Exact Mass: 402.386145
Exact Mass Matches: 402.386145
Found 226 metabolites which its exact mass value is equals to given mass value 402.386145
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Delta-Tocopherol
Tocopherol, or Vitamin E, is a fat-soluble vitamin in eight forms that is an important antioxidant. Vitamin E is often used in skin creams and lotions because it is believed to play a role in encouraging skin healing and reducing scarring after injuries such as burns. -- Wikipedia; Natural vitamin E exists in eight different forms or isomers, four tocopherols and four tocotrienols. All isomers have a chromanol ring, with a hydroxyl group which can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. There is an alpha, beta, gamma and delta form of both the tocopherols and tocotrienols, determined by the number of methyl groups on the chromanol ring. Each form has its own biological activity, the measure of potency or functional use in the body. -- Wikipedia; Alpha-tocopherol is traditionally recognized as the most active form of vitamin E in humans, and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha tocopherol. It increases naturally to about 150\\\\\% of normal in the maternal circulation during human pregnancies. 1 IU of vitamin E is defined as the biological equivalent of 0.667 milligrams of d-alpha-tocopherol, or of 1 milligram of dl-alpha-tocopherol acetate. The other isomers are slowly being recognized as research begins to elucidate their additional roles in the human body. Many naturopathic and orthomolecular medicine advocates suggest that vitamin E supplements contain at least 20\\\\\% by weight of the other natural vitamin E isomers. Commercially available blends of natural vitamin E include "mixed tocopherols" and "high gamma tocopherol" formulas. Also selenium, Coenzyme Q10, and ample vitamin C have been shown to be essential cofactors of natural tocopherols. -- Wikipedia; Synthetic vitamin E, usually marked as d,l-tocopherol or d,l tocopheryl acetate, with 50\\\\\% d-alpha tocopherol moiety and 50\\\\\% l-alpha-tocopherol moiety, as synthesized by an earlier process is now actually manufactured as all-racemic alpha tocopherol, with only about one alpha tocopherol molecule in 8 molecules as actual d-alpha tocpherol. The synthetic form is not as active as the natural alpha tocopherol form. The 1950s thalidomide disaster with numerous severe birth defects is a common example of d- vs l- epimer forms type problem with synthesized racemic mixtures. Information on any side effects of the synthetic vitamin E epimers is not readily available. Naturopathic and orthomolecular medicine advocates have long considered the synthetic vitamin E forms to be with little or no merit for cancer, circulatory and heart diseases. -- Wikipedia; Abetalipoproteinemia is a rare inherited disorder of fat metabolism that results in poor absorption of dietary fat and vitamin E. The vitamin E deficiency associated with this disease causes problems such as poor transmission of nerve impulses, muscle weakness, and degeneration of the retina that can cause blindness. Individuals with abetalipoproteinemia may be prescribed special vitamin E supplements by a physician to treat this disorder. -- Wikipedia; Recent studies also show that vitamin E acts as an effective free radical scavenger and can lower the incidence of lung cancer in smokers. The effects are opposite to that of the clinical trials based on administering carotenoid to male smokers, that resulted in increased risk of lung cancer. Hence vitamin E is an effective antagonist to the oxidative stress that is imposed by high carotenoids in certain patients. -- Wikipedia; A cataract is a condition of clouding of the tissue of the lens of the eye. They increase the risk of disability and blindness in aging adults. Antioxidants are being studied to determine whether they can help prevent or delay cataract growth. Observational studies have found that lens clarity, wh... Delta-Tocopherol is an isomer of Vitamin E. Delta-Tocopherol is an isomer of Vitamin E.
