-dimethyl-4-[(2r)-6-methylhept-5-en-2-yl]-3,4,4a,7,8,8a-hexahydronaphthalene
5-[(4z)-3-bromo-8-hydroxy-1h,5h,6h-pyrrolo[2,3-c]azepin-4-ylidene]-2-imino-1h-imidazol-4-ol
(1r,3ar,5as,7s,9as,11ar)-1-[(2r,3e,5r)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol
[(1s,2r,5s,6s,9s,10s,13r,14r)-13-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-2,14-dimethyltetracyclo[7.7.0.0²,⁶.0¹⁰,¹⁴]hexadecan-5-yl]methyl acetate
1-[25-(3,3-dimethyloxiran-2-yl)-15-methyl-1,3,13,15-tetraazaheptacyclo[18.4.1.0²,⁶.0⁶,²².0⁷,¹².0¹⁴,²².0¹⁶,²¹]pentacosa-7,9,11,16,18,20-hexaen-3-yl]hexa-2,4-dien-1-one
(1r,3as,3br,5as,7s,9as,9br,11ar)-11a-methyl-1-[(2r,3e)-5-methylhex-3-en-2-yl]-hexadecahydrocyclopenta[a]phenanthren-7-ol
(1r,3as,3br,5as,7s,9as,9br,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-11a-methyl-hexadecahydrocyclopenta[a]phenanthren-7-ol
6-{2-[7-(acetyloxy)-3-hydroxy-2,2,5a,7-tetramethyl-hexahydro-3h-1-benzoxepin-6-yl]ethyl}-2,2,5a,7-tetramethyl-3-oxo-hexahydro-1-benzoxepin-7-yl acetate
2-[(2e,4ar,6r,7s,8as)-6-chloro-7-hydroxy-5,5,8a-trimethyl-hexahydro-1h-naphthalen-2-ylidene]acetaldehyde
(6r)-3-methyl-6-[(2s)-6-methylhept-5-en-2-yl]cyclohex-2-en-1-one
methyl 3,4-dibromo-12-imino-7-oxo-5,8,11,13-tetraazatricyclo[8.4.0.0²,⁶]tetradeca-1(10),2(6),3,13-tetraene-14-carboxylate
C12H9Br2N5O3 (428.90720840000006)
5-{2,3-dibromo-8-oxo-1h,4h,5h,6h,7h-pyrrolo[2,3-c]azepin-4-yl}-2-imino-3h-imidazol-4-one
6-hydroxy-6-[2-(3-hydroxy-2,2,5a-trimethyl-7-methylidene-hexahydro-3h-1-benzoxepin-6-yl)ethyl]-2,2,5a,7-tetramethyl-hexahydro-1-benzoxepin-3-one
(1'r,4r,5r,5's,14'r,15's,16'r,18's)-15'-(aminomethyl)-7',8'-dibromo-16'-chloro-5-hydroxy-2,3'-diimino-2',4',6',12'-tetraazaspiro[imidazolidine-4,17'-pentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹⁴,¹⁸]octadecane]-7',9'-dien-11'-one
(1r,5s)-7,8-dibromo-3-hydroxy-2,4,6,12-tetraazatetracyclo[10.3.0.0¹,⁵.0⁶,¹⁰]pentadeca-3,7,9-trien-11-one
3-bromo-4-(2-imino-1,3-dihydroimidazol-4-yl)-1h,4h,5h,6h-pyrrolo[2,3-c]azepin-8-ol
n-(3-{1-[2-(3-bromo-4-methoxyphenyl)ethenyl]-2-hydroxy-5-oxoimidazol-4-ylidene}propyl)guanidine
(1r,3as,4s,8ar)-7-isopropyl-4-isothiocyanato-1,4-dimethyl-2,3,3a,5,6,8a-hexahydro-1h-azulene
ethyl (8e,17e,19e)-18-bromotricosa-8,17,19-trien-4,6-diynoate
9a,11a-dimethyl-1-(5-methylhept-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
2-imino-5-{8-oxo-1h,5h,6h,7h-pyrrolo[2,3-c]azepin-4-ylidene}imidazolidin-4-one
(3s,5as,6s,7s,9as)-3-(acetyloxy)-6-{2-[(1s,2r,3r,6s,9r)-9-hydroxy-2,3,8,8-tetramethyl-7,12-dioxatricyclo[7.2.1.0¹,⁶]dodecan-2-yl]ethyl}-2,2,5a,7-tetramethyl-hexahydro-3h-1-benzoxepin-7-yl acetate
(1r,2s,6r,9r,11r,12s,14r)-11-hydroxy-3-isopropyl-6,9,12-trimethyl-13-oxatetracyclo[7.6.0.0²,⁶.0¹²,¹⁴]pentadec-3-ene-5,7-dione
2,3-dibromo-4-[(4e)-5-hydroxy-2-imino-3h-imidazol-4-ylidene]-1h,5h,6h,7h-pyrrolo[2,3-c]azepin-8-one
n-[4,5-dihydroxy-6-(hydroxymethyl)-2-({1-[(18-hydroxyoctadecyl)oxy]-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]propan-2-yl}oxy)oxan-3-yl]ethanimidic acid
C34H65NO13 (695.4455680000001)
ethyl (8e,16s)-16-methoxytricos-8-en-4,6,17,19-tetraynoate
5-[(4e)-8-hydroxy-1h,5h,6h-pyrrolo[2,3-c]azepin-4-ylidene]-2-imino-1h-imidazol-4-ol
(3r,4r,5r,6r,10s)-4,6-dihydroxy-13-oxo-9-thia-11,15,20λ⁵-triazaheptacyclo[12.6.1.1³,¹⁰.0²,¹².0³,⁸.0⁵,²⁰.0¹⁷,²¹]docosa-1,7,11,14(21),16-pentaen-20-ylium-15-id-20-yl
