Tetrahydropteridine (BioDeep_00000005900)

 

Secondary id: BioDeep_00001869504

human metabolite Endogenous


代谢物信息卡片


5,6,7,8-Tetrahydro-pteridine

化学式: C6H8N4 (136.0749)
中文名称: 5,6,7,8-四氢蝶啶
谱图信息: 最多检出来源 Homo sapiens(lipidsearch) 38.61%

分子结构信息

SMILES: C1=NC=C2NCCN=C2N1
InChI: InChI=1S/C6H8N4/c1-2-9-6-5(8-1)3-7-4-10-6/h3-4,8H,1-2H2,(H,7,9,10)

描述信息

Tetrahydrobiopterin serves well-characterized cofactor functions for hydroxylating aromatic amino acids and ether lipids and for formation of nitric oxide (NO) from L-arginine. Formation of NO involves two cycles of oxidation of Tetrahydrobiopterin to its radical with subsequent rehydroxylation into Tetrahydrobiopterin, one for reduction of the heme-bound arginine-Fe(II)O2 complex of NO synthase (NOS), the other for reduction of the N-hydroxy-L-arginine-Fe(II)O2 complex. Tetrahydrobiopterin-dependent glyceryl ether monooxygenase (EC 1.14.16.5) is found not only in liver and the gastrointestinal tract but also in brain and other organs (this enzyme plays an essential role in conjugation with the cleavage enzyme in the regulation of cellular levels of -alkyl moieties in glycerolipids). Tetrahydrobiopterin is essential for the enzymatic reaction of tyrosine 3-monooxygenase (EC 1.14.16.2) for the first step in the biosynthesis of catecholamines such as norepinephrine, epinephrine and dopamine. Limited Tetrahydrobiopterin availability not only decreases formation of NO but also causes NOS-derived superoxide/hydrogen peroxide production leading to formation of peroxynitrite as well as S-nitrosoglutathione. As a consequence of its oxygen-activating potential, Tetrahydrobiopterin is also subject to autoxidation in a free radical chain reaction in leading to formation of superoxide and finally to hydrogen peroxide. On the other hand, Tetrahydrobiopterin, like other H4-pterins, can scavenge reactive oxygen species and peroxynitrite. Thus, Tetrahydrobiopterin may have opposing effects in various biological systems depending on whether its cofactor roles outweigh its chemical reactivity or vice versa. Sepiapterin reductase (EC 1.1.1.153) catalyzes the reduction of tetrahydro-sepiapterin to tetrahydrobiopterin -the terminal step in this biosynthetic pathway for tetrahydrobiopterin. This reaction is N-acetyl-serotonin-sensitive and can completely inhibit tetrahydrobiopterin synthesis. (PMID: 3881214, 17303893, 3756924, 15223071) [HMDB]
Tetrahydrobiopterin serves well-characterized cofactor functions for hydroxylating aromatic amino acids and ether lipids and for formation of nitric oxide (NO) from L-arginine. Formation of NO involves two cycles of oxidation of Tetrahydrobiopterin to its radical with subsequent rehydroxylation into Tetrahydrobiopterin, one for reduction of the heme-bound arginine-Fe(II)O2 complex of NO synthase (NOS), the other for reduction of the N-hydroxy-L-arginine-Fe(II)O2 complex. Tetrahydrobiopterin-dependent glyceryl ether monooxygenase (EC 1.14.16.5) is found not only in liver and the gastrointestinal tract but also in brain and other organs (this enzyme plays an essential role in conjugation with the cleavage enzyme in the regulation of cellular levels of -alkyl moieties in glycerolipids). Tetrahydrobiopterin is essential for the enzymatic reaction of tyrosine 3-monooxygenase (EC 1.14.16.2) for the first step in the biosynthesis of catecholamines such as norepinephrine, epinephrine and dopamine. Limited Tetrahydrobiopterin availability not only decreases formation of NO but also causes NOS-derived superoxide/hydrogen peroxide production leading to formation of peroxynitrite as well as S-nitrosoglutathione. As a consequence of its oxygen-activating potential, Tetrahydrobiopterin is also subject to autoxidation in a free radical chain reaction in leading to formation of superoxide and finally to hydrogen peroxide. On the other hand, Tetrahydrobiopterin, like other H4-pterins, can scavenge reactive oxygen species and peroxynitrite. Thus, Tetrahydrobiopterin may have opposing effects in various biological systems depending on whether its cofactor roles outweigh its chemical reactivity or vice versa. Sepiapterin reductase (EC 1.1.1.153) catalyzes the reduction of tetrahydro-sepiapterin to tetrahydrobiopterin -the terminal step in this biosynthetic pathway for tetrahydrobiopterin. This reaction is N-acetyl-serotonin-sensitive and can completely inhibit tetrahydrobiopterin synthesis. (PMID: 3881214, 17303893, 3756924, 15223071).