7alpha-Hydroxycholesterol
7alpha-Hydroxycholesterol is an oxysterol and can serve as a biomarker for lipid peroxidation (PMID: 17386651). Products of cholesterol oxidation accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery (PMID: 17364953). 7alpha-Hydroxycholesterol is a cholesterol oxide that has been described as a biomarker of oxidative stress in subjects with impaired glucose tolerance and diabetes (PMID: 16634125). 7alpha-Hydroxycholesterol has been identified in the human placenta (PMID: 32033212). 7alpha-hydroxycholesterol is an oxysterol and can serve as a biomarker for lipid peroxidation. (PMID: 17386651) Products of cholesterol oxidation accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery. (PMID: 17364953) 7α-Hydroxycholesterol is a cholesterol oxide and is formed by both enzymatic and non-enzymatic oxidation. 7α-Hydroxycholesterol can be used as a biomarker for lipid peroxidation[1][2].
7a-Hydroxy-5b-cholestan-3-one
7alpha-Hydroxy-5beta-cholestan-3-one is an intermediate in bile acid synthesis. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). 7alpha-Hydroxy-5beta-cholestan-3-one is an intermediate in bile acid synthesis. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB]
20alpha-Hydroxycholesterol
20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. [HMDB] 20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].
22b-Hydroxycholesterol
22beta-Hydroxycholesterol is a substrate for DCC-interacting protein 13 beta. [HMDB] 22beta-Hydroxycholesterol is a substrate for DCC-interacting protein 13 beta.
24-Hydroxycholesterol
24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622). 24-Hydroxycholesterol has been found to accumulate in hereditary hypercholesterolemia, an inborn error of metabolism. 24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622) [HMDB] 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].
25-Hydroxycholesterol
25-Hydroxycholesterol is steroid derivative that suppresses the cleavage of sterol regulatory element binding proteins (SREBPs). It also induces apoptosis through down-regulation of Bcl-2 expression and activation of caspases. 25-Hydroxycholesterol also enhances Interleukin-1 beta (IL-1beta-induced) IL-8 production.(PMID: 17086498 ). 25-hydroxycholesterol is endogenously produced from cholesterol at early time intervals after cholesterol ingestion. It inhibits HMG-CoA reductase and so it also plays a significant role in the in vivo regulation of cholesterol biosynthesis after an acute dietary cholesterol challenge. [HMDB] 25-Hydroxycholesterol is steroid derivative that suppresses the cleavage of sterol regulatory element binding proteins (SREBPs). It also induces apoptosis through down-regulation of Bcl-2 expression and activation of caspases. 25-Hydroxycholesterol also enhances Interleukin-1 beta (IL-1beta-induced) IL-8 production.(PMID: 17086498). 25-hydroxycholesterol is endogenously produced from cholesterol at early time intervals after cholesterol ingestion. It inhibits HMG-CoA reductase and so it also plays a significant role in the in vivo regulation of cholesterol biosynthesis after an acute dietary cholesterol challenge. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 25-Hydroxycholesterol is a metabolite of cholesterol that is produced and secreted by macrophages in response to Toll-like receptor (TLR) activation. 25-hydroxycholesterol is a potent (EC50≈65 nM) and selective suppressor of IgA production by B cells.
27-Hydroxycholesterol
Campestanol
Campestanol is plant stanol. It can decrease the circulating LDL-cholesterol level by reducing intestinal cholesterol absorption. (PMID 8143759). Constituent of coffee and of pot marigold (Calendula officinalis)
2-Methyl-6-phytylhydroquinone
2-Methyl-6-phytylhydroquinone, also known as 6-phytyltoluquinol or MPBQ, belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. 2-Methyl-6-phytylhydroquinone is an extremely weak basic (essentially neutral) compound (based on its pKa). 2-Methyl-6-phytylhydroquinone is found in green vegetables. 2-Methyl-6-phytylhydroquinone is a precursor of tocopherol synthesis in spinach chloroplasts. Precursor of tocopherol synth. in spinach chloroplasts. 2-Methyl-6-phytylhydroquinone is found in green vegetables and spinach.