3,24-dibenzyl-5,14,23,26-tetrahydroxy-12-[(4-hydroxyphenyl)methyl]-21-(sec-butyl)-1,4,10,13,19,22,25-heptaazatetracyclo[25.3.0.0⁶,¹⁰.0¹⁵,¹⁹]triaconta-4,13,22,25-tetraene-2,11,20-trione
C48H59N7O8 (861.4424894000001)
(4s,6s)-6-[(4-bromo-1h-pyrrole-2-carbonyloxy)methyl]-1,6-dimethyl-4,5-dihydropyrimidine-4-carboxylic acid
C13H16BrN3O4 (357.03241160000005)
(1r,3ar,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-5-methylhex-3-en-2-yl]-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
[9a,11a-dimethyl-7,8-bis(sulfooxy)-1-(5,6,6-trimethylheptan-2-yl)-tetradecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxidanesulfonic acid
C29H52O12S3 (688.2620751999999)
(4r)-4-[(2s)-2-isocyano-6-methylhept-5-en-2-yl]-1-methylcyclohex-1-ene
(3s,5as,6s,7s,9as)-6-{2-[(3s,5as,6s,7r,9as)-7-(acetyloxy)-3-hydroxy-2,2,5a,7-tetramethyl-hexahydro-3h-1-benzoxepin-6-yl]ethyl}-3-hydroxy-2,2,5a,7-tetramethyl-hexahydro-3h-1-benzoxepin-7-yl acetate
4-[5-(1-cyano-1-methylethyl)-2-methyloxolan-2-yl]-5-hydroxy-1,6-dimethyl-octahydronaphthalene-1,6-dicarbonitrile
C23H33N3O2 (383.25726380000003)
(3ar,5as,8s,10ar,10bs)-8-hydroxy-1-isopropyl-3a,5a,8-trimethyl-5h,9h,10h,10ah,10bh-cyclohepta[e]indene-3,4-dione
(2r,4r)-4-(4-bromo-1h-pyrrole-2-carbonyloxy)piperidine-2-carboxylic acid
C11H13BrN2O4 (316.00586380000004)
n-[(1r,4r,4ar,8as)-4-[(2s,5r)-5-chloro-2,6,6-trimethyloxan-2-yl]-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-yl]carboximidic acid
C21H34ClNO2 (367.22779340000005)
2-[(3s,6s,9s,15s,18s,21s,24s)-21-benzyl-18-[(2s)-butan-2-yl]-5,8,17,20,23-pentahydroxy-6-isopropyl-15-(2-methylpropyl)-2,14-dioxo-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaen-3-yl]ethanimidic acid
3a,6-dimethyl-3-(6-methyl-4-oxoheptan-2-yl)-3,7,8,8a-tetrahydro-1h-azulene-2,4-dione
9a,11a-dimethyl-1-(5-methylhept-3-en-2-yl)-1h,2h,3h,3ah,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol
n-{3-[(4s)-1-[(1e)-2-(3-bromo-4-methoxyphenyl)ethenyl]-2-hydroxy-5-oxo-4h-imidazol-4-yl]propyl}guanidine
C16H20BrN5O3 (409.0749430000001)
1-chloro-n-[2-chloro-5-(3-chloro-2,2-dimethyl-6-methylidenecyclohexyl)-3-methylidenepentyl]methanecarbonimidoyl chloride
(2s)-5-carbamimidamido-2-{[(2e,4s)-1-hydroxy-4-[(2s)-2-{[1-hydroxy-3-(1h-indol-3-yl)-3-methyl-2-(methylamino)butylidene]amino}-n,3,3-trimethylbutanamido]-2,5-dimethylhex-2-en-1-ylidene]amino}pentanoic acid
2-{[(5z)-5-{3-[(4-bromo-1h-pyrrol-2-yl)formamido]propylidene}-2-iminoimidazolidin-4-ylidene]amino}ethanesulfonic acid
C13H17BrN6O4S (432.02153020000003)
(1ar,4r,4as,7r,7ar,7br)-4-isothiocyanato-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulene
9a,11a-dimethyl-1-{1-[2-(3-methylbutan-2-yl)cyclopropyl]ethyl}-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol
4,5-dibromo-n-{[(2r,6s,10s,11r,12r,13r,14r)-14-chloro-12-{[(4,5-dibromo-1h-pyrrol-2-yl)formamido]methyl}-2,10-dihydroxy-4,8-diimino-3,5,7,9-tetraazatetracyclo[9.3.0.0¹,⁵.0⁶,¹⁰]tetradecan-13-yl]methyl}-1h-pyrrole-2-carboxamide
C22H23Br4ClN10O4 (841.8325628)
n-{[(1s,2s,3s,4r,5s,6r,10r,12s)-2-{[(1s,2s,3s,4r,5r,6r,10r,12s)-3,4-bis({[(4,5-dibromo-1h-pyrrol-2-yl)formamido]methyl})-6-hydroxy-8,14-diimino-11-oxa-7,9,13,15-tetraazatetracyclo[10.3.0.0¹,⁵.0⁶,¹⁰]pentadecan-2-yl]oxy}-3-{[(4,5-dibromo-1h-pyrrol-2-yl)formamido]methyl}-6-hydroxy-8,14-diimino-11-oxa-7,9,13,15-tetraazatetracyclo[10.3.0.0¹,⁵.0⁶,¹⁰]pentadecan-4-yl]methyl}-4,5-dibromo-1h-pyrrole-2-carboxamide
