Gene Association: TPH1
UniProt Search:
TPH1 (PROTEIN_CODING)
Function Description: tryptophan hydroxylase 1
found 71 associated metabolites with current gene based on the text mining result from the pubmed database.
Abrine
N(alpha)-methyl-L-tryptophan is a N-methyl-L-alpha-amino acid that is the N(alpha)-methyl derivative of L-tryptophan. It has a role as an Escherichia coli metabolite. It is a L-tryptophan derivative and a N-methyl-L-alpha-amino acid. It is a tautomer of a N(alpha)-methyl-L-tryptophan zwitterion. N-Methyltryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). A N-methyl-L-alpha-amino acid that is the N(alpha)-methyl derivative of L-tryptophan. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.216 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.210 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.211 L-(+)-Abrine, a lethal albumin found in Abrus precatorius seeds, is an acute toxic alkaloid and chemical marker for abrin. L-(+)-Abrine, a lethal albumin found in Abrus precatorius seeds, is an acute toxic alkaloid and chemical marker for abrin.
5-Hydroxy-L-tryptophan
5-Hydroxy-L-tryptophan is an aromatic amino acid naturally produced by the body from the essential amino acid L-tryptophan. 5-Hydroxy-L-tryptophan is the immediate precursor of the neurotransmitter serotonin. The conversion to serotonin is catalyzed by the enzyme aromatic L-amino acid decarboxylase (EC 4.1.1.28) (AADC1 also known as DOPA decarboxylase), an essential enzyme in the metabolism of the monoamine neurotransmitters. An accumulation of 5-hydroxy-L-tryptophan in cerebrospinal fluid occurs in aromatic L-amino acid decarboxylase deficiency (AADC deficiency) (OMIM: 608643) accompanied by an increased excretion in the urine of the patients, which are indicative of the disorder but not specific. 5-Hydroxy-L-tryptophan is also increased in other disorders such as in Parkinsons patients with severe postural instability and gait disorders. The amount of endogenous 5-hydroxy-L-tryptophan available for serotonin synthesis depends on the availability of tryptophan and on the activity of various enzymes, especially tryptophan hydroxylase (EC 1.14.16.4), indoleamine 2,3-dioxygenase (EC 1.13.11.52), and tryptophan 2,3-dioxygenase (TDO) (EC 1.13.11.11). 5-Hydroxy-L-tryptophan has been used clinically for over 30 years. In addition to its use in the treatment of depression, the therapeutic administration of 5-hydroxy-L-tryptophan has been shown to be effective in treating a wide variety of conditions, including fibromyalgia, insomnia, binge eating associated with obesity, cerebellar ataxia, and chronic headaches. 5-Hydroxy-L-tryptophan easily crosses the blood-brain barrier and effectively increases central nervous system (CNS) synthesis of serotonin. Supplementation with 5-hydroxy-L-tryptophan is hypothesized to normalize serotonin synthesis, which is putatively related to its antidepressant properties (PMID: 9295177, 17240182, 16023217). When present in sufficiently high levels, 5-hydroxytryptophan can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells or tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Signs and symptoms of AADC deficiency generally appear in the first year of life. Affected infants may have severe developmental delay, weak muscle tone (hypotonia), muscle stiffness, difficulty moving, and involuntary writhing movements of the limbs (athetosis). They may be lacking in energy (lethargic), feed poorly, startle easily, and have sleep disturbances. Since 5-hydroxytryptophan is a precursor to serotonin, altered levels of serotonin can accumulate in the brain, which leads to abnormal neural signalling. Infants with AADC deficiency have very low levels of neural signalling molecules while individuals who consume high levels of 5-hydroxytryptophan will have very high levels of neural signalling molecules. Both conditions can lead to vomiting, nausea, extreme drowsiness, and lethargy. 5-Hydroxytryptophan (5-HTP), also known as oxitriptan (INN) is sold over-the-counter in the United Kingdom, the United States, and Canada as a dietary supplement for use as an antidepressant, appetite suppressant, and sleep aid. It is also marketed in many European countries for the indication of major depression under trade names such as Cincofarm, Levothym, Levotonine, Oxyfan, Telesol, Tript-OH, and Triptum. Several double-blind placebo-controlled clinical trials have demonstrated the effectiveness of 5-HTP in the treatment of depression, though a lack of high-quality studies has been noted. More and larger studies are needed to determine if 5-HTP is truly effective in treating depression. 5-hydroxy-L-tryptophan is the L-enantiomer of 5-hydroxytryptophan. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is a 5-hydroxytryptophan, a hydroxy-L-tryptophan and a non-proteinogenic L-alpha-amino acid. It is an enantiomer of a 5-hydroxy-D-tryptophan. It is a tautomer of a 5-hydroxy-L-tryptophan zwitterion. 5-Hydroxytryptophan (5-HTP), also known as oxitriptan (INN), is a naturally occurring amino acid and metabolic intermediate in the synthesis of serotonin and melatonin. 5-HTP is sold over-the-counter in the United Kingdom, United States and Canada as a dietary supplement for use as an antidepressant, appetite suppressant, and sleep aid, and is also marketed in many European countries for the indication of major depression under trade names like Cincofarm, Levothym, Levotonine, Oxyfan, Telesol, Tript-OH, and Triptum. Several double-blind placebo-controlled clinical trials have demonstrated the effectiveness of 5-HTP in the treatment of depression, though a lack of high quality studies has been noted. More study is needed to determine efficacy in treating depression. Oxitriptan is an aromatic amino acid with antidepressant activity. In vivo, oxitriptan (or 5-hydroxytryptophan) is converted into 5-hydroxytryptamine (5-HT or serotonin) as well as other neurotransmitters. Oxitriptan may exert its antidepressant activity via conversion to serotonin or directly by binding to serotonin (5-HT) receptors within the central nervous system (CNS). Endogenous oxitriptan is produced from the essential amino acid L-tryptophan. The exogenous therapeutic form is isolated from the seeds of the African plant Griffonia simplicifolia. The immediate precursor in the biosynthesis of SEROTONIN from tryptophan. It is used as an antiepileptic and antidepressant. See also: ... View More ... 5-Hydroxytryptophan (5-HTP), also known as oxitriptan (INN), is a naturally-occurring amino acid and chemical precursor as well as metabolic intermediate in the biosynthesis of the neurotransmitters serotonin and melatonin from tryptophan. 5-Hydroxy-L-tryptophan is found in french plantain. 5-Hydroxy-L-tryptophan. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=4350-09-8 (retrieved 2024-07-02) (CAS RN: 4350-09-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-5-Hydroxytryptophan (L-5-HTP), a naturally occurring amino acid and a dietary supplement for use as an antidepressant, appetite suppressant, and sleep aid, is the immediate precursor of the neurotransmitter serotonin and a reserpine antagonist[1]. L-5-Hydroxytryptophan (L-5-HTP) is used to treat fibromyalgia, myoclonus, migraine, and cerebellar ataxia[2][3][4][5].