27-Hydroxycholesterol
27-Hydroxycholesterol (27-HC), also known as (25R)-cholest-5-ene-3β,26-diol or by its conventional name 26-hydroxycholesterol, is an oxygenated derivative of cholesterol and a major oxysterol in circulation (PMID: 7749852). 27-Hydroxycholesterol is the product of the enzyme sterol 27-hydroxylase. The enzyme is critical for the degradation of the steroid side-chain and a genetic deficiency of the enzyme leads to reduced formation of bile acids in humans. There is a correlation between 27-hydroxycholesterol and cholesterol in the circulation, and females have lower levels of 27-hydroxycholesterol than males. A strong correlation is observed between circulating levels of 27-hydroxycholesterol and cholesterol, in both healthy subjects and subjects with hypercholesterolemia and documented atherosclerosis. 27-Hydroxycholesterol is metabolized by an oxysterol 7alpha-hydroxylase in the liver. Changes in the activity of this enzyme may lead to the accumulation of 27-hydroxycholesterol in the circulation. It has been reported that patients with a genetic deficiency of oxysterol 7alpha-hydroxylase in the liver had markedly increased levels of 27-hydroxycholesterol in the circulation. However, under normal conditions and in the absence of liver or kidney disease, changes in the levels of 27-hydroxycholesterol in the circulation are likely to be caused by changes in the rate of synthesis of these steroids rather than by the rate of metabolism. There are three possible explanations for the high concentrations of 27-hydroxycholesterol found in the circulation of three subjects with atherosclerosis: (1) increased expression of sterol 27-hydroxylase owing to a genetic factor or some other factor completely unrelated to atherosclerosis, (2) the extrahepatic sterol 27-hydroxylase may be up-regulated by circulating factors (e.g. cytokines) that are directly or indirectly related to the development of atherosclerosis, and (3) the high amounts of cholesterol accumulating in macrophages in some patients with atherosclerosis may result in an increased flux of 27-hydroxycholesterol from the macrophages to the circulation. Since there is a close relation between levels of cholesterol and 27-hydroxycholesterol in the circulation, the possibility must be considered that the flux of 27-hydroxycholesterol into the brain may be part of the yet unexplained link between hypercholesterolemia and Alzheimers disease. 27-Hydroxysterol is the most dominant oxysterol in human atheromas where it may reflect a mechanism for eliminating excessive cholesterol, and thus have a protective role. Hypercholesterolemia and chronic low-grade immunological activation are pivotal in the development of atherosclerosis. However, the interconnections between these two factors are not well known. The CD40 system, as measured by the plasma level of soluble CD40 (sCD40), is associated with cholesterol metabolism in hypercholesterolemic patients. When combined, a decreased cholesterol synthesis rate and increased levels of 27-hydroxycholesterol may be a consequence of high levels of cellular cholesterol, and therefore be related to sCD40. However, sCD40 had no significant correlation with total plasma cholesterol. This suggests that the cellular cholesterol synthesis rate and 27-hydroxycholesterol production are more importantly linked with the plasma levels of sCD40 than total cholesterol (PMID: 16081359, 17012138, 11504730, 9144161). 27-hydroxycholesterol is an oxygenated derivative of cholesterol and a major oxysterol in circulation. 27-hydroxycholesterol is the product of the enzyme sterol 27-hydroxylase. The enzyme is critical for degradation of the steroid side-chain and a genetic deficiency of the enzyme leads to reduced formation of bile acids in humans. There is a correlation between 27-hydroxycholesterol and cholesterol in the circulation, and females have lower levels of 27-hydroxycholesterol than males. A strong correlation is observed between circulating levels of 27-hydroxycholesterol and cholesterol, in both healthy subjects and subjects with hypercholesterolemia and documented atherosclerosis. 27-hydroxycholesterol is metabolized by an oxysterol 7a-hydroxylase in the liver, and changes in the activity of this enzyme may lead to accumulation of 27-hydroxycholesterol in the circulation. It has been reported that patients with a genetic deficiency of oxysterol 7a-hydroxylase in the liver had markedly increased levels of 27-hydroxycholesterol in the circulation. Under normal conditions, however, and in the absence of liver or kidney disease, changes in the levels of 27-hydroxycholesterol in the circulation are likely to be caused by changes in the rate of synthesis of these steroids rather than by the rate of metabolism. Three possible explanations for the high concentrations of 27-hydroxycholesterol found in the circulation of the three subjects with atherosclerosis could be: 1) Increased expression of sterol 27-hydroxylase owing to a genetic factor or some other factor completely unrelated to atherosclerosis. 