(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e,5r)-4,5,6-trimethylhept-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
1-chloro-n-(2-chloro-7,11-dimethyl-3-methylidenedodeca-6,10-dien-1-yl)methanecarbonimidoyl chloride
(3r,5as,9as)-7-[(3s,5as,7as,8e,10ar,10bs)-3-hydroxy-4,4,7a,10b-tetramethyl-octahydro-1h-indeno[5,4-b]oxepin-8-ylidene]-2,2,5a-trimethyl-hexahydro-3h-1-benzoxepin-3-ol
(5as,6r,7r,9as)-6-{2-[(4ar,6r,8as)-6-hydroxy-2,5,5,8a-tetramethyl-3-oxo-4a,6,7,8-tetrahydro-4h-naphthalen-1-yl]ethyl}-2,2,5a,7-tetramethyl-hexahydro-4h-1-benzoxepin-3-one
(1s,3as,7as)-1-[(1s)-1-isothiocyanato-2-methylpropyl]-3a-methyl-7-methylidene-hexahydro-1h-indene
(4ar)-5-{2-[(5as,9as)-2,2,5a,7-tetramethyl-3-oxo-5,8,9,9a-tetrahydro-4h-1-benzoxepin-6-yl]ethyl}-8-hydroxy-1,1,4a,6-tetramethyl-3,4-dihydronaphthalene-2,7-dione
(1r,4s,8s,12r)-9-butyl-10-methyl-5,7-diazatricyclo[6.3.1.0⁴,¹²]dodec-9-en-6-imine
ethyl 18-bromo-16-hydroxytricosa-8,17,19-trien-4,6-diynoate
C25H35BrO3 (462.17694200000005)
(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(2r)-1-(hexadecyloxy)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}propan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(3r,6s,12s,14e,16s,18r)-5,11-dihydroxy-6-[(4-hydroxy-3-iodophenyl)methyl]-3-(hydroxymethyl)-7,12,14,16,18-pentamethyl-1-oxa-4,7,10-triazacyclooctadeca-4,10,14-triene-2,8-dione
C27H38IN3O7 (643.1754387999999)
2-methoxy-4,7-dimethyl-2-(2-methylprop-1-en-1-yl)-3,4-dihydro-1-benzopyran
4-bromo-n-[(2-{[(4-bromo-1h-pyrrol-2-yl)formamido]methyl}-3,4-bis(2-imino-1,3-dihydroimidazol-4-yl)cyclobutyl)methyl]-1h-pyrrole-2-carboxamide
4-bromo-12-imino-5,8,11,13-tetraazatricyclo[8.4.0.0²,⁶]tetradeca-1(14),2(6),3,10-tetraen-7-one
(3s,6r,9r,12s,16s,18r)-6-[(3-chloro-4-hydroxyphenyl)methyl]-5,11-dihydroxy-3,7,9,12,16,18-hexamethyl-14-methylidene-1-oxa-4,7,10-triazacyclooctadeca-4,10-diene-2,8,15-trione
2-bromo-4-[(4e)-5-hydroxy-2-imino-3h-imidazol-4-ylidene]-1h,5h,6h,7h-pyrrolo[2,3-c]azepin-8-one
(10s)-10-{2-[(1s,2r,4as,8ar)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]ethyl}-9-methoxy-3,10-dimethyl-1,3,5,7,9-pentaazatricyclo[6.4.1.0⁴,¹³]trideca-4,6,8(13)-trien-2-one
(3s,6s,12s,21r,24s,27s)-3-benzyl-21,24-bis[(2s)-butan-2-yl]-5,14,23,26-tetrahydroxy-12-[(4-hydroxyphenyl)methyl]-1,4,10,13,19,22,25-heptaazatetracyclo[25.3.0.0⁶,¹⁰.0¹⁵,¹⁹]triaconta-4,13,22,25-tetraene-2,11,20-trione
C45H61N7O8 (827.4581386000001)
n-{3-[(3s,8as)-1-hydroxy-4-oxo-3h,6h,7h,8h,8ah-pyrrolo[1,2-a]pyrazin-3-yl]propyl}guanidine
4-bromo-n-[3-(2-imino-1,3-dihydroimidazol-4-yl)-2-(2-imino-5-oxo-4-{8-oxo-1h,5h,6h,7h-pyrrolo[2,3-c]azepin-4-ylidene}imidazolidin-1-yl)propyl]-1h-pyrrole-2-carboxamide
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r,6r)-2-{[(1r,3ar,5ar,6r,7s,9as,11ar)-6-hydroxy-1-[(2r,4s)-4-hydroxy-6-methylheptan-2-yl]-6-(hydroxymethyl)-3a,9a,11a-trimethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-6-methyloxane-3,4,5-triol
2-[(3s,6r,9s,15s,18s,21s,24s)-21-benzyl-5,8,17,20,23-pentahydroxy-6,18-diisopropyl-15-(2-methylpropyl)-2,14-dioxo-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaen-3-yl]ethanimidic acid