5-Hydroxytryptophan
5-hydroxytryptophan is a tryptophan derivative that is tryptophan substituted by a hydroxy group at position 5. It has a role as a human metabolite and a neurotransmitter. 5-Hydroxytryptophan, DL- is a racemic mixture of 5-hydroxytryptophan (5-HTP), a precursor to the neurotransmitter serotonin with anti-depressant, analgesic and appetite-suppressant activities. DL-5-HTP is decarboxylated to serotonin by aromatic-L-amino-acid decarboxylase, and results in increased serotonin levels within the brain. Mediated through serotonin receptors, elevated levels of serotonin causes increased serotonin neurotransmissions, hence leading to release of depression, pain and appetite. 5-Hydroxy-L-tryptophan is an aromatic amino acid naturally produced by the body from the essential amino acid l-tryptophan. 5-Hydroxy-L-tryptophan is the immediate precursor of the neurotransmitter serotonin. The conversion to serotonin is catalyzed by the enzyme aromatic l-amino acid decarboxylase (EC 4.1.1.28, AADC1 also known as dopa decarboxylase), an essential enzyme in the metabolism of the monoamine neurotransmitters. An accumulation of 5-Hydroxy-L-tryptophan in cerebrospinal fluid occurs in Aromatic l-amino acid decarboxylase deficiency (OMIM 608643), accompanied by an increased excretion in the urine of the patients, which are indicative of the disorder but not specific 5-Hydroxy-L-tryptophan is also increased in other disorders such as in Parkinsons patients with severe postural instability and gait disorders. Confirmation of the diagnosis AADC deficiency is then required by enzyme activity measurement or genetic analysis. The amount of endogenous 5-Hydroxy-L-tryptophan available for serotonin synthesis depends on the availability of tryptophan and on the activity of various enzymes, especially tryptophan hydroxylase (EC 1.14.16.4), indoleamine 2,3-dioxygenase (EC 1.13.11.52), and tryptophan 2,3-dioxygenase. (EC 1.13.11.11, TDO). 5-Hydroxy-L-tryptophan has been used clinically for over 30 years. In addition to depression, the therapeutic administration of 5-Hydroxy-L-tryptophan has been shown to be effective in treating a wide variety of conditions, including fibromyalgia, insomnia, binge eating associated with obesity, cerebellar ataxia, and chronic headaches. 5-Hydroxy-L-tryptophan easily crosses the blood-brain barrier and effectively increases central nervous system (CNS) synthesis of serotonin. Supplementation with 5-Hydroxy-L-tryptophan is hypothesized to normalize serotonin synthesis, which is putatively related to its antidepressant properties. (A3384, A3385, A3386). The immediate precursor in the biosynthesis of SEROTONIN from tryptophan. It is used as an antiepileptic and antidepressant. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents A tryptophan derivative that is tryptophan substituted by a hydroxy group at position 5. 5-Hydroxytryptophan, a tryptophan metabolite, is a direct 5-hydroxytryptamine (5-HT) precursor and an L-aromatic amino acid decarboxylase substrate. [1][2][3]. 5-Hydroxytryptophan, a tryptophan metabolite, is a direct 5-hydroxytryptamine (5-HT) precursor and an L-aromatic amino acid decarboxylase substrate. [1][2][3].
1-Kestose
1-kestose, also known as 1f-beta-D-fructosylsucrose or [beta-D-fru-(2->1)]2-alpha-D-glup, is a member of the class of compounds known as oligosaccharides. Oligosaccharides are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. 1-kestose is soluble (in water) and a very weakly acidic compound (based on its pKa). 1-kestose can be found in a number of food items such as german camomile, nance, amaranth, and european plum, which makes 1-kestose a potential biomarker for the consumption of these food products. 1-kestose can be found primarily in prostate Tissue, as well as in human prostate tissue. Moreover, 1-kestose is found to be associated with prostate cancer. 1-kestose is a trisaccharide found in vegetables consisting of beta-D-fructofuranose having beta-D-fructofuranosyl and alpha-D-glucopyranosyl residues attached at the 1- and 2-positions respectively. 1-Kestose is a natural product found in Taraxacum lapponicum, Arctium umbrosum, and other organisms with data available. 1-Kestose is a fructooligosaccharide. An oligosaccharide is a saccharide polymer containing a small number (typically three to six) of component sugars, also known as simple sugars. They are generally found either O- or N-linked to compatible amino acid side chains in proteins or to lipid moieties. A trisaccharide found in vegetables consisting of beta-D-fructofuranose having beta-D-fructofuranosyl and alpha-D-glucopyranosyl residues attached at the 1- and 2-positions respectively. 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria. 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria.
Tetrahydrobiopterin
Tetrahydrobiopterin (CAS: 17528-72-2), also known as BH4, is an essential cofactor in the synthesis of neurotransmitters and nitric oxide (PMID: 16946131). In fact, it is used by all three human nitric-oxide synthases (NOS) eNOS, nNOS, and iNOS as well as the enzyme glyceryl-ether monooxygenase. It is also essential in the conversion of phenylalanine into tyrosine by the enzyme phenylalanine-4-hydroxylase; the conversion of tyrosine into L-dopa by the enzyme tyrosine hydroxylase; and the conversion of tryptophan into 5-hydroxytryptophan via tryptophan hydroxylase. Specifically, tetrahydrobiopterin is a cofactor for tryptophan 5-hydroxylase 1, tyrosine 3-monooxygenase, and phenylalanine hydroxylase, all of which are essential for the formation of the neurotransmitters dopamine, noradrenaline, and adrenaline. Tetrahydrobiopterin has been proposed to be involved in the promotion of neurotransmitter release in the brain and the regulation of human melanogenesis. A defect in BH4 production and/or a defect in the enzyme dihydropteridine reductase (DHPR) causes phenylketonuria type IV, as well as dopa-responsive dystonias. BH4 is also implicated in Parkinsons disease, Alzheimers disease, and depression. Tetrahydrobiopterin is present in probably every cell or tissue of higher animals. On the other hand, most bacteria, fungi and plants do not synthesize tetrahydrobiopterin (Wikipedia). A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products C26170 - Protective Agent > C275 - Antioxidant Tetrahydrobiopterin ((Rac)-Sapropterin) is a cofactor of the aromatic amino acid hydroxylases enzymes and also acts as an essential cofactor for all nitric oxide synthase (NOS) isoforms.
d-Threo biopterin
6-Biopterin (L-Biopterin), a pterin derivative, is a NO synthase cofactor.