2) The extrahepatic sterol 27-hydroxylase may be up-regulated by circulating factors (e.g. cytokines) that are directly or indirectly related to the development of atherosclerosis. 3) The high amounts of cholesterol accumulating in macrophages in some patients with atherosclerosis may result in increased flux of 27-hydroxycholesterol from the macrophages to the circulation. (25R)-cholest-5-ene-3beta,26-diol is a 26-hydroxycholesterol in which the 25-position has R-configuration. It has a role as an apoptosis inducer, a neuroprotective agent, a human metabolite and a mouse metabolite. It is functionally related to a cholesterol. 27-Hydroxycholesterol is an endogenous metabolite of cholesterol produced by the hydroxylation of the carbon at position 27 by the enzyme sterol 26-hydroxylase, mitochondrial (CYP27A1). Some neoplasms produce excess of 27-hydroxycholesterol (27HC) or inhibit its catabolism, and high cholesterol levels are correlated with elevated levels of 27HC; under these conditions, 27HC may have deleterious selective estrogen receptor modulator (SERM) and liver X receptor (LXR) agonistic activities. As a SERM, 27HC binds to and prevents the activation of estrogen receptors (ERs) in the vasculature. This prevents ER-mediated vasodilation and abrogates the cardiovascular protective effects of estrogen. However, 27HC binds to and activates ERs and LXRs in breast tissue, which stimulates ER-dependent breast cancer cell growth and metastasis. 27-Hydroxycholesterol (27-OHC) is a selective estrogen receptor modulator and an agonist of the liver X receptor. 27-Hydroxycholesterol is a selective estrogen receptor modulator and an agonist of the liver X receptor.
Epoxycholesterol
5,6alpha-epoxy-5alpha-cholestan-3beta-ol is a 3beta-hydroxy steroid, an oxysterol and an epoxy steroid. It derives from a hydride of a 5alpha-cholestane.
eta-Tocopherol
eta-Tocopherol is found in cereals and cereal products. eta-Tocopherol is a constituent of rice Constituent of rice. eta-Tocopherol is found in cereals and cereal products.
5-(12-Heneicosenyl)-1,3-benzenediol
5-(12-Heneicosenyl)-1,3-benzenediol is found in cereals and cereal products. 5-(12-Heneicosenyl)-1,3-benzenediol is a constituent of wheat and rye flour. Constituent of wheat and rye flour. 5-(12-Heneicosenyl)-1,3-benzenediol is found in cereals and cereal products.
5-(16-Heneicosenyl)-1,3-benzenediol
5-(16-Heneicosenyl)-1,3-benzenediol is found in cereals and cereal products. 5-(16-Heneicosenyl)-1,3-benzenediol is a constituent of wheat and rye flour. Constituent of wheat and rye flour. 5-(16-Heneicosenyl)-1,3-benzenediol is found in cereals and cereal products.
(3beta,5alpha,6alpha)-Cholest-8-ene-3,6-diol
(3beta,5alpha,6alpha)-Cholest-8-ene-3,6-diol is found in fruits. (3beta,5alpha,6alpha)-Cholest-8-ene-3,6-diol is obtained from roots of Stenocereus thurberi (organ pipe cactus
7beta-Hydroxycholesterol
7beta-Hydroxycholesterol belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, 7beta-hydroxycholesterol is considered to be a sterol lipid molecule. 7beta-Hydroxycholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 7beta-Hydroxycholesterol has been identified in atheromatous plaques and in plasma of atherosclerotic patients (PMID: 16604541). 7beta-Hydroxycholesterol induces apoptosis in Caco-2 cells and alters lysosomal membrane integrity. It exhibits a specific enhancement of oxidative stress and of endonuclease G expression (PMID: 17136497). 7b-Hydroxycholesterol is identified in atheromatous plaques and in plasma of atherosclerotic patients.(PMID: 16604541)
(24R)-Cholest-5-ene-3-beta,24-diol
(24R)-Cholest-5-ene-3-beta,24-diol or 24(R)-Hydroxycholesterol is a hydroxysterol. It is a substrate for Cytochrome P450 39A1 (EC 1.14.13.99), which is primarily a liver-specific enzyme. It is involved in the following reaction: (24R)-cholest-5-ene-3-beta,24-diol + NADPH + O(2) = (24R)-cholest-5-ene-3-beta,7-alpha,24-triol + NADP(+) + H(2)O. 24(R)-Hydroxycholesterol is an intermediate in bile acid metabolism. The majority of circulating 24-hydroxycholesterol in humans is made in the brain and is increased in serum of Alzheimer patients. 24(S)-Hydroxycholesterol is generally more abundant in human tissues than 24(R)-Hydroxycholesterol. It has also been shown that 24(R) and 24(S)-Hydroxycholesterols are substrates for hepatic cholesterol 7-a hydroxylase (CYP7A), leading to the production of 7-alpha hydroxylated bile acids.