4-bromo-n-[(6-{[(4-bromo-1h-pyrrol-2-yl)formamido]methyl}-2-imino-7-(2-imino-1,3-dihydroimidazol-4-yl)-1,3,4,5,6,7-hexahydro-1,3-benzodiazol-5-yl)methyl]-1h-pyrrole-2-carboxamide
(1r,3ar,5as,7s,9as,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol
ethyl (8e,16r,17e,19e)-18-bromo-16-hydroxytricosa-8,17,19-trien-4,6-diynoate
C25H35BrO3 (462.17694200000005)
(3s,4as,8r,8as)-8-[2-(furan-3-yl)ethyl]-3-hydroxy-4,4,7,8a-tetramethyl-3,4a,5,8-tetrahydro-1h-naphthalen-2-one
4-bromo-n-(methoxymethyl)-1h-pyrrole-2-carboxamide
8,11,20,23,26-pentahydroxy-10-[(4-hydroxyphenyl)methyl]-13-isopropyl-22,28-bis(2-methylpropyl)-25-(sec-butyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione
2',6-dimethyl-3,5'-bis(6-methylhept-5-en-2-yl)-[1,1'-biphenyl]-2,4'-diol
(2-{5-[4,7-dimethyl-4-(methylideneamino)-2,3,4a,5,6,8a-hexahydro-1h-naphthalen-1-yl]-5-methyloxolan-2-yl}propan-2-yl)(methylidene)amine
(1r,2r,4as,5s,8r,8ar)-1,5-diisocyano-2,5-dimethyl-8-(6-methylhept-5-en-2-yl)-octahydronaphthalen-2-ol
(6s,9s,15r,18s,21s,24r)-6-benzyl-5,8,17,20,23-pentahydroxy-21-[(1s)-1-hydroxyethyl]-15-(1h-indol-3-ylmethyl)-18-(2-methylpropyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione
C42H54N8O8 (798.4064404000001)
15'-(aminomethyl)-7',8'-dibromo-16'-chloro-5-hydroxy-2,3'-diimino-2',4',6',12'-tetraazaspiro[imidazolidine-4,17'-pentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹⁴,¹⁸]octadecane]-7',9'-dien-11'-one
4-hydroxy-3'-isopropyl-4,5',7'a-trimethyl-3'a,5',6',7'-tetrahydrospiro[cyclohexane-1,4'-inden]-2-en-1'-one
4,5-dibromo-n-[3-(2-iminoimidazolidin-4-yl)prop-2-en-1-yl]-1h-pyrrole-2-carboxamide
7-isopropyl-4-isothiocyanato-1,4-dimethyl-2,3,3a,5,6,8a-hexahydro-1h-azulene
n-[4-(5-chloro-2,6,6-trimethyloxan-2-yl)-6-hydroxy-5-isothiocyanato-1,6-dimethyl-octahydronaphthalen-1-yl]carboximidic acid
C22H35ClN2O3S (442.20567900000003)
5'-{2,2,5a,6-tetramethyl-3-oxo-tetrahydro-4h-cyclopenta[b]oxepin-6-yl}-4'-hydroxy-2,2,5a,7-tetramethyl-hexahydrospiro[1-benzoxepine-6,2'-oxolan]-3-one
(4r,5s,5's,14'r,15's,16's,18's)-15'-(aminomethyl)-7',8'-dibromo-16'-chloro-5-hydroxy-2,3'-diimino-2',4',9',12'-tetraazaspiro[imidazolidine-4,17'-pentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹⁴,¹⁸]octadecane]-6'(10'),7'-dien-11'-one
n-{1-methyl-4-[(2e,4e)-6-methylhepta-2,4-dien-2-yl]cyclohexyl}carboximidic acid
1-(5-isopropylhept-5-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1's,4s,5r,5'r,14's,15'r,16's,18'r)-15'-(aminomethyl)-16'-chloro-5-hydroxy-2,3'-diimino-2',4',9',12'-tetraazaspiro[imidazolidine-4,17'-pentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹⁴,¹⁸]octadecane]-6'(10'),7'-dien-11'-one
ethyl (1s,2r,4s,9s,10s,13r,14r)-13-[(2r,5s)-5-ethyl-6-methylheptan-2-yl]-4-hydroxy-2,14-dimethyl-5,8-dioxotetracyclo[7.7.0.0²,⁶.0¹⁰,¹⁴]hexadec-6-ene-4-carboxylate
(2r,5z)-10-[(1s,2s)-2-decylcyclopropyl]-n-[(2s,3r)-10-[(1s,2s)-2-decylcyclopropyl]-1-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-3-[(3-methylbut-2-en-1-yl)oxy]-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3-hydroxydecan-2-yl]-2-hydroxydec-5-enimidic acid
[(1s,2r,5s,6s,9s,10s,13r,14r)-13-[(2r,5e)-5-isopropyloct-5-en-2-yl]-2,14-dimethyltetracyclo[7.7.0.0²,⁶.0¹⁰,¹⁴]hexadecan-5-yl]methanol
[(1r,3as,3bs,5ar,6r,7s,9as,9bs,11as)-6-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-(sulfooxy)oxan-2-yl]oxy}-1-ethenyl-9a-(hydroxymethyl)-11a-methyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxidanesulfonic acid