N-Acetylserotonin
N-Acetylserotonin (NAS), also known as normelatonin, is a naturally occurring chemical precursor and intermediate in the endogenous production of melatonin from serotonin. It also has biological activity in its own right, including acting as a melatonin receptor agonist, an agonist of the TrkB, and having antioxidant effects. N-Acetylserotonin is an intermediate in the metabolic pathway of melatonin and indoleamine in the pineal gland of mammalians. Serotonin-N-acetyltransferase (SNAT), which regulates the rate of melatonin biosynthesis in the pineal gland, catalyzes the acetylation of 5HT to N-acetylserotonin (NAS). A methyl group from S-adenosylmethionine is transferred to NAS by hydroxyindole-O-methyltransferase (HIOMT), and finally NAS is converted to 5-methoxy-N-acetyltryptamine, or melatonin. In most mammalian species the content of NAS (and melatonin) in the pineal gland shows clear circadian changes with the highest level occurring during the dark period. This elevation of the contents of NAS (and melatonin) in the dark period is due to the increase of SNAT activity and the elevation of SNAT gene expression. Experimental studies show that N-acetylserotonin possess free radical scavenging activity. Acute administration of irreversible and reversible selective MAO-A inhibitors and high doses (or chronic administration of low doses) of relatively selective MAO-B inhibitors (but not of highly selective MAO-B inhibitors) suppressed MAO-A activity and stimulated N-acetylation of pineal serotonin into N-acetylserotonin, the immediate precursor of melatonin. N-acetylserotonin increase after MAO-A inhibitors might mediate their antidepressive and antihypertensive effects. N-Acetylserotonin is the product of the O-demethylation of melatonin mediated by cytochrome P-450 isoforms: Cytochrome p450, subfamily IIc, polypeptide 19 (CYP2C19, a clinically important enzyme that metabolizes a wide variety of drugs), with a minor contribution from Cytochrome p450, subfamily I, polypeptide (2CYP1A2, involved in O-deethylation of phenacetin). (PMID 15616152, 11103901, 10721079, 10591054). N-Acetylserotonin acts as a potent antioxidant, NAS effectiveness as an anti-oxidant has been found to be different depending on the experimental model used, it has been described as being between 5 and 20 times more effect than melatonin at protecting against oxidant damage. NAS has been shown to protect against lipid peroxidation in microsomes and mitochondria. NAS has also been reported to lower resting levels of ROS in peripheral blood lymphocytes and to exhibit anti-oxidant effects against t-butylated hydroperoxide- and diamide-induced ROS. N-acetyl serotonin, also known as N-acetyl-5-hydroxytryptamine or N-(2-(5-hydroxy-1h-indol-3-yl)ethyl)acetamide, is a member of the class of compounds known as hydroxyindoles. Hydroxyindoles are organic compounds containing an indole moiety that carries a hydroxyl group. N-acetyl serotonin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). N-acetyl serotonin can be found in a number of food items such as tronchuda cabbage, winter savory, rambutan, and poppy, which makes N-acetyl serotonin a potential biomarker for the consumption of these food products. N-acetyl serotonin can be found primarily in blood and urine, as well as in human kidney and liver tissues. In humans, N-acetyl serotonin is involved in the tryptophan metabolism. Moreover, N-acetyl serotonin is found to be associated with schizophrenia. N-Acetyl-5-hydroxytryptamine is a Melatonin precursor, and that it can potently activate TrkB receptor.
L-Kynurenine
Kynurenine is a metabolite of the amino acid tryptophan used in the production of niacin. L-Kynurenine is a central compound of the tryptophan metabolism pathway since it can change into the neuroprotective agent kynurenic acid or to the neurotoxic agent quinolinic acid. The break-up of these endogenous compounds balance can be observable in many disorders such as stroke, epilepsy, multiple sclerosis, and amyotrophic lateral sclerosis. It can also occur in neurodegenerative disorders such as Parkinsons disease, Huntingtons, and Alzheimers disease; and in mental disorders such as schizophrenia and depression. Kynurenine is a metabolite of the amino acid tryptophan used in the production of niacin. [Raw Data] CBA10_Kynurenine_pos_10eV_1-2_01_666.txt [Raw Data] CBA10_Kynurenine_pos_30eV_1-2_01_668.txt [Raw Data] CBA10_Kynurenine_pos_40eV_1-2_01_669.txt [Raw Data] CBA10_Kynurenine_pos_20eV_1-2_01_667.txt [Raw Data] CBA10_Kynurenine_pos_50eV_1-2_01_670.txt L-Kynurenine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2922-83-0 (retrieved 2024-07-01) (CAS RN: 2922-83-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.