4b-Hydroxycholesterol
4[beta]-Hydroxycholesterol is a new endogenous CYP3A marker: relationship to CYP3A5 genotype, quinine 3-hydroxylation and sex in Koreans, Swedes and Tanzanians [HMDB] 4[beta]-Hydroxycholesterol is a new endogenous CYP3A marker: relationship to CYP3A5 genotype, quinine 3-hydroxylation and sex in Koreans, Swedes and Tanzanians.
3-Hydroxy-1-phenyl-1-heneicosanone
3-Hydroxy-1-phenyl-1-heneicosanone is a constituent of the pollen of Helianthus annuus (sunflower) Constituent of the pollen of Helianthus annuus (sunflower)
5-(14-Heneicosenyl)-1,3-benzenediol
5-(14-Heneicosenyl)-1,3-benzenediol is found in cereals and cereal products. 5-(14-Heneicosenyl)-1,3-benzenediol is a constituent of wheat and rye flour. Constituent of wheat and rye flour. 5-(14-Heneicosenyl)-1,3-benzenediol is found in cereals and cereal products.
Cholest-5-ene-3-beta,7-alpha-diol
Cholest-5-ene-3-beta,7-alpha-diol is part of the Lipid metabolism, and Primary bile acid biosynthesis pathways. It is a substrate for: 3 beta-hydroxysteroid dehydrogenase type 7.
(22S)-22-Hydroxycholesterol
(25r,s)-26-Hydroxycholesterol
Epoxycholesterol
3beta-Hydroxy-5alpha-cholestan-15-one
(3S,4R,8S,10R,13R)-10,13-Dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,4-diol
Cholesteryl ester hydroperoxide
20alpha-hydroxy cholesterol
Cholest-5-ene-3,25-diol
24-Methyl-5alpha-cholestan-3beta-ol
Ergostan-3-ol belongs to ergosterols and derivatives class of compounds. Those are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Ergostan-3-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Ergostan-3-ol can be found in a number of food items such as common walnut, oat, pineapple, and horseradish tree, which makes ergostan-3-ol a potential biomarker for the consumption of these food products.
3-Hydroxycholesterol
7-Hydroxycholesterol
beta-hydroxycholesterol
Saracodine
C26H46N2O (402.36099459999997)
Cyclovirobuxine D
C26H46N2O (402.36099459999997)
Furostanol
(1R,2S,4S,6R,7S,8R,9S,12S,13S)-7,9,13-Trimethyl-6-(3-methylbutyl)-5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosan-16-ol
(8S,9S,10R,13R,14S,17R)-17-[(2R,5S)-5-Hydroxy-6-methylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol
2-methyl-6-phytyl-1,4-benzoquinol
2-methyl-6-phytyl-1,4-benzoquinol is a member of the class of compounds known as diterpenoids. Diterpenoids are terpene compounds formed by four isoprene units. 2-methyl-6-phytyl-1,4-benzoquinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-methyl-6-phytyl-1,4-benzoquinol can be found in a number of food items such as macadamia nut (m. tetraphylla), horseradish tree, sweet potato, and pepper (spice), which makes 2-methyl-6-phytyl-1,4-benzoquinol a potential biomarker for the consumption of these food products.