(1ar,7r,7ar,7bs)-1,1,7,7a-tetramethyl-1ah,2h,4h,5h,6h,7h,7bh-cyclopropa[a]naphthalene
(1s,3ar,3a¹s,4s,5as,5a¹s,10as)-10a-isothiocyanato-1,4,7,7-tetramethyl-1,2,3,3a,3a¹,4,5,5a,5a¹,6,8,10-dodecahydropyrene
(5r)-5-[(4s)-8-hydroxy-1h,4h,5h,6h-pyrrolo[2,3-c]azepin-4-yl]-2-imino-1,5-dihydroimidazol-4-ol
C11H13N5O2 (247.10691980000004)
(3as,5as,7r,10ar,10bs)-7-hydroxy-1-isopropyl-3a,5a-dimethyl-8-methylidene-4h,5h,6h,7h,9h,10h,10ah,10bh-cyclohepta[e]inden-3-one
(1ar,4r,4ar,7r,7as,7br)-4-isocyano-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulene
(5s)-7,8-dibromo-3-hydroxy-2,4,6,12-tetraazatetracyclo[10.3.0.0¹,⁵.0⁶,¹⁰]pentadeca-3,7,9-trien-11-one
(2s)-3-[(1e,5z)-tetradeca-1,5-dien-3-yn-1-yloxy]propane-1,2-diol
(2r,6s,8r)-2,8-dimethyl-6-(prop-1-en-2-yl)tricyclo[5.3.0.0²,⁵]decane
3-(tetradeca-1,5-dien-3-yn-1-yloxy)propane-1,2-diol
21-benzyl-5,14,23,26-tetrahydroxy-3-[(4-hydroxyphenyl)methyl]-12-(2-methylpropyl)-24-(sec-butyl)-1,4,10,13,19,22,25-heptaazatetracyclo[25.3.0.0⁶,¹⁰.0¹⁵,¹⁹]triaconta-4,13,22,25-tetraene-2,11,20-trione
C45H61N7O8 (827.4581386000001)
(1s,1''s,2's,3r,3''s,3'as,6''s,7r,7's,7'as,9s,9''s,11r,12''s,13s,14''r,16''r,18''s,20''s,22''r,26''r,28''s,29''s,30''r,34''r,37''s,39''r,40''s,41''r,43''r,44''s)-5-(1,2-dihydroxyethyl)-7',13,14'',29''-tetramethyl-8'',15''-dimethylidene-tetrahydro-3'h-dispiro[2,6,10-trioxatricyclo[7.4.0.0³,⁷]tridecane-11,5'-furo[3,2-b]pyran-2',24''-[2,19,23,27,31,38,42,45,47,48,49]undecaoxundecacyclo[32.9.2.1³,⁴⁰.1³,⁴¹.1⁶,⁹.1¹²,¹⁶.0¹⁸,³⁰.0²⁰,²⁸.0²²,²⁶.0³⁷,⁴⁴.0³⁹,⁴³]nonatetracontan]-32''-one
(1s,3as,8ar)-1-(2-hydroxy-6-methylhept-5-en-2-yl)-3a,6-dimethyl-1,2,3,4,8,8a-hexahydroazulen-5-one
3-[(16-hydroxyhexadeca-1,5-dien-3-yn-1-yl)oxy]propane-1,2-diol
(1s,7s,10s,13s,19s,22s,25s,28s)-25-[(2s)-butan-2-yl]-8,11,20,23,26-pentahydroxy-10-[(4-hydroxyphenyl)methyl]-13-isopropyl-22,28-bis(2-methylpropyl)-3,9,12,15,21,24,27,30-octaazatetracyclo[28.3.0.0³,⁷.0¹⁵,¹⁹]tritriaconta-8,11,20,23,26-pentaene-2,14,29-trione
(3s,6r,9r,12s,14e,16r,18s)-6-[(3-bromo-4-hydroxyphenyl)methyl]-5,11-dihydroxy-9-(hydroxymethyl)-3,7,12,14,16,18-hexamethyl-1-oxa-4,7,10-triazacyclooctadeca-4,10,14-triene-2,8-dione
C28H40BrN3O7 (609.2049470000001)
5,14,17,26,29-pentahydroxy-12-(1-hydroxyethyl)-27-(1h-indol-3-ylmethyl)-24-isopropyl-3,15-bis(2-methylpropyl)-1,4,10,13,16,22,25,28-octaazatetracyclo[28.3.0.0⁶,¹⁰.0¹⁸,²²]tritriaconta-4,13,16,25,28-pentaene-2,11,23-trione
(2e,4s)-4-[(2s)-2-{[(2s)-1-hydroxy-3-(1h-indol-3-yl)-3-methyl-2-(methylamino)butylidene]amino}-n,3-dimethylbutanamido]-2,5-dimethylhex-2-enoic acid
C28H42N4O4 (498.32058920000003)
(6s,10r,16s,19r,22s,25s)-6-benzyl-19-[(2s)-butan-2-yl]-5,9,18,21,24-pentahydroxy-22-[(1r)-1-hydroxyethyl]-16-(1h-indol-3-yl)-1,4,8,14,17,20,23-heptaazatricyclo[23.3.0.0¹⁰,¹⁴]octacosa-4,8,17,20,23-pentaene-2,15-dione
C42H54N8O8 (798.4064404000001)
2,3-dihydroxy-4-[(3e)-6-methylhepta-3,5-dien-2-yl]benzaldehyde
ethyl 4-hydroxy-2,14-dimethyl-13-(6-methylheptan-2-yl)-5,8-dioxotetracyclo[7.7.0.0²,⁶.0¹⁰,¹⁴]hexadec-6-ene-4-carboxylate
(3'r,5's,5ar,6s,7s,9as)-5'-[(5as,6s,8as)-2,2,5a,6-tetramethyl-3-oxo-tetrahydro-4h-cyclopenta[b]oxepin-6-yl]-3'-hydroxy-2,2,5a,7-tetramethyl-hexahydrospiro[1-benzoxepine-6,2'-oxolan]-3-one