Bufotenin
A hallucinogenic serotonin analog found in frog or toad skins, mushrooms, higher plants, and mammals, especially in the brains, plasma, and urine of schizophrenics. Bufotenin has been used as a tool in CNS studies and misused as a psychedelic. Bufotenin (5-OH-DMT), is a tryptamine related to the neurotransmitter serotonin. It is an alkaloid found in the skin of some species of toads; in mushrooms, higher plants, and mammals. Bufotenin is a chemical constituent in the venom and eggs of several species of toads belonging to the Bufo genus, but most notably in the Colorado River toad (Bufo alvarius) as it is the only toad species in which bufotenin is present in large enough quantities for a psychoactive effect. Extracts of toad venom, containing bufotenin and other bioactive compounds, have been used in some traditional medicines (probably derived from Bufo gargarizans), which has been used medicinally for centuries in China. Bufotenin is a constituent of the seeds of Anadenanthera colubrina and Anadenanthera peregrina trees. Anadenanthera seeds have been used as an ingredient in psychedelic snuff preparations by indigenous cultures of the Caribbean, Central and South America. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
Loperamide
Loperamide is an opioid receptor agonist and acts on the mu opioid receptors in the myenteric plexus large intestines; it does not affect the central nervous system like other opioids; Loperamide usually as hydrochloride, is a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. In most countries it is available generically under brand names such as Lopex, Imodium, Dimor and Pepto Diarrhea Control; Treatment should be avoided in the presence of fever or if the stool is bloody. Treatment is not recommended for patients who could suffer detrimental effects from rebound constipation. If there is a suspicion of diarrhea associated with organisms that can penetrate the intestinal walls, such as E. coli O157:H7 or salmonella, loperamide is contraindicated; Loperamide, usually as hydrochloride, is a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. In most countries it is available generically under brand names such as Lopex, Imodium, Dimor and Pepto Diarrhea Control; it does not affect the central nervous system like other opioids; One of the long-acting synthetic antidiarrheals; it is not significantly absorbed from the gut, and has no effect on the adrenergic system or central nervous system, but may antagonize histamine and interfere with acetylcholine release locally; Loperamide is an opioid receptor agonist and acts on the mu opioid receptors in the myenteric plexus large intestines [HMDB] Loperamide is an opioid receptor agonist and acts on the mu opioid receptors in the myenteric plexus large intestines; it does not affect the central nervous system like other opioids; Loperamide usually as hydrochloride, is a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. In most countries it is available generically under brand names such as Lopex, Imodium, Dimor and Pepto Diarrhea Control; Treatment should be avoided in the presence of fever or if the stool is bloody. Treatment is not recommended for patients who could suffer detrimental effects from rebound constipation. If there is a suspicion of diarrhea associated with organisms that can penetrate the intestinal walls, such as E. coli O157:H7 or salmonella, loperamide is contraindicated; Loperamide, usually as hydrochloride, is a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. In most countries it is available generically under brand names such as Lopex, Imodium, Dimor and Pepto Diarrhea Control; it does not affect the central nervous system like other opioids; One of the long-acting synthetic antidiarrheals; it is not significantly absorbed from the gut, and has no effect on the adrenergic system or central nervous system, but may antagonize histamine and interfere with acetylcholine release locally; Loperamide is an opioid receptor agonist and acts on the mu opioid receptors in the myenteric plexus large intestines. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals KEIO_ID L047; [MS2] KO009036 KEIO_ID L047
Dihydrobiopterin
Dihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia. Dihydrobiopterin (BH2) is an oxidation product of tetrahydrobiopterin. Tetrahydrobiopterin is a natural occurring cofactor of the aromatic amino acid hydroxylase and is involved in the synthesis of tyrosine and the neurotransmitters dopamine and serotonin. Tetrahydrobiopterin is also essential for nitric oxide synthase catalyzed oxidation of L-arginine to L-citrulline and nitric oxide. [HMDB] 7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.
Citalopram
Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety; Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). It is sold under the brand-names Celexa (U.S., Forest Laboratories, Inc.), Cipramil, Seropram (Europe and Australia) and Ciazil (Australia); A furancarbonitrile that is one of the serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety. Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety; Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). It is sold under the brand-names Celexa (U.S., Forest Laboratories, Inc.), Cipramil, Seropram (Europe and Australia) and Ciazil (Australia); A furancarbonitrile that is one of the serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators
Venlafaxine
Venlafaxine (brand name: Effexor or Efexor) is a bicyclic antidepressant and is usually categorized as a serotonin-norepinephrine reuptake inhibitor (SNRI), but it has been referred to as a serotonin-norepinephrine-dopamine reuptake inhibitor. It works by blocking the transporter reuptake proteins for key neurotransmitters affecting mood, thereby leaving more active neurotransmitter in the synapse. The neurotransmitters affected are serotonin (5-hydroxytryptamine) and norepinephrine (noradrenaline). Additionally, in high doses, it weakly inhibits the reuptake of dopamine. A comparison of adverse event rates in a fixed-dose study comparing venlafaxine 75, 225, and 375 mg/day with placebo revealed a dose dependency for some of the more common adverse events associated with venlafaxine use. The rule for including events was to enumerate those that occurred at an incidence of 5\\% or more for at least one of the venlafaxine groups and for which the incidence was at least twice the placebo incidence for at least one venlafaxine group. Tests for potential dose relationships for these events (Cochran-Armitage Test, with a criterion of exact 2-sided p-value <= 0.05) suggested a dose-dependency for several adverse events in this list, including chills, hypertension, anorexia, nausea, agitation, dizziness, somnolence, tremor, yawning, sweating, and abnormal ejaculation (Wyeth Monograph). Venlafaxine is an effective anti-depressant for many persons; however, it seems to be especially effective for those with treatment-resistant depression. Patients suffering from severe long-term depression typically respond better to venlafaxine than other drugs. However, venlafaxine has been reported to be more difficult to discontinue than other antidepressants. In addition, a September 2004 Consumer Reports study ranked venlafaxine as the most effective among six commonly prescribed antidepressants. However, this should not be considered a definitive finding, since responses to psychiatric medications can vary significantly from individual to individual. A black box warning has been issued with venlafaxine and with other SSRI and SNRI anti-depressants advising of risk of suicide. There is an additional risk if a physician misinterprets patient expression of adverse effects such as panic or akathisia. Careful assessment of patient history and comorbid risk factors such as drug abuse are essential in evaluating the safety of venlafaxine for individual patients. Another risk is serotonin syndrome. This is a serious effect that can be caused by interactions with other drugs and is potentially fatal. This risk necessitates clear information to patients and proper medical history. Venlafaxine is used primarily for the treatment of depression, generalized anxiety disorder, obsessive-compulsive disorder, social anxiety disorder, and panic disorder in adults. It is also used for other general depressive disorders. Although it is not approved for use in children or adolescents, there is considerable information by Wyeth on cautions if prescribed to this age group. Venlafaxine hydrochloride is a prescription antidepressant first introduced by Wyeth in 1993. As of August 2006, generic venlafaxine is available in the United States. CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7277; ORIGINAL_PRECURSOR_SCAN_NO 7275 CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7245; ORIGINAL_PRECURSOR_SCAN_NO 7242 CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7253; ORIGINAL_PRECURSOR_SCAN_NO 7251 CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7306; ORIGINAL_PRECURSOR_SCAN_NO 7304 CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7276; ORIGINAL_PRECURSOR_SCAN_NO 7274 CONFIDENCE standard compound; INTERNAL_ID 417; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7292; ORIGINAL_PRECURSOR_SCAN_NO 7289 D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1900 C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants CONFIDENCE standard compound; INTERNAL_ID 8322 CONFIDENCE standard compound; INTERNAL_ID 1502 D049990 - Membrane Transport Modulators