CVB-D
C26H46N2O (402.36099459999997)
Cyclovirobuxine D is a natural product found in Buxus microphylla and Buxus sempervirens with data available. Cyclovirobuxine D (CVB-D) is the main active component of the traditional Chinese medicine Buxus microphylla. Cyclovirobuxine D induces autophagy and attenuates the phosphorylation of Akt and mTOR[1]. Cyclovirobuxine D inhibits cell proliferation of gastric cancer cells through suppression of cell cycle progression and inducement of mitochondria-mediated apoptosis[2]. Cyclovirobuxine D is beneficial for heart failure induced by myocardial infarction[3]. Cyclovirobuxine D (CVB-D) is the main active component of the traditional Chinese medicine Buxus microphylla. Cyclovirobuxine D induces autophagy and attenuates the phosphorylation of Akt and mTOR[1]. Cyclovirobuxine D inhibits cell proliferation of gastric cancer cells through suppression of cell cycle progression and inducement of mitochondria-mediated apoptosis[2]. Cyclovirobuxine D is beneficial for heart failure induced by myocardial infarction[3].
Peniocerol
24-methyl-3beta-(hydroxymethyl)-A-nor-5alpha-cholestane
nonacosa-1,20(Z),22(Z)-triene|nonacosa-1,20Z,22Z-triene
25,26,27-trisnor-3alpha,24-dihydroxycycloartane|macrostachyoside A
(3beta, 5alpha, 6beta)-Cholest-7-ene-3, 6-diol, 9CI
(23R,24R)-23,24-dimethyl-19-nor-5alpha-cholestan-3beta-ol
ST 27:1;O2
6-Ketocholestanol is a recoupler for mitochondria, chromatophores and cytochrome oxidase proteoliposomes. 6-Ketocholestanol increases the membrane dipole potential[1].
Delta-Tocopherol
A tocopherol in which the chroman-6-ol core is substituted by a methyl group at position 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols Delta-Tocopherol is an isomer of Vitamin E. Delta-Tocopherol is an isomer of Vitamin E.
c18e3
Literature spectrum; CONFIDENCE Tentative identification: isomers possible (Level 3); Structure is C18EO2 - spectrum includes x>2; Digitised from figure: approximate intensities
25-OHC
25-Hydroxycholesterol is a metabolite of cholesterol that is produced and secreted by macrophages in response to Toll-like receptor (TLR) activation. 25-hydroxycholesterol is a potent (EC50≈65 nM) and selective suppressor of IgA production by B cells.
7α-hydroxycholesterol
The 7alpha-hydroxy derivative of cholesterol. 7α-Hydroxycholesterol is a cholesterol oxide and is formed by both enzymatic and non-enzymatic oxidation. 7α-Hydroxycholesterol can be used as a biomarker for lipid peroxidation[1][2].
(3S,8S,9S,10R,13R,14S,17R)-17-((2R)-7-hydroxy-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol
N-5Z,8Z,11Z,14Z-eicosatetraenoyl-N-diethyl-ethylenediamine
C26H46N2O (402.36099459999997)
N-arachidonoyl-N-diethylethylenediamine
C26H46N2O (402.36099459999997)
Cholest-5-ene-3-beta,7-alpha-diol
ST 27:1;O2
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D009676 - Noxae > D000963 - Antimetabolites
Acetamide, N-(3-beta-(dimethylamino)-5-alpha-pregnan-20-alpha-yl)-N-me thyl-
C26H46N2O (402.36099459999997)
17-(5-hydroxy-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol
26-Hydroxycholesterol
An oxysterol that is cholesterol substituted at position 26 by a hydroxy group.