同义名列表

6 个代谢物同义名

5,6,7,8-Tetrahydro-pteridine; 5,6,7,8-tetrahydropteridine; Tetrahydropteridine; H4-Biopterin; THP; 5,6,7,8-Tetrahydropteridine



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 CAT, CHAT, DBH, DDC, PRKX, PTS, RAC1, SPR, TYMS
Peripheral membrane protein 2 ACHE, HSD17B6
Endoplasmic reticulum membrane 2 PNMT, RAC1
Mitochondrion membrane 1 PNMT
Nucleus 6 ACHE, CHAT, PRKX, RAC1, TCF15, TYMS
cytosol 12 CAT, CHAT, COMT, DDC, NGF, PAH, PNMT, PTS, RAC1, SPR, TPH1, TYMS
dendrite 3 COMT, NGF, RAC1
mitochondrial membrane 1 PNMT
trans-Golgi network 1 RAC1
nucleoplasm 2 PRKX, SPR
RNA polymerase II transcription regulator complex 1 TCF15
Cell membrane 3 ACHE, COMT, RAC1
Lipid-anchor 1 RAC1
Cytoplasmic side 1 RAC1
lamellipodium 1 RAC1
ruffle membrane 1 RAC1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 PNMT
Synapse 5 ACHE, CHAT, COMT, DBH, RAC1
cell cortex 1 RAC1
cell surface 1 ACHE
glutamatergic synapse 1 RAC1
Golgi apparatus 1 ACHE
Golgi membrane 1 INS
mitochondrial inner membrane 1 TYMS
neuromuscular junction 1 ACHE
postsynapse 1 RAC1
synaptic vesicle 1 NGF
plasma membrane 3 ACHE, COMT, RAC1
Membrane 6 ACHE, CAT, COMT, DBH, FOLR3, RAC1
axon 2 COMT, NGF
extracellular exosome 5 CAT, COMT, DDC, RAC1, SPR
Lumenal side 1 HSD17B6
endoplasmic reticulum 3 DBH, HSD17B6, PNMT
extracellular space 5 ACHE, DBH, IGF1, INS, NGF
perinuclear region of cytoplasm 1 ACHE
mitochondrion 5 CAT, PNMT, PTS, SPR, TYMS
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 5 CAT, COMT, DBH, HSD17B6, PNMT
Microsome membrane 1 HSD17B6
Secreted 6 ACHE, DBH, IGF1, INS, NGF, RAC1
extracellular region 8 ACHE, CAT, DBH, FOLR3, IGF1, INS, NGF, RAC1
Mitochondrion matrix 1 TYMS
mitochondrial matrix 2 CAT, TYMS
Extracellular side 2 ACHE, COMT
centriolar satellite 1 DBH
external side of plasma membrane 1 FOLR3
dendritic spine 1 RAC1
cytoplasmic vesicle 1 RAC1
Single-pass type II membrane protein 2 COMT, DBH
Cell projection, lamellipodium 1 RAC1
Mitochondrion inner membrane 1 TYMS
focal adhesion 2 CAT, RAC1
Peroxisome 1 CAT
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
neuron projection 2 CHAT, TPH1
chromatin 1 TCF15
cytoskeleton 1 RAC1
cytoplasmic ribonucleoprotein granule 1 RAC1
Lipid-anchor, GPI-anchor 1 ACHE
Recycling endosome membrane 1 RAC1
endosome lumen 2 INS, NGF
[Isoform 1]: Endoplasmic reticulum membrane 1 PNMT
Cell projection, dendrite 1 RAC1
Melanosome 1 RAC1
side of membrane 1 ACHE
exocytic vesicle 1 IGF1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 3 CAT, DBH, INS
secretory granule membrane 2 DBH, RAC1
Golgi lumen 2 INS, NGF
endoplasmic reticulum lumen 1 INS
platelet alpha granule lumen 1 IGF1
specific granule lumen 1 FOLR3
tertiary granule lumen 1 FOLR3
extrinsic component of membrane 1 FOLR3
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
synaptic cleft 1 ACHE
ficolin-1-rich granule membrane 1 RAC1
Cytoplasmic vesicle, secretory vesicle membrane 1 DBH
[Isoform 2]: Endoplasmic reticulum membrane 1 PNMT
Cytoplasmic vesicle, secretory vesicle, chromaffin granule lumen 1 DBH
chromaffin granule lumen 1 DBH
transport vesicle membrane 1 DBH
catalase complex 1 CAT
NADPH oxidase complex 1 RAC1
alphav-beta3 integrin-IGF-1-IGF1R complex 1 IGF1
insulin-like growth factor binding protein complex 1 IGF1
insulin-like growth factor ternary complex 1 IGF1
[Soluble dopamine beta-hydroxylase]: Cytoplasmic vesicle, secretory vesicle lumen 1 DBH
Cytoplasmic vesicle, secretory vesicle, chromaffin granule membrane 1 DBH
chromaffin granule membrane 1 DBH
[Isoform Soluble]: Cytoplasm 1 COMT
[Isoform Membrane-bound]: Cell membrane 1 COMT
[Isoform H]: Cell membrane 1 ACHE


文献列表

  • Xiao Lv, Xiaoxiao Yang, Mei-Miao Zhan, Peichang Cao, Shihong Zheng, Ruijun Peng, Jihong Han, Zhouling Xie, Zhengchao Tu, Chenzhong Liao. Structure-based design and SAR development of novel selective polo-like kinase 1 inhibitors having the tetrahydropteridin scaffold. European journal of medicinal chemistry. 2019 Dec; 184(?):111769. doi: 10.1016/j.ejmech.2019.111769. [PMID: 31629162]
  • Ernst R Werner, Albin Hermetter, Helmut Prast, Georg Golderer, Gabriele Werner-Felmayer. Widespread occurrence of glyceryl ether monooxygenase activity in rat tissues detected by a novel assay. Journal of lipid research. 2007 Jun; 48(6):1422-7. doi: 10.1194/jlr.d600042-jlr200. [PMID: 17303893]
  • M K Samson, R L Stephens, S Rivkin, M Opipari, T Maloney, C W Groppe, R Fisher. Vinblastine, bleomycin, and cis-dichlorodiammineplatinum(II) in disseminated testicular cancer: preliminary report of a Southwest Oncology Group Study. Cancer treatment reports. 1979 Sep; 63(9-10):1663-7. doi: . [PMID: 91435]