Fluphenazine
Fluphenazine is only found in individuals that have used or taken this drug. It is a phenothiazine used in the treatment of psychoses. Its properties and uses are generally similar to those of chlorpromazine. [PubChem]Fluphenazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent
Fluvoxamine
Fluvoxamine is an antidepressant which functions pharmacologically as a selective serotonin reuptake inhibitor. Though it is in the same class as other SSRI drugs, it is most often used to treat obsessive-compulsive disorder. Fluvoxamine has been in use in clinical practice since 1983 and has a clinical trial database comprised of approximately 35,000 patients. It was launched in the US in December 1994 and in Japan in June 1999. As of the end of 1995, more than 10 million patients worldwide have been treated with fluvoxamine. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent CONFIDENCE standard compound; INTERNAL_ID 8519 D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
m-chlorophenylpiperazine (m-CPP)
m-chlorophenylpiperazine (m-CPP) is a metabolite of trazodone. Trazodone (also sold under the brand names Desyrel, Oleptro, Beneficat, Deprax, Desirel, Molipaxin, Thombran, Trazorel, Trialodine, Trittico, and Mesyrel) is an antidepressant of the serotonin antagonist and reuptake inhibitor (SARI) class. It is a phenylpiperazine compound. Trazodone also has anxiolytic and hypnotic effects. Trazodone has considerably fewer prominent anticholinergic and sexual side effects than most of the tricyclic antidepressants (TCAs). (Wikipedia) D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1300 EAWAG_UCHEM_ID 2818; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2818
Olopatadine
Used to treat allergic conjunctivitis (itching eyes), olopatadine inhibits the release of histamine from mast cells. It is a relatively selective histamine H1 antagonist that inhibits the in vivo and in vitro type 1 immediate hypersensitivity reaction including inhibition of histamine induced effects on human conjunctival epithelial cells. R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D018926 - Anti-Allergic Agents
Fenfluramine
A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C78272 - Agent Affecting Nervous System > C29728 - Anorexiant D049990 - Membrane Transport Modulators KEIO_ID F016; [MS2] KO009107 KEIO_ID F016
Ondansetron
Ondansetron is a well tolerated drug with few side effects. Headache, constipation, and dizziness are the most commonly reported side effects associated with its use. There have been no significant drug interactions reported with this drugs use. It is broken down by the hepatic cytochrome P450 system and it has little effect on the metabolism of other drugs broken down by this system; Ondansetron is a serotonin 5-HT3 receptor antagonist used mainly to treat nausea and vomiting following chemotherapy. Its effects are thought to be on both peripheral and central nerves. One part is to reduce the activity of the vagus nerve, which is a nerve that activates the vomiting center in the medulla oblongata, the other is a blockage of serotonin receptors in the chemoreceptor trigger zone. It does not have much effect on vomiting due to motion sickness. This drug does not have any effect on dopamine receptors or muscarinic receptors; A competitive serotonin type 3 receptor antagonist. It is effective in the treatment of nausea and vomiting caused by cytotoxic chemotherapy drugs, including cisplatin, and has reported anxiolytic and neuroleptic properties; Ondansetron (INN) is a serotonin 5-HT3 receptor antagonist used mainly to treat nausea and vomiting following chemotherapy. Its effects are thought to be on both peripheral and central nerves. One part is to reduce the activity of the vagus nerve, which is a nerve that activates the vomiting center in the medulla oblongata, the other is a blockage of serotonin receptors in the chemoreceptor trigger zone. It does not have much effect on vomiting due to motion sickness. This drug does not have any effect on dopamine receptors or muscarinic receptors. [HMDB] Ondansetron is a well tolerated drug with few side effects. Headache, constipation, and dizziness are the most commonly reported side effects associated with its use. There have been no significant drug interactions reported with this drugs use. It is broken down by the hepatic cytochrome P450 system and it has little effect on the metabolism of other drugs broken down by this system; Ondansetron is a serotonin 5-HT3 receptor antagonist used mainly to treat nausea and vomiting following chemotherapy. Its effects are thought to be on both peripheral and central nerves. One part is to reduce the activity of the vagus nerve, which is a nerve that activates the vomiting center in the medulla oblongata, the other is a blockage of serotonin receptors in the chemoreceptor trigger zone. It does not have much effect on vomiting due to motion sickness. This drug does not have any effect on dopamine receptors or muscarinic receptors; A competitive serotonin type 3 receptor antagonist. It is effective in the treatment of nausea and vomiting caused by cytotoxic chemotherapy drugs, including cisplatin, and has reported anxiolytic and neuroleptic properties; Ondansetron (INN) is a serotonin 5-HT3 receptor antagonist used mainly to treat nausea and vomiting following chemotherapy. Its effects are thought to be on both peripheral and central nerves. One part is to reduce the activity of the vagus nerve, which is a nerve that activates the vomiting center in the medulla oblongata, the other is a blockage of serotonin receptors in the chemoreceptor trigger zone. It does not have much effect on vomiting due to motion sickness. This drug does not have any effect on dopamine receptors or muscarinic receptors. A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants > A04AA - Serotonin (5ht3) antagonists C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist > C94726 - 5-HT3 Receptor Antagonist D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D003879 - Dermatologic Agents > D000982 - Antipruritics CONFIDENCE standard compound; INTERNAL_ID 2746 CONFIDENCE standard compound; INTERNAL_ID 8525 D002491 - Central Nervous System Agents Ondansetron (GR 38032; SN 307) is a highly selective 5-HT3 receptor antagonist, with IC50 value of 103 pM. Ondansetron exerts antiemetic effects by antagonizing 5-HT receptor located on local neurons in the peripheral and central nervous system. Ondansetron suppresses nausea and vomiting caused by chemotherapy and radiation therapy. Ondansetron has orally bioactivity[1][2][3][4][5][6][7][8].
Isobutyric acid
Isobutyric acid is a carboxylic or short chain fatty acid with characteristic sweat-like smell. Small amount of isobutyrate is generated via microbial (gut) metabolism. Small amounts may also be found in certain foods or fermented beverages. There is anosmia (genetic inability to smell) for the odor of isobutyric acid with a frequency of about 2.5\\%. (OMIM 207000). Isobutyric acid is slightly soluble in water but much more soluble in ethanol, ether and organic solvents. Isobutyric acid can affect people if breathed in and may be absorbed through the skin. Contact can irritate and burn the skin and eyes. Breathing Isobutyric acid can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath. Present in apple, morello cherry, guava fruit, wine grapes, pineapple, crispbread, other breads, cheeses, wines, scallop and several essential oils, e.g. Roman chamomile. Acid and simple esters used as flavouring agents KEIO_ID I012
Dihydroresveratrol
A polyphenol metabolite detected in biological fluids [PhenolExplorer] Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1]. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1].
Pterin
Pterin is a chemical compound composed of a pyrazine ring and a pyrimidine ring; Pterin is a heterocyclic compound composed of a pyrazine ring and a pyrimidine ring (a pteridine ring system); the pyrimidine ring has a carbonyl oxygen and an amino group. Several tautomers of pterin exist and are shown below. As a group, pterins are compounds that are derivatives of 2-amino-4-oxopteridine, with additional functional groups attached to the pyrazine ring.; the pyrimidine ring has a carbonyl oxygen and an amino group. Several tautomers of pterin exist and are shown below. Pterin belongs to the pteridine family of heterocycles. -- Wikipedia. Pterin is found in soy bean. Pterin is a chemical compound composed of a pyrazine ring and a pyrimidine ring; the pyrimidine ring has a carbonyl oxygen and an amino group. Several tautomers of pterin exist and are shown below. Pterin belongs to the pteridine family of heterocycles. -- Wikipedia.