2-[(3r,6s,9r,15s,18r,21s,24s)-21-benzyl-5,8,17,20,23-pentahydroxy-6,15,18-triisopropyl-2,14-dioxo-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaen-3-yl]ethanimidic acid
(1r,3ar,3bs,5ar,7r,9as,9br,11ar)-11a-methyl-1-[(2s,3e)-6-methylhept-3-en-2-yl]-hexadecahydrocyclopenta[a]phenanthren-7-yl acetate
(3s,6s,12s,15s,21s,24s)-21-benzyl-3,24-bis[(2s)-butan-2-yl]-5,14,23,26-tetrahydroxy-12-[(4-hydroxyphenyl)methyl]-1,4,10,13,19,22,25-heptaazatetracyclo[25.3.0.0⁶,¹⁰.0¹⁵,¹⁹]triaconta-4,13,22,25-tetraene-2,11,20-trione
C45H61N7O8 (827.4581386000001)
(1r,2r,4as,8ar)-2-isopropyl-1-isothiocyanato-4a-methyl-8-methylidene-octahydronaphthalene
n-[(2s,3s,4s,5r,6s)-4,5-dihydroxy-6-(hydroxymethyl)-2-{[(2r)-1-[(18-hydroxyoctadecyl)oxy]-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}propan-2-yl]oxy}oxan-3-yl]ethanimidic acid
C34H65NO13 (695.4455680000001)
2-(2-{9-hydroxy-2,3,8,8-tetramethyl-7,12-dioxatricyclo[7.2.1.0¹,⁶]dodecan-2-yl}ethyl)-2,3,9,9-tetramethyl-7,10-dioxatricyclo[6.2.2.0¹,⁶]dodecan-8-ol
n-[(1e)-2-[(4ar,6s,8ar)-6-chloro-5,5,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-2-yl]ethenyl]-1-chloromethanecarbonimidoyl chloride
C16H22Cl3N (333.08177420000004)
(4r,7r,10s,13r,15e,17r,19s)-7-[(2-bromo-1h-indol-3-yl)methyl]-6,12-dihydroxy-4-(4-hydroxyphenyl)-8,10,13,15,17,19-hexamethyl-1-oxa-5,8,11-triazacyclononadeca-5,11,15-triene-2,9-dione
C36H45BrN4O6 (708.2522289999999)
4,5-dibromo-n-{[(2r,6r,10r,11r,12r,13r,14r)-14-chloro-13-{[(4,5-dibromo-1h-pyrrol-2-yl)formamido]methyl}-10-hydroxy-4,8-diimino-2-methoxy-3,5,7,9-tetraazatetracyclo[9.3.0.0¹,⁵.0⁶,¹⁰]tetradecan-12-yl]methyl}-1h-pyrrole-2-carboxamide
C23H25Br4ClN10O4 (855.8482119999999)
(5as,6s,8as)-6-[(3r,5's,5ar,6s,7s,9as)-3-hydroxy-2,2,5a,7-tetramethyl-hexahydro-3h-spiro[1-benzoxepine-6,2'-oxolan]-5'-yl]-2,2,5a,6-tetramethyl-tetrahydro-4h-cyclopenta[b]oxepin-3-one
3-methoxy-4-[(2r,3e)-6-methylhepta-3,5-dien-2-yl]benzoic acid
(1r)-3,5,5-trimethyl-4-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-(2,3,4-trimethylphenyl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-ol
(5as,6s,7r,9as)-2,2,5a,7-tetramethyl-3-oxo-6-{2-[(1r,3r,4r,7s)-4,9,9-trimethyl-10-oxo-8-oxatricyclo[5.5.0.0¹,³]dodecan-3-yl]ethyl}-hexahydro-1-benzoxepin-7-yl acetate
1-(5-ethyl-6-methylhept-3-en-2-yl)-11a-methyl-hexadecahydrocyclopenta[a]phenanthren-7-yl acetate
(1s,2s,4ar,5r,8r,8ar)-8-[(2s,5s)-5-chloro-2,6,6-trimethyloxan-2-yl]-2,5-dimethyl-1,5-bis(methylideneamino)-octahydronaphthalen-2-ol
3-methyl-6-(6-methylhept-5-en-2-yl)cyclohex-2-en-1-one
(6ar,7s,8s,10r,10ar)-7-[2-(furan-3-yl)ethyl]-7,8-dimethyl-1h,3h,5h,6h,6ah,8h,9h,10h-naphtho[1,8a-c]furan-1,10-diol
[(1r,2r,3s,3as,3br,5ar,6r,7r,8s,9ar,9bs,11as)-1-ethenyl-2,3,6,7-tetrahydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-8-yl]oxidanesulfonic acid
C21H34O8S (446.19742840000004)
1-(5-ethyl-6-methylhept-3-en-2-yl)-11a-methyl-hexadecahydrocyclopenta[a]phenanthren-7-ol
(5as,9as)-6-{2-[(2r,3s,6s)-8-hydroxy-2,3,9,9-tetramethyl-7,10-dioxatricyclo[6.2.2.0¹,⁶]dodecan-2-yl]ethyl}-2,2,5a,7-tetramethyl-5,8,9,9a-tetrahydro-4h-1-benzoxepin-3-one
n-{2-[(2s,4ar,8s)-4a,8-dimethyl-3,4,5,6,7,8-hexahydro-2h-naphthalen-2-yl]propan-2-yl}carboximidic acid
(1r,5s)-7,8-dibromo-3-imino-2,4,9,12-tetraazatetracyclo[10.3.0.0¹,⁵.0⁶,¹⁰]pentadeca-6(10),7-dien-11-one
(1r,4r,4ar,8as)-4-[(2s,5r)-5-{2-[(hydroxymethylidene)amino]propan-2-yl}-2-methyloxolan-2-yl]-1-isocyano-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalene
1-isothiocyanato-1,4a-dimethyl-7-(prop-1-en-2-yl)-octahydronaphthalene
(1r,2s,6s,9s,11r,13s)-3-isopropyl-6,9,13-trimethyl-12-oxatetracyclo[7.6.0.0²,⁶.0¹¹,¹³]pentadec-3-en-5-one
[(1r,3as,3bs,5s,5as,7s,8s,9ar,9bs,11ar)-9a,11a-dimethyl-7,8-bis(sulfooxy)-1-[(2r,4e)-5,6,6,7-tetramethyloct-4-en-2-yl]-tetradecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxidanesulfonic acid
(2s,3r,4s,5r)-2-[(2r)-3-(tetracos-17-en-1-yloxy)-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}propoxy]oxane-3,4,5-triol
(1r,3as,3bs,7s,9ar,9bs,11ar)-7-hydroxy-1-[(2s,3e)-5-isopropyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-one
(3s,5as,7as,10bs)-3-hydroxy-4,4,7a,10b-tetramethyl-octahydro-1h-indeno[5,4-b]oxepin-8-one
(3s,6s,12s,15s,21s,24s,27s)-21-benzyl-24-[(2s)-butan-2-yl]-5,14,23,26-tetrahydroxy-3-[(4-hydroxyphenyl)methyl]-12-(2-methylpropyl)-1,4,10,13,19,22,25-heptaazatetracyclo[25.3.0.0⁶,¹⁰.0¹⁵,¹⁹]triaconta-4,13,22,25-tetraene-2,11,20-trione
C45H61N7O8 (827.4581386000001)
[(1s,2r,5s,6s,9s,10s,13r,14r)-2,14-dimethyl-13-[(2r)-6-methylheptan-2-yl]tetracyclo[7.7.0.0²,⁶.0¹⁰,¹⁴]hexadecan-5-yl]methanol
6-{3,4'-dihydroxy-2,2,5a,7-tetramethyl-hexahydro-3h-spiro[1-benzoxepine-6,2'-oxolan]-5'-yl}-2,2,5a,6-tetramethyl-tetrahydro-4h-cyclopenta[b]oxepin-3-one
(1r,3as,3br,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-11a-methyl-hexadecahydrocyclopenta[a]phenanthren-7-ol
3-[(12-methyltrideca-1,5-dien-3-yn-1-yl)oxy]propane-1,2-diol
(1as,4r,4ar,7s,7ar,7br)-4-isothiocyanato-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulene
[9,24-dibenzyl-12-(3-carbamimidamidopropyl)-11,14,23,26-tetrahydroxy-2,8,20-trioxo-1,7,10,13,19,22,25-heptaazatetracyclo[25.3.0.0³,⁷.0¹⁵,¹⁹]triaconta-10,13,22,25-tetraen-21-yl]acetic acid
C43H56N10O9 (856.4231526000001)
3-(acetyloxy)-6-{2-[3,7-bis(acetyloxy)-2,2,5a,7-tetramethyl-hexahydro-3h-1-benzoxepin-6-yl]ethyl}-2,2,5a,7-tetramethyl-hexahydro-3h-1-benzoxepin-7-yl acetate
(2e,4e)-1-[(2r,6s,14s,22s,25r)-25-[(2s)-3,3-dimethyloxiran-2-yl]-1,3,13,15-tetraazaheptacyclo[18.4.1.0²,⁶.0⁶,²².0⁷,¹².0¹⁴,²².0¹⁶,²¹]pentacosa-7,9,11,16,18,20-hexaen-3-yl]hexa-2,4-dien-1-one
1,6-dimethyl-4-[2-methyl-3-(3-methylbut-2-en-1-yl)oxiran-2-yl]-3,4,4a,7,8,8a-hexahydro-2h-naphthalene-1-carbonitrile
(1r,3as,3br,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5-isopropyloctan-2-yl]-11a-methyl-hexadecahydrocyclopenta[a]phenanthren-7-ol
(1r,2r,4as,8s,8as)-8-[(2r,5s)-5-chloro-2,6,6-trimethyloxan-2-yl]-1-isocyano-2-methyl-5-methylidene-octahydronaphthalen-2-ol
(3s,6r,9s,12s,16r,18s)-6-[(3-bromo-4-hydroxyphenyl)methyl]-5,11-dihydroxy-3,7,9,12,16,18-hexamethyl-14-methylidene-1-oxa-4,7,10-triazacyclooctadeca-4,10-diene-2,8,15-trione
C28H38BrN3O7 (607.1892978000001)
(4s,6s)-6-[(4-bromo-1h-pyrrole-2-carbonyloxy)methyl]-6-methyl-4,5-dihydro-1h-pyrimidine-4-carboxylic acid
C12H14BrN3O4 (343.01676240000006)
9a,11a-dimethyl-1-(5-methylhex-3-en-2-yl)-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-ol
4,5-dibromo-n-{7'-bromo-16'-chloro-5-hydroxy-2,3'-diimino-11'-oxo-2',4',9',12'-tetraazaspiro[imidazolidine-4,17'-pentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹⁴,¹⁸]octadecane]-6'(10'),7'-dien-15'-ylmethyl}-1h-pyrrole-2-carboxamide
C22H22Br3ClN10O3 (745.9114872)
(3s,3as,5as,8s,10ar,10bs)-3,8-dihydroxy-1-isopropyl-3a,5a,8-trimethyl-3h,5h,9h,10h,10ah,10bh-cyclohepta[e]inden-4-one
4-isothiocyanato-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulene
(2e,4s)-4-[(2s)-2-{[(2s)-1-hydroxy-3-methyl-2-(methylamino)-3-(1-methylindol-3-yl)butylidene]amino}-n,3,3-trimethylbutanamido]-2,5-dimethylhex-2-enoic acid
C30H46N4O4 (526.3518875999999)
2,3-dihydroxy-4-[(2s,3e)-6-methylhepta-3,5-dien-2-yl]benzaldehyde
15'-(aminomethyl)-7'-bromo-16'-chloro-5-hydroxy-2,3'-diimino-2',4',9',12'-tetraazaspiro[imidazolidine-4,17'-pentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹⁴,¹⁸]octadecane]-6'(10'),7'-dien-11'-one
C17H21BrClN9O2 (497.06900160000004)
(1r,9r,10r,14s)-3-bromo-10,12,14-trihydroxy-13-methyl-2,8,11,13-tetraazatetracyclo[7.6.0.0²,⁶.0¹⁰,¹⁴]pentadeca-3,5,11-trien-7-one
C12H13BrN4O4 (356.01201180000004)
(3s,6r,9s,12s,16r,18s)-6-[(3-chloro-4-hydroxyphenyl)methyl]-5,11-dihydroxy-3,7,9,12,16,18-hexamethyl-14-methylidene-1-oxa-4,7,10-triazacyclooctadeca-4,10-diene-2,8,15-trione
(4ar)-5-{2-[(5as,6s,7s,9as)-2,2,5a-trimethyl-3-oxo-hexahydrospiro[1-benzoxepine-7,2'-oxiran]-6-yl]ethyl}-8-hydroxy-1,1,4a,6-tetramethyl-3,4-dihydronaphthalene-2,7-dione
(1r,3ar,7s,9as,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-ol
6,6'-dimethyl-3,3'-bis[(2s)-6-methylhept-5-en-2-yl]-[1,1'-biphenyl]-2,2'-diol
{[(5r)-5-hydroxy-5-(hydroxymethyl)-3-imino-2-methoxycyclohex-1-en-1-yl]amino}acetic acid
(1r,3ar,3bs,5as,7s,9as,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-11a-methyl-hexadecahydrocyclopenta[a]phenanthren-7-ol
n-(3-{2-hydroxy-1-[2-(4-methoxyphenyl)ethenyl]-5-oxoimidazol-4-ylidene}propyl)guanidine
C16H19N5O3 (329.14878239999996)
6-(2-hydroxy-4-methylphenyl)-2-methylheptane-2,3-diol
10-(2-decylcyclopropyl)-n-[12-(2-decylcyclopropyl)-1-({4,5-dihydroxy-3-[(3-methylbut-2-en-1-yl)oxy]-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl}oxy)-3-hydroxydodec-7-en-2-yl]-2-hydroxydec-5-enimidic acid
C65H117NO14 (1135.8473622000001)
6-bromo-3-(6-bromo-1h-indol-3-ylsulfonyl)indole-1-carboxylic acid
C17H10Br2N2O4S (495.87279800000005)
2-bromo-4-[(4z)-2,5-dihydroxyimidazol-4-ylidene]-1h,5h,6h,7h-pyrrolo[2,3-c]azepin-8-one
n-[(1s,4s,4ar,8as)-4a-hydroxy-4-[(2r,5s)-5-(2-isothiocyanatopropan-2-yl)-2-methyloxolan-2-yl]-1,6-dimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]carboximidic acid
(2s)-3-{[(1z,5e)-13-methyltetradeca-1,5-dien-3-yn-1-yl]oxy}propane-1,2-diol
(3s,3as,5ar,10ar,10bs)-3-hydroxy-1-isopropyl-3a,5a,8-trimethyl-3h,4h,5h,9h,10h,10ah,10bh-cyclohepta[e]inden-6-one
(1r,3as,3bs,7s,9ar,9bs,11as)-1-[(2r,5z)-5-isopropylhept-5-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1r,3ar,5as,7s,9as,11ar)-9a,11a-dimethyl-1-[(2r,3e)-5-methylhex-3-en-2-yl]-1h,2h,3h,3ah,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol
7-bromo-4-hydroxy-2h,3h,4h-pyrrolo[1,2-a]pyrazin-1-one
C7H7BrN2O2 (229.96908620000002)
11a-methyl-1-(6-methylhept-3-en-2-yl)-hexadecahydrocyclopenta[a]phenanthren-7-yl acetate
(1'r,4r,5s,5's,14's,15's,16's,18's)-15'-(aminomethyl)-16'-chloro-5-hydroxy-2,3'-diimino-2',4',6',12'-tetraazaspiro[imidazolidine-4,17'-pentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹⁴,¹⁸]octadecane]-7',9'-dien-11'-one
ethyl 2-[(4s)-6,7-dibromo-1-oxo-2h,3h,4h-pyrrolo[1,2-a]pyrazin-4-yl]acetate
C11H12Br2N2O3 (377.92146019999996)