24-Hydroxycholesterol
24-Hydroxycholesterol is a natural sterol, which serves as a positive allosteric modulator of N-Methyl-d-Aspartate (NMDA) receptorsR, and a potent activator of the transcription factors LXR. 24-Hydroxycholesterol is a natural sterol, which serves as a positive allosteric modulator of N-Methyl-d-Aspartate (NMDA) receptorsR, and a potent activator of the transcription factors LXR. 24-Hydroxycholesterol is a natural sterol, which serves as a positive allosteric modulator of N-Methyl-d-Aspartate (NMDA) receptorsR, and a potent activator of the transcription factors LXR.
119-13-1
D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols Delta-Tocopherol is an isomer of Vitamin E. Delta-Tocopherol is an isomer of Vitamin E.
22(R)-Hydroxycholesterol
An oxysterol that is the 22S-hydroxy derivative of cholesterol.
Cholest-5-ene-3-beta,7-alpha-diol
Cholest-5-ene-3-beta,7-alpha-diol is part of the Lipid metabolism, and Primary bile acid biosynthesis pathways. It is a substrate for: 3 beta-hydroxysteroid dehydrogenase type 7.
(1R,2S,4S,6R,7S,8R,9S,12S,13S)-7,9,13-Trimethyl-6-(3-methylbutyl)-5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosan-16-ol
(1R,3R,7S,10S,14R)-10,14-dimethyl-15-[(2R)-6-methylheptan-2-yl]-2-oxapentacyclo[9.7.0.01,3.05,10.014,18]octadecan-7-ol
(5S)-3-Hydroxy-10,13-dimethyl-17-(6-methylheptan-2-yl)-1,2,3,4,5,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-6-one
(8S,9S,10R,13S,14S,17S)-17-((R)-2-Hydroxy-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol
Cholestanol 7alpha,8alpha-epoxide
A cholestanoid that is lathosterol in which the double bond at position 7,8 has been oxidised to the corresponding epoxide (the 7alpha,8alpha stereoisomer).
22R-hydroxycholesterol
An oxysterol that is the 22R-hydroxy derivative of cholesterol.
20-Hydroxycholesterol
An oxysterol that is cholesterol substituted by a hydroxy group at position 20. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].
7alpha-Hydroxy-5beta-cholestan-3-one
A 3-oxo-5beta-steroid that is 5beta-cholestan-3-one bearing an additional hydroxy substituent at position 7alpha .
25-Hydroxycholesterol
25-Hydroxycholesterol is a metabolite of cholesterol that is produced and secreted by macrophages in response to Toll-like receptor (TLR) activation. 25-hydroxycholesterol is a potent (EC50≈65 nM) and selective suppressor of IgA production by B cells.
Cerebrosterol
A 24-hydroxycholesterol that has S configuration at position 24. It is the major metabolic breakdown product of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].
(24R)-24-hydroxycholesterol
A 24-hydroxycholesterol that has R configuration at position 24.
4beta-Hydroxycholesterol
A oxysterol that is cholesterol in which the hydrogen at the 4beta position has been replaced by a hydroxy group. A metabolite of cholesterol formed by the drug-metabolizing enzyme cytochrome P450 3A4, it is one of the major oxysterols in the human circulation.
3beta-hydroxy-5alpha-cholestan-15-one
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D009676 - Noxae > D000963 - Antimetabolites
(25R)-Cholest-5-ene-3beta,26-diol
A 26-hydroxycholesterol in which the 25-position has R-configuration.
7-oxo-5alpha-cholestan-3beta-ol
A cholestanoid that is 5alpha-cholestan-3beta-ol carrying an additional oxo substituent at position 7.
(R,R)-2-methyl-6-phytylhydroquinone
The (R,R)-stereoisomer of 2-methyl-6-phytylhydroquinone.
NA-Putrescine 22:4(7Z,10Z,13Z,16Z)
C26H46N2O (402.36099459999997)
n-[(1r)-1-[(1s,3as,3br,5as,7s,9as,9bs,11as)-7-(dimethylamino)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl]-n-methylacetamide
C26H46N2O (402.36099459999997)
1-(5-ethyl-6-methylheptan-2-yl)-11a-methyl-hexadecahydrocyclopenta[a]phenanthren-7-ol
(1r,3as,3br,7s,9ar,9bs,11r,11ar)-9a,11a-dimethyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol
n-[(1r)-1-[(1s,3as,3br,5as,7r,9as,9bs,11as)-7-(dimethylamino)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl]-n-methylacetamide
C26H46N2O (402.36099459999997)
9a,11a-dimethyl-1-(6-methylheptan-2-yl)-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-diol
n-{1-[7-(dimethylamino)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl}-n-methylacetamide
C26H46N2O (402.36099459999997)
n-[(1s)-1-[(1s,3as,3br,5as,7s,9as,9bs,11as)-7-(dimethylamino)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl]-n-methylacetamide
C26H46N2O (402.36099459999997)
(24r)-alpha-methyl cholestanol
{"Ingredient_id": "HBIN004504","Ingredient_name": "(24r)-alpha-methyl cholestanol","Alias": "NA","Ingredient_formula": "C28H50O","Ingredient_Smile": "CC(C)C(C)CCC(C)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "25508","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(1r,3as,3br,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-11a-methyl-hexadecahydrocyclopenta[a]phenanthren-7-ol
(1r,3ar,3bs,5as,7s,9as,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-11a-methyl-hexadecahydrocyclopenta[a]phenanthren-7-ol
(1r,3as,3br,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol
n-{1-[(3as,3br,5as,7s,9as,9bs,11as)-7-(dimethylamino)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl}-n-methylacetamide
C26H46N2O (402.36099459999997)
1-(6-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
n-[(1s)-1-[(1s,3as,3br,5as,7r,9as,9bs,11as)-7-(dimethylamino)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl]-n-methylacetamide
C26H46N2O (402.36099459999997)
(1r,3as,3br,5ar,7s,9as,9bs,11ar)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol
(1r,3as,3bs,5s,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-diol
1-(2-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-7-one
6,9a,11a-trimethyl-1-(6-methylheptan-2-yl)-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol
(1r,3ar,5s,5as,7s,9as,11ar)-9a,11a-dimethyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-5,7-diol
(3s,6r)-6-[(1r,3as,3br,9as,9bs,11ar)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2,3-dimethylheptan-1-ol
(1r,3s,6s,8r,11s,12s,14r,15s,16r)-7,7,12,16-tetramethyl-6-(methylamino)-15-[(1s)-1-(methylamino)ethyl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-14-ol
C26H46N2O (402.36099459999997)
n-[(1r)-1-[(1s,3as,3br,5as,7r,9as,9br,11ar)-7-(dimethylamino)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl]-n-methylacetamide
C26H46N2O (402.36099459999997)
1-(3-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1r,3as,3bs,7s,9ar,9bs,11as)-1-[(2r,3r)-3-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
9a,11a-dimethyl-1-(6-methylheptan-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-4,7-diol
(1r,3as,3br,4s,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-4,7-diol
(1r,3as,3br,5as,7s,9as,9br,11ar)-11a-methyl-1-[(2r,4r,5r)-4,5,6-trimethylheptan-2-yl]-hexadecahydrocyclopenta[a]phenanthren-7-ol
(1s,3as,3br,5as,9as,9bs,11as)-1-[(2s)-2-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-7-one
(2s)-2,8-dimethyl-2-[(4s,8s)-4,8,12-trimethyltridecyl]-3,4-dihydro-1-benzopyran-6-ol
1-(5,6-dimethylheptan-2-yl)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol
(1s,3r,6r,8r,11s,12s,15r,16r)-15-[(2r)-5-hydroxypentan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol
(1s)-1-{[(1r)-1-hydroxydodecyl]peroxy}dodecan-1-ol
(1r,3as,3br,5as,7r,9as,9bs,11ar)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol
9a,11a-dimethyl-1-(6-methylheptan-2-yl)-1h,2h,3h,3ah,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-5,7-diol
n-[(1s,3as,3br,5as,7s,9as,9bs,11as)-1-[(1s)-1-(dimethylamino)ethyl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-yl]-n-methylacetamide
C26H46N2O (402.36099459999997)