Vanylglycol
Vanylglycol, also known as 3-Methoxy-4-hydroxyphenylethyleneglycol (MHPG), belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is synthesized from endogenous epinephrine and norepinephrine in vivo. It is found in brain, blood, CSF, and urine, where its concentrations are used to measure catecholamine turnover. Catecholamines play an important role in platelet activation and aggregation, epinephrine being the most potent one. Vanylglycol and pyrocatechol can be biosynthesized from 3,4-dihydroxyphenylglycol and guaiacol; which is catalyzed by the enzyme catechol O-methyltransferase. Vanylglycol is a O-methylated metabolite of normetanephrine. In humans, vanylglycol is involved in the metabolic disorder called tyrosinemia in newborns. Alcohol consumption increases the level of vanylglycol in urine and CSF. Vanylglycol is found normally in urine, in plasma and cerebrospinal fluid. Outside of the human body, vanylglycol has been detected, but not quantified in several different foods, such as blackcurrants, chinese bayberries, elderberries, oriental wheats, and poppies.
Tetrahydropteridine
Tetrahydrobiopterin serves well-characterized cofactor functions for hydroxylating aromatic amino acids and ether lipids and for formation of nitric oxide (NO) from L-arginine. Formation of NO involves two cycles of oxidation of Tetrahydrobiopterin to its radical with subsequent rehydroxylation into Tetrahydrobiopterin, one for reduction of the heme-bound arginine-Fe(II)O2 complex of NO synthase (NOS), the other for reduction of the N-hydroxy-L-arginine-Fe(II)O2 complex. Tetrahydrobiopterin-dependent glyceryl ether monooxygenase (EC 1.14.16.5) is found not only in liver and the gastrointestinal tract but also in brain and other organs (this enzyme plays an essential role in conjugation with the cleavage enzyme in the regulation of cellular levels of -alkyl moieties in glycerolipids). Tetrahydrobiopterin is essential for the enzymatic reaction of tyrosine 3-monooxygenase (EC 1.14.16.2) for the first step in the biosynthesis of catecholamines such as norepinephrine, epinephrine and dopamine. Limited Tetrahydrobiopterin availability not only decreases formation of NO but also causes NOS-derived superoxide/hydrogen peroxide production leading to formation of peroxynitrite as well as S-nitrosoglutathione. As a consequence of its oxygen-activating potential, Tetrahydrobiopterin is also subject to autoxidation in a free radical chain reaction in leading to formation of superoxide and finally to hydrogen peroxide. On the other hand, Tetrahydrobiopterin, like other H4-pterins, can scavenge reactive oxygen species and peroxynitrite. Thus, Tetrahydrobiopterin may have opposing effects in various biological systems depending on whether its cofactor roles outweigh its chemical reactivity or vice versa. Sepiapterin reductase (EC 1.1.1.153) catalyzes the reduction of tetrahydro-sepiapterin to tetrahydrobiopterin -the terminal step in this biosynthetic pathway for tetrahydrobiopterin. This reaction is N-acetyl-serotonin-sensitive and can completely inhibit tetrahydrobiopterin synthesis. (PMID: 3881214, 17303893, 3756924, 15223071) [HMDB] Tetrahydrobiopterin serves well-characterized cofactor functions for hydroxylating aromatic amino acids and ether lipids and for formation of nitric oxide (NO) from L-arginine. Formation of NO involves two cycles of oxidation of Tetrahydrobiopterin to its radical with subsequent rehydroxylation into Tetrahydrobiopterin, one for reduction of the heme-bound arginine-Fe(II)O2 complex of NO synthase (NOS), the other for reduction of the N-hydroxy-L-arginine-Fe(II)O2 complex. Tetrahydrobiopterin-dependent glyceryl ether monooxygenase (EC 1.14.16.5) is found not only in liver and the gastrointestinal tract but also in brain and other organs (this enzyme plays an essential role in conjugation with the cleavage enzyme in the regulation of cellular levels of -alkyl moieties in glycerolipids). Tetrahydrobiopterin is essential for the enzymatic reaction of tyrosine 3-monooxygenase (EC 1.14.16.2) for the first step in the biosynthesis of catecholamines such as norepinephrine, epinephrine and dopamine. Limited Tetrahydrobiopterin availability not only decreases formation of NO but also causes NOS-derived superoxide/hydrogen peroxide production leading to formation of peroxynitrite as well as S-nitrosoglutathione. As a consequence of its oxygen-activating potential, Tetrahydrobiopterin is also subject to autoxidation in a free radical chain reaction in leading to formation of superoxide and finally to hydrogen peroxide. On the other hand, Tetrahydrobiopterin, like other H4-pterins, can scavenge reactive oxygen species and peroxynitrite. Thus, Tetrahydrobiopterin may have opposing effects in various biological systems depending on whether its cofactor roles outweigh its chemical reactivity or vice versa. Sepiapterin reductase (EC 1.1.1.153) catalyzes the reduction of tetrahydro-sepiapterin to tetrahydrobiopterin -the terminal step in this biosynthetic pathway for tetrahydrobiopterin. This reaction is N-acetyl-serotonin-sensitive and can completely inhibit tetrahydrobiopterin synthesis. (PMID: 3881214, 17303893, 3756924, 15223071).
Ketanserin
C - Cardiovascular system > C02 - Antihypertensives > C02K - Other antihypertensives > C02KD - Serotonin antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Ketanserin is a selective 5-HT2 receptor antagonist. Ketanserin also blocks hERG current (IhERG) in a concentration-dependent manner (IC50=0.11 μM).
Chlorphentermine
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
Clorgiline
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor Same as: D03248
2-Methyl-5-hydroxytryptamine
2-Methyl-5-HT (2-Methyl-5-hydroxytryptamine) is a potent and selective 5-HT3 receptor agonist. 2-Methyl-5-HT is shown to display anti-depressive-like effects[1].
10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one
4a-Hydroxytetrahydrobiopterin
Tetrahydrobiopterin (BH4) is essential for catalyzing the conversion of phenylalanine into tyrosine by phenylalanine hydroxylase. During this physiological reaction, the oxidation of BH4 creates 4a-hydroxytetrahydropterin (CAS: 70110-58-6) intermediates and hydrogen peroxide is formed. The hydrogen peroxide and the hydroxytetrahydropterin can both be derived from alternate breakdown routes of a common precursor, the corresponding 4a-hydroperoxytetrahydropterin (PMID: 8323303). Tetrahydrobiopterin (BH4) is essential to catalyze the conversion of phenylalanine to tyrosine by phenylalanine hydroxylase. During this physiological reaction, the oxidation of BH4 creates 4a-hydroxytetrahydropterin intermediates and hydrogen peroxide is formed. The hydrogen peroxide and the hydroxytetrahydropterin can both derive from alternate routes of breakdown of a common precursor, the corresponding 4a-hydroperoxytetrahydropterin. (PMID 8323303) [HMDB]
Baldrinal
Baldrinal is an arenecarbaldehyde. Baldrinal is a natural product found in Nardostachys jatamansi, Valeriana officinalis, and other organisms with data available. Baldrinal is derived from the extracts of valerian rhizomes and roots, inhibits autonomic activity, and has anti-inflammatory effects[1].
D-Kynurenine
Kynurenine, also known as 3-anthraniloylalanine, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Kynurenine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Kynurenine can be found in a number of food items such as yellow zucchini, carrot, spinach, and broccoli, which makes kynurenine a potential biomarker for the consumption of these food products. Kynurenine is synthesized by the enzyme tryptophan dioxygenase, which is made primarily but not exclusively in the liver, and indoleamine 2,3-dioxygenase, which is made in many tissues in response to immune activation. Kynurenine and its further breakdown products carry out diverse biological functions, including dilating blood vessels during inflammation and regulating the immune response. Some cancers increase kynurenine production, which increases tumor growth . 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite.
Dihydro-resveratrol
Dihydroresveratrol is a stilbenol that is 1,1-ethane-1,2-diyldibenzene with hydroxy groups at positions 1, 3 and 4. It has a role as a xenobiotic metabolite and a plant metabolite. Dihydroresveratrol is a natural product found in Blasia pusilla, Dioscorea dumetorum, and other organisms with data available. A stilbenol that is 1,1-ethane-1,2-diyldibenzene with hydroxy groups at positions 1, 3 and 4. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1]. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1].
Biopterin
Biopterin concentrations in cerebrospinal fluid from patients with Parkinsons disease, in which the nigrostriatal dopamine neurons degenerate, are lower than those from age-matched older controls. In hereditary progressive dystonia/DOPA-responsive dystonia, which is a dopamine deficiency caused by mutations in GTP cyclohydrolase I without neuronal cell death (Segawas disease), biopterin in cerebrospinal fluid decrease in parallel owing to the decreased activity in GTP cyclohydrolase I (EC 3.5.4.16, is an enzyme that is part of the folate and biopterin biosynthesis pathways. It is responsible for the hydrolysis of guanosine triphosphate (GTP) to form 7,8-dihydroneopterin 3-triphosphate. (Pteridines (1999), 10(1), 5-13.) Lowered levels of urinary biopterin concomitant with elevated serum phenylalanine concentration occur in a variant type of hyperphenylalaninemia caused by a deficiency of tetrahydrobiopterin (BH4), the obligatory cofactor for phenylalanine hydroxylase. The most frequent form of this cofactor deficiency is due to lack of 6-pyruvoyl-tetrahydropterin synthase (PTPS) activity, the second enzyme in the biosynthetic pathway for BH4. (PMID 8178819) The hepatic phenylalanine hydroxylating system consists of 3 essential components, phenylalanine hydroxylase, dihydropteridine reductase, and the nonprotein coenzyme, tetrahydrobiopterin. The reductase and the pterin coenzyme are also essential components of the tyrosine and tryptophan hydroxylating systems. There are 3 distinct forms of phenylketonuria or hyperphenylalaninemia, each caused by lack of 1 of these essential components. The variant forms of the disease that are caused by the lack of dihydropteridine reductase or tetrahydrobiopterin are characterized by severe neurol. deterioration, impaired functioning of tyrosine and tryptophan hydroxylases, and the resultant deficiency of tyrosine- and tryptophan-derived monoamine neurotransmitters in brain. (PMID 3930837) [HMDB] Biopterin, also known as tetrahydrobiopterin or BH4, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Biopterin or tetrahydrobiopterin is also classified as a pterin derivative that consists of pterin group bearing an amino, an oxo and a 1,2-dihydroxypropyl substituent at positions 2, 4 and 6, respectively. Biopterin compounds found within the animals include BH4 (tetrahydrobiopterin), the free radical BH3, and BH2 (also a free radical, called Dihydrobiopterin). BH2 is produced in the synthesis of L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin by the enzyme dihydrobiopterin reductase. Tetrahydrobiopterin (BH4) is a cofactor of the three aromatic amino acid hydroxylase enzymes, used in the degradation of amino acid phenylalanine and in the biosynthesis of the neurotransmitters serotonin (5-hydroxytryptamine, 5-HT), melatonin, dopamine, norepinephrine (noradrenaline), epinephrine (adrenaline). It is also a cofactor for the production of nitric oxide (NO) by the nitric oxide syntheses. Tetrahydrobiopterin is biosynthesized from guanosine triphosphate (GTP) by three chemical reactions mediated by the enzymes GTP cyclohydrolase I (GTPCH), 6-pyruvoyltetrahydropterin synthase (PTPS), and sepiapterin reductase (SR). Biopterin synthesis disorders are a cause of hyperphenylalaninemia. There are 3 distinct forms of phenylketonuria or hyperphenylalaninemia, each caused by lack of aromatic amino acid hydroxylase enzymes. The variant forms of hyperphenylalaninemia that are caused by the lack of dihydropteridine reductase or tetrahydrobiopterin are characterized by severe neurological deterioration, impaired functioning of tyrosine and tryptophan hydroxylases, and the resultant deficiency of tyrosine- and tryptophan-derived monoamine neurotransmitters in brain. (PMID 3930837). 6-Biopterin (L-Biopterin), a pterin derivative, is a NO synthase cofactor.
Escitalopram
Escitalopram is a furancarbonitrile that is one of the Serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Escitalopram (Cipralex) is a medication developed by the Danish pharmaceutical company Lundbeck, that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD. In the United States, the drug is marketed under the name Lexapro by Forest Laboratories, Inc; Escitalopram is a medication that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD; Discontinuation from antidepressants, especially abruptly, has been known to cause certain withdrawal symptoms. One possible discontinuation symptom from Escitalopram is a type of spontaneous nerve pulse known as paresthesia or electric shock sensations, described by some patients as a feeling of small electric shocks, which may be accompanied by dizziness. These pulses may be short in duration, only milliseconds long, may affect any region of the body, and recur up to several times a minute, throughout all waking hours. They can be increased by physical activity, but are not solely linked to muscular activity. Other discontinuation symptoms include extreme sensitivity to loud sounds and bright lights, chills, hot flushes, cold sweats, reddening of the face, abdominal pain, weight gain and extreme mental fatigue. A furancarbonitrile that is one of the Serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Escitalopram (Cipralex) is a medication developed by the Danish pharmaceutical company Lundbeck, that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD. In the United States, the drug is marketed under the name Lexapro by Forest Laboratories, Inc; Escitalopram is a medication that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD; Discontinuation from antidepressants, especially abruptly, has been known to cause certain withdrawal symptoms. One possible discontinuation symptom from Escitalopram is a type of spontaneous nerve pulse known as paresthesia or electric shock sensations, described by some patients as a feeling of small electric shocks, which may be accompanied by dizziness. These pulses may be short in duration, only milliseconds long, may affect any region of the body, and recur up to several times a minute, throughout all waking hours. They can be increased by physical activity, but are not solely linked to muscular activity. Other discontinuation symptoms include extreme sensitivity to loud sounds and bright lights, chills, hot flushes, cold sweats, reddening of the face, abdominal pain, weight gain and extreme mental fatigue. [HMDB] N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators Escitalopram ((S)-Citalopram), the S-enantiomer of racemic Citalopram, is a selective serotonin reuptake inhibitor (SSRI) with a Ki of 0.89 nM. Escitalopram has ~30 fold higher binding affinity than its R(-)-enantiomer and shows selectivity over both dopamine transporter (DAT) and norepinephrine transporter (NET). Escitalopram is an antidepressant for the research of major depression[1][2].
Dexfenfluramine
Dexfenfluramine, also marketed under the name Redux, is a serotoninergic anorectic drug. It was for some years in the mid-1990s approved by the United States Food and Drug Administration for the purposes of weight loss. However, following multiple concerns about the cardiovascular side-effects of the drug, such approval was withdrawn. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C78272 - Agent Affecting Nervous System > C29728 - Anorexiant D049990 - Membrane Transport Modulators
Citalopram
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent EAWAG_UCHEM_ID 2901; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2901 CONFIDENCE standard compound; INTERNAL_ID 8590 D049990 - Membrane Transport Modulators
venlafaxine
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants CONFIDENCE standard compound; EAWAG_UCHEM_ID 645 D049990 - Membrane Transport Modulators
Citalopram
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1513 CONFIDENCE standard compound; INTERNAL_ID 4118
Olopatadine
R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D018926 - Anti-Allergic Agents CONFIDENCE standard compound; INTERNAL_ID 2210 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3323
fenfluramine
A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C78272 - Agent Affecting Nervous System > C29728 - Anorexiant D049990 - Membrane Transport Modulators CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 600 CONFIDENCE standard compound; INTERNAL_ID 2248
venlafaxine
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D049990 - Membrane Transport Modulators CONFIDENCE Reference Standard (Level 1)
Oxitriptan
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 L-5-Hydroxytryptophan (L-5-HTP), a naturally occurring amino acid and a dietary supplement for use as an antidepressant, appetite suppressant, and sleep aid, is the immediate precursor of the neurotransmitter serotonin and a reserpine antagonist[1]. L-5-Hydroxytryptophan (L-5-HTP) is used to treat fibromyalgia, myoclonus, migraine, and cerebellar ataxia[2][3][4][5].
Kynurenine
A ketone that is alanine in which one of the methyl hydrogens is substituted by a 2-aminobenzoyl group. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.060 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.
N-Acetylserotonin
An N-acylserotonin resulting from the formal condensation of the primary amino group of serotonin with the carboxy group of acetic acid. N-Acetyl-5-hydroxytryptamine is a Melatonin precursor, and that it can potently activate TrkB receptor.
loperamide
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals CONFIDENCE standard compound; INTERNAL_ID 2504 CONFIDENCE standard compound; INTERNAL_ID 8489
biopterin
A pterin derivative that consists of pterin bearing amino, oxo and 1,2-dihydroxypropyl substituents at positions 2, 4 and 6 respectively. The parent of the class of biopterins; the L-erythro isomer occurs widely in nature. 6-Biopterin (L-Biopterin), a pterin derivative, is a NO synthase cofactor.
dihydrobiopterin
7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.
ISOBUTYRIC ACID
A branched fatty acid comprising propanoic acid carrying a methyl branch at C-2.
Fluphenazine (oxide)
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent
Fluvoxamine
D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2740
ondansetron
A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants > A04AA - Serotonin (5ht3) antagonists C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist > C94726 - 5-HT3 Receptor Antagonist D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D003879 - Dermatologic Agents > D000982 - Antipruritics D002491 - Central Nervous System Agents Ondansetron (GR 38032; SN 307) is a highly selective 5-HT3 receptor antagonist, with IC50 value of 103 pM. Ondansetron exerts antiemetic effects by antagonizing 5-HT receptor located on local neurons in the peripheral and central nervous system. Ondansetron suppresses nausea and vomiting caused by chemotherapy and radiation therapy. Ondansetron has orally bioactivity[1][2][3][4][5][6][7][8].
7,8-Dihydro-L-biopterin
7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.
Clorgiline
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor Same as: D03248
58436-28-5
Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1]. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1].
Sapropterin
A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products A tetrahydropterin that is 2-amino-5,6,7,8-tetrahydropteridin-4(3H)-one in which a hydrogen at position 6 is substituted by a 1,2-dihydroxypropyl group (6R,1R,2S-enantiomer). C26170 - Protective Agent > C275 - Antioxidant Sapropterin is converted from 7,8-dihydroneopterin triphosphate by 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase. It is essential in the formation of neurotransmitters and for nitric oxide synthase (PMID 16946131). [HMDB] Tetrahydrobiopterin ((Rac)-Sapropterin) is a cofactor of the aromatic amino acid hydroxylases enzymes and also acts as an essential cofactor for all nitric oxide synthase (NOS) isoforms.
chlorоphentermine
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
bufotenin
A tertiary amine that consists of N,N-dimethyltryptamine bearing an additional hydroxy substituent at position 5. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
Ketanserin
C - Cardiovascular system > C02 - Antihypertensives > C02K - Other antihypertensives > C02KD - Serotonin antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Ketanserin is a selective 5-HT2 receptor antagonist. Ketanserin also blocks hERG current (IhERG) in a concentration-dependent manner (IC50=0.11 μM).
3-Chlorophenyl piperazine
A N-arylpiperazine that is piperazine carrying a 3-chlorophenyl substituent at position 1. It is a metabolite of the antidepressant drug trazodone. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists