Gene Association: DLD
UniProt Search:
DLD (PROTEIN_CODING)
Function Description: dihydrolipoamide dehydrogenase
found 96 associated metabolites with current gene based on the text mining result from the pubmed database.
Thioctic acid
Lipoate, also known as lipoic acid or 6,8-thioctate, belongs to lipoic acids and derivatives class of compounds. Those are compounds containing a lipoic acid moiety (or a derivative thereof), which consists of a pentanoic acid (or derivative) attached to the C3 carbon atom of a 1,2-dithiolane ring. Lipoate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lipoate can be synthesized from octanoic acid. Lipoate can also be synthesized into lipoamide and lipoyl-AMP. Lipoate can be found in broccoli and spinach, which makes lipoate a potential biomarker for the consumption of these food products. Lipoate may be a unique E.coli metabolite. Lipoate is a non-carcinogenic (not listed by IARC) potentially toxic compound. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products Acquisition and generation of the data is financially supported in part by CREST/JST. D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid. Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5].
Stachyose
Stachyose is a tetrasaccharide consisting of two D-galactose units, one D-glucose unit, and one D-fructose unit sequentially linked. Stachyose is a normal human metabolite present in human milk and is naturally found in many vegetables (e.g. green beans, soybeans and other beans) and plants. The glycosylation of serum transferrin from galactosemic patients with a deficiency of galactose-1-phosphate uridyl transferase (EC 2. 7.7 12) is abnormal but becomes normal after treatment with a galactose-free diet. Adhering to a galactose-free diet by strictly avoiding dairy products and known hidden sources of galactose does not completely normalize galactose-1-phosphate (gal-1-P) in erythrocytes from patients with galactosemia, since galactose released from stachyose may be absorbed and contribute to elevated gal-1-P values in erythrocytes of galactosemic patients (PMID:7671975, 9499382). Stachyose is a tetrasaccharide consisting of sucrose having an alpha-D-galactosyl-(1->6)-alpha-D-galactosyl moiety attached at the 6-position of the glucose. It has a role as a plant metabolite and a mouse metabolite. It is a raffinose family oligosaccharide and a tetrasaccharide. It is functionally related to a sucrose and a raffinose. Stachyose is a natural product found in Amaranthus cruentus, Salacia oblonga, and other organisms with data available. See also: Oligosaccharide (related). A tetrasaccharide consisting of sucrose having an alpha-D-galactosyl-(1->6)-alpha-D-galactosyl moiety attached at the 6-position of the glucose. Isolated from soybean meal (Glycine max), tubers of Japanese artichoke (Stachys tubifera) and lentils COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Stachyose, a kind of oligosaccharides, act as a hypoglycemic agent[1]. Stachyose, a kind of oligosaccharides, act as a hypoglycemic agent[1].
L-Ascorbic acid
L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-81-7 (retrieved 2024-10-29) (CAS RN: 50-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Dethiobiotin
Dethiobiotin is a synthetic metabolite that mimic the effects of biotin on gene expression and thus have biotin-like activities. In mammals, biotin serves as a coenzyme for carboxylases such as propionyl-CoA carboxylase. (PMID 12730407) [HMDB]. Dethiobiotin is found in many foods, some of which are agave, garden onion, lime, and black mulberry. Dethiobiotin is a synthetic metabolite that mimic the effects of biotin on gene expression and thus have biotin-like activities. In mammals, biotin serves as a coenzyme for carboxylases such as propionyl-CoA carboxylase. (PMID 12730407). D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens KEIO_ID D075; [MS3] KO009104 KEIO_ID D075; [MS2] KO009103 KEIO_ID D075 D-Desthiobiotin is a biotin derivative used in affinity chromatography and protein chromatography. D-Desthiobiotin also can be used for protein and cell labeling, detection and isolation[1].
Cefazolin
Cefazolin is only found in individuals that have used or taken this drug. It is a semisynthetic cephalosporin analog with broad-spectrum antibiotic action due to inhibition of bacterial cell wall synthesis. It attains high serum levels and is excreted quickly via the urine. [PubChem]In vitro tests demonstrate that the bactericidal action of cephalosporins results from inhibition of cell wall synthesis. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, it inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; INTERNAL_ID 1045
Trimeprazine
Trimeprazine is only found in individuals that have used or taken this drug. It is a phenothiazine derivative that is used as an antipruritic. [PubChem]Trimeprazine competes with free histamine for binding at HA-receptor sites. This antagonizes the effects of histamine on HA-receptors, leading to a reduction of the negative symptoms brought on by histamine HA-receptor binding. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D003879 - Dermatologic Agents > D000982 - Antipruritics
Prochlorperazine
Prochlorperazine is only found in individuals that have used or taken this drug. It is a phenothiazine antipsychotic used principally in the treatment of nausea; vomiting; and vertigo. It is more likely than chlorpromazine to cause extrapyramidal disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p612)The mechanism of action of prochlorperazine has not been fully determined, but may be primarily related to its antidopaminergic effects. Prochlorperazine blocks the D2 somatodendritic autoreceptor, resulting in the blockade of postsynaptic dopamine receptors in the mesolimbic system and an increased dopamine turnover. Prochlorperazine also has anti-emetic effects, which can be attributed to dopamine blockade in the chemoreceptor trigger zone. Prochlorperazine also blocks anticholinergic and alpha-adrenergic receptors, the blockade of alpha(1)-adrenergic receptors resulting in sedation, muscle relaxation, and hypotension. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D005765 - Gastrointestinal Agents > D000932 - Antiemetics
Perphenazine
Perphenazine is only found in individuals that have used or taken this drug. It is an antipsychotic phenothiazine derivative with actions and uses similar to those of chlorpromazine. [PubChem]Binds to the dopamine D1 and dopamine D2 receptors and inhibits their activity. The mechanism of the anti-emetic effect is due predominantly to blockage of the dopamine D2 neurotransmitter receptors in the chemoreceptor trigger zone and vomiting centre. Perphenazine also binds the alpha andrenergic receptor. This receptors action is mediated by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Perphenazine is an orally active dopamine receptor and histamine-1 receptor antagonist, with Ki values of 0.56 nM (D2), 0.43 nM (D3), 6 nM (5-HT2A), respectively. Perphenazine also binds to Alpha-1A adrenergic receptor. Perphenazine inhibits cancer cell proliferation, and induces apoptosis. Perphenazine can be used in the research of mental disease, cancer, inflammation[1][3][5].
L-Lactic acid
Lactic acid is an organic acid. It is a chiral molecule, consisting of two optical isomers, L-lactic acid and D-lactic acid, with the L-isomer being the most common in living organisms. Lactic acid plays a role in several biochemical processes and is produced in the muscles during intense activity. In animals, L-lactate is constantly produced from pyruvate via the enzyme lactate dehydrogenase (LDH) in a process of fermentation during normal metabolism and exercise. It does not increase in concentration until the rate of lactate production exceeds the rate of lactate removal. This is governed by a number of factors, including monocarboxylate transporters, lactate concentration, the isoform of LDH, and oxidative capacity of tissues. The concentration of blood lactate is usually 1-2 mmol/L at rest, but can rise to over 20 mmol/L during intense exertion. There are some indications that lactate, and not glucose, is preferentially metabolized by neurons in the brain of several mammalian species, including mice, rats, and humans. Glial cells, using the lactate shuttle, are responsible for transforming glucose into lactate, and for providing lactate to the neurons. Lactate measurement in critically ill patients has been traditionally used to stratify patients with poor outcomes. However, plasma lactate levels are the result of a finely tuned interplay of factors that affect the balance between its production and its clearance. When the oxygen supply does not match its consumption, organisms adapt in many different ways, up to the point when energy failure occurs. Lactate, being part of the adaptive response, may then be used to assess the severity of the supply/demand imbalance. In such a scenario, the time to intervention becomes relevant: early and effective treatment may allow tissues and cells to revert to a normal state, as long as the oxygen machinery (i.e. mitochondria) is intact. Conversely, once the mitochondria are deranged, energy failure occurs even in the presence of normoxia. The lactate increase in critically ill patients may, therefore, be viewed as an early marker of a potentially reversible state (PMID: 16356243). When present in sufficiently high levels, lactic acid can act as an oncometabolite, an immunosuppressant, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumor growth and survival. An immunosuppressant reduces or arrests the activity of the immune system. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of lactic acid are associated with at least a dozen inborn errors of metabolism, including 2-methyl-3-hydroxybutyryl CoA dehydrogenase deficiency, biotinidase deficiency, fructose-1,6-diphosphatase deficiency, glycogen storage disease type 1A (GSD1A) or Von Gierke disease, glycogenosis type IB, glycogenosis type IC, glycogenosis type VI, Hers disease, lactic acidemia, Leigh syndrome, methylmalonate semialdehyde dehydrogenase deficiency, pyruvate decarboxylase E1 component deficiency, pyruvate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency, and short chain acyl CoA dehydrogenase deficiency (SCAD deficiency). Locally high concentrations of lactic acid or lactate are found near many tumors due to the upregulation of lactate dehydrogenase (PMID: 15279558). Lactic acid produced by tumors through aerobic glycolysis acts as an immunosuppressant and tumor promoter (PMID: 23729358). Indeed, lactic acid has been found to be a key player or regulator in the development and malignant progression of a variety of cancers (PMID: 22084445). A number of studies have demonstrated that malignant transformation is associated with an increase in aerobic cellular lactate excretion. Lactate concentrations in various carcinomas (e.g. uterine cervix, head and neck, colorectal regi... Occurs in the juice of muscular tissue, bile etc. Flavour ingredient, food antioxidant. Various esters are also used in flavourings L-Lactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=79-33-4 (retrieved 2024-07-01) (CAS RN: 79-33-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lactate (Lactate acid) is the product of glycolysis. Lactate is produced by oxygen lack in contracting skeletal muscle in vivo, and can be removed under fully aerobic conditions. Lactate can be as a hemodynamic marker in the critically ill[1][2]. Lactate (Lactate acid) is the product of glycolysis. Lactate is produced by oxygen lack in contracting skeletal muscle in vivo, and can be removed under fully aerobic conditions. Lactate can be as a hemodynamic marker in the critically ill[1][2]. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid.
Promethazine
Promethazine is only found in individuals that have used or taken this drug. It is a phenothiazine derivative with histamine H1-blocking, antimuscarinic, and sedative properties. It is used as an antiallergic, in pruritus, for motion sickness and sedation, and also in animals. [PubChem]Like other H1-antagonists, promethazine competes with free histamine for binding at H1-receptor sites in the GI tract, uterus, large blood vessels, and bronchial muscle. The relief of nausea appears to be related to central anticholinergic actions and may implicate activity on the medullary chemoreceptor trigger zone. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D003879 - Dermatologic Agents > D000982 - Antipruritics CONFIDENCE standard compound; INTERNAL_ID 2505 CONFIDENCE standard compound; INTERNAL_ID 8490 D018926 - Anti-Allergic Agents
Dicyclomine
Dicyclomine is only found in individuals that have used or taken this drug. It is a muscarinic antagonist used as an antispasmodic and in urinary incontinence. It has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. [PubChem]Action is achieved via a dual mechanism: (1) a specific anticholinergic effect (antimuscarinic) at the acetylcholine-receptor sites and (2) a direct effect upon smooth muscle (musculotropic). A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
Promazine
Promazine is only found in individuals that have used or taken this drug. It is a phenothiazine with actions similar to chlorpromazine but with less antipsychotic activity. It is primarily used in short-term treatment of disturbed behavior and as an antiemetic. [PubChem]Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT receptor types 2A and 2C, muscarinic receptors 1 through 5, alpha(1)-receptors, and histamine H1-receptors. Promazines antipsychotic effect is due to antagonism at dopamine and serotonin type 2 receptors, with greater activity at serotonin 5-HT2 receptors than at dopamine type-2 receptors. This may explain the lack of extrapyramidal effects. Promazine does not appear to block dopamine within the tubero-infundibular tract, explaining the lower incidence of hyperprolactinemia than with typical antipsychotic agents or risperidone. Antagonism at muscarinic receptors, H1-receptors, and alpha(1)-receptors also occurs with promazine. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics
Punicic acid
alpha-Eleostearic acid is found in bitter gourd. alpha-Eleostearic acid is isolated from seed oil of Momordica charantia (bitter melon Isolated from seed oil of Momordica charantia (bitter melon). alpha-Eleostearic acid is found in bitter gourd and fruits.
gamma-Glutamylcysteine
gamma-Glutamylcysteine is a dipeptide composed of gamma-glutamate and cysteine, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. gamma-Glutamylcysteine is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. gamma-Glutamylcysteine is a product of enzyme glutamate-cysteine ligase [EC 6.3.2.2] and a substrate of enzyme glutathione synthase [EC 6.3.2.3] in the glutamate metabolism pathway (KEGG). G-Glutamylcysteine is a product of enzyme glutamate-cysteine ligase [EC 6.3.2.2] and a substrate of enzyme glutathione synthase [EC 6.3.2.3] in glutamate metabolism pathway (KEGG). gamma-Glutamyl-cysteine is found in many foods, some of which are cardamom, hyacinth bean, oil palm, and pak choy. Acquisition and generation of the data is financially supported in part by CREST/JST. Gamma-glutamylcysteine (γ-Glutamylcysteine), a dipeptide containing cysteine and glutamic acid, is a precursor to glutathione (GSH). Gamma-glutamylcysteine is a cofactor for glutathione peroxidase (GPx) to increase GSH levels[1].
Thiamine
Thiamine, also known as aneurin or vitamin B1, belongs to the class of organic compounds known as thiamines. Thiamines are compounds containing a thiamine moiety, which is structurally characterized by a 3-[(4-Amino-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-thiazol-5-yl backbone. Thiamine exists in all living species, ranging from bacteria to plants to humans. Thiamine biosynthesis occurs in bacteria, some protozoans, plants, and fungi. Thiamine is a vitamin and an essential nutrient meaning the body cannot synthesize it, and it must be obtained from the diet. It is soluble in water and insoluble in alcohol. Thiamine decomposes if heated. Thiamine was first discovered in 1897 by Umetaro Suzuki in Japan when researching how rice bran cured patients of Beriberi. Thiamine was the first B vitamin to be isolated in 1926 and was first made in 1936. Thiamine plays a key role in intracellular glucose metabolism and it is thought that thiamine inhibits the effect of glucose and insulin on arterial smooth muscle cell proliferation. Thiamine plays an important role in helping the body convert carbohydrates and fat into energy. It is essential for normal growth and development and helps to maintain proper functioning of the heart and the nervous and digestive systems. Thiamine cannot be stored in the body; however, once absorbed, the vitamin is concentrated in muscle tissue. Thiamine has antioxidant, erythropoietic, cognition-and mood-modulatory, antiatherosclerotic, putative ergogenic, and detoxification activities. Natural derivatives of thiamine, such as thiamine monophosphate (ThMP), thiamine diphosphate (ThDP), also sometimes called thiamine pyrophosphate (TPP), thiamine triphosphate (ThTP), and adenosine thiamine triphosphate (AThTP), act as coenzymes in addition to performing unique biological functions. Thiamine deficiency can lead to beriberi, Wernicke–Korsakoff syndrome, optic neuropathy, Leighs disease, African seasonal ataxia (or Nigerian seasonal ataxia), and central pontine myelinolysis. In Western countries, thiamine deficiency is seen mainly in chronic alcoholism. Thiamine supplements or thiamine therapy can be used for the treatment of a number of disorders including thiamine and niacin deficiency states, Korsakovs alcoholic psychosis, Wernicke-Korsakov syndrome, delirium, and peripheral neuritis. In humans, thiamine is involved in the metabolic disorder called 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency. Outside of the human body, Thiamine is found in high quantities in whole grains, legumes, pork, fruits, and yeast and fish. Grain processing removes much of the thiamine content in grains, so in many countries cereals and flours are enriched with thiamine. Thiamine is an essential vitamin. It is found in many foods, some of which are atlantic croaker, wonton wrapper, cereals and cereal products, and turmeric. A - Alimentary tract and metabolism > A11 - Vitamins > A11D - Vitamin b1, plain and in combination with vitamin b6 and b12 > A11DA - Vitamin b1, plain Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID T056; [MS2] KO009294 KEIO_ID T056
Chlorpropham
D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; INTERNAL_ID 2623 CONFIDENCE standard compound; INTERNAL_ID 8450 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
D-Leucic acid
D-Leucic acid is an alpha-hydroxycarboxylic acid present in patients affected with Short-bowel syndrome (an Inborn errors of metabolism, OMIM 175200) (PMID 9766851), and in Maple Syrup Urine Disease (MSUD, an autosomal recessive inherited metabolic disorder of branched-chain amino acid) (PMID 9766851). [HMDB] D-Leucic acid is an alpha-hydroxycarboxylic acid present in patients affected with Short-bowel syndrome (an Inborn errors of metabolism, OMIM 175200) (PMID 9766851), and in Maple Syrup Urine Disease (MSUD, an autosomal recessive inherited metabolic disorder of branched-chain amino acid) (PMID 9766851). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H091 (R)-Leucic acid is an amino acid metabolite[1].
Aminomethylphosphonic acid
Aminomethylphosphonic acid, also known as AMPA, belongs to the class of organic compounds known as organic phosphonic acids. These are organic compounds containing phosphonic acid. Based on a literature review a significant number of articles have been published on Aminomethylphosphonic acid. (aminomethyl)phosphonic acid is a member of the class of phosphonic acids that is phosphonic acid substituted by an aminomethyl group. It is a metabolite of the herbicide glyphosate. It is a one-carbon compound and a member of phosphonic acids. It is functionally related to a phosphonic acid. It is a conjugate acid of an (aminomethyl)phosphonate(1-). (Aminomethyl)phosphonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1066-51-9 (retrieved 2024-10-30) (CAS RN: 1066-51-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
2-Oxoadipic acid
2-Oxoadipic acid is produced from lysine in the cytosol of cells via the saccharopine and the pipecolic acid pathways. Catabolites of hydroxylysine and tryptophan enter these pathways as 2-aminoadipic- -semialdehyde and 2-oxoadipate, respectively. In the matrix of mitochondria, 2-oxoadipate is decarboxylated to glutaryl-CoA by the 2-oxoadipate dehydrogenase complex and then converted to acetyl-CoA. 2-Oxoadipic aciduria is an in-born error of metabolism of lysine, tryptophan, and hydroxylysine, in which abnormal quantities of 2-aminoadipic acid are found in body fluids along with 2-oxoadipic acid. Patients with 2-Oxoadipic acidemias are mentally retarded with hypotonia or seizures. 2-Oxoadipic aciduria can occur in patients with Kearns-Sayre Syndrome, a progressive disorder with onset prior to 20 years of age in which multiple organ systems are affected, including progressive external ophthalmoplegia, retinopathy, and the age of onset, and these are associated classically with abnormalities in cardiac conduction, cerebellar signs, and elevated cerebrospinal fluid protein (PMID: 10655159, 16183823, 11083877). Oxoadipic acid is found to be associated with alpha-aminoadipic aciduria, which is an inborn error of metabolism. Present in pea seedlings KEIO_ID K009 Oxoadipic acid is a key metabolite of the essential amino acids tryptophan and lysine.
2-Hydroxybutyric acid
2-Hydroxybutyric acid (CAS: 600-15-7), also known as alpha-hydroxybutyrate, is an organic acid derived from alpha-ketobutyrate. alpha-Ketobutyrate is produced by amino acid catabolism (threonine and methionine) and glutathione anabolism (cysteine formation pathway) and is metabolized into propionyl-CoA and carbon dioxide (PMID: 20526369). 2-Hydroxybutyric acid is formed as a byproduct from the formation of alpha-ketobutyrate via a reaction catalyzed by lactate dehydrogenase (LDH) or alpha-hydroxybutyrate dehydrogenase (alphaHBDH). alpha-Hydroxybutyric acid is primarily produced in mammalian hepatic tissues that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification of xenobiotics in the liver can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway (which forms methionine) into the transsulfuration pathway (which forms cystathionine). alpha-Ketobutyrate is released as a byproduct when cystathionine is cleaved into cysteine that is incorporated into glutathione. Chronic shifts in the rate of glutathione synthesis may be reflected by urinary excretion of 2-hydroxybutyrate. 2-Hydroxybutyrate is an early marker for both insulin resistance and impaired glucose regulation that appears to arise due to increased lipid oxidation and oxidative stress (PMID: 20526369). 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g. birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early-stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid-1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydroxybutyric acid (PMID: 168632). 2-Hydroxybutyric acid is an organic acid that is involved in propanoate metabolism. It is produced in mammalian tissues (principaly hepatic) that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification demands can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway forming methionine into the transsulfuration pathway forming cystathionine. 2-Hydroxybutyrate is released as a by-product when cystathionine is cleaved to cysteine that is incorporated into glutathione. 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid 1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydorxybutyric acid (PMID: 168632) [HMDB] 2-Hydroxybutyric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=565-70-8 (retrieved 2024-07-16) (CAS RN: 600-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
Gibberellin A9
A C19-gibberellin that is a pentacyclic diterpenoid responsible for promoting growth and elongation of cells in plants. Initially identified in Gibberella fujikuroi it differs from gibberellin A1 in the absence of OH groups at C-2 and C-7 (gibbane numberings).
Gibberellin A19
Gibberellin A19 (GA19) belongs to the class of organic compounds known as C20-gibberellin 6-carboxylic acids. These are C20-gibberellins with a carboxyl group at the 6-position. Thus, gibberellin A19 is considered to be an isoprenoid lipid molecule. Gibberellin A19 is found in apple. Gibberellin A19 is a constituent of moso bamboo shoots (Phyllostachys edulis). Constituent of moso bamboo shoots (Phyllostachys edulis). Gibberellin A19 is found in many foods, some of which are swede, devilfish, vanilla, and canola. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
gibberellin A24
A C20-gibberellin that consists of a tetracyclic skeleton bearing two carboxy and a formyl group. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
Gibberellin A53
Gibberellin A53 (GA53) belongs to the class of organic compounds known as C20-gibberellin 6-carboxylic acids. These are C20-gibberellins with a carboxyl group at the 6-position. Thus, gibberellin A53 is considered to be an isoprenoid lipid molecule. Gibberellin A53 is found in apple. Gibberellin A53 is isolated from Vicia faba and spinach (Spinacia oleracea). Isolated from Vicia faba and spinach (Spinacia oleracea). Gibberellin A53 is found in many foods, some of which are sapodilla, cowpea, sorghum, and garden tomato.
2,6-Dimethoxy-1,4-benzoquinone
2,6-Dimethoxy-1,4-benzoquinone is a natural product found in Diospyros eriantha, Iris milesii, and other organisms with data available. 2,6-Dimethoxyquinone is a methoxy-substituted benzoquinone and bioactive compound found in fermented wheat germ extracts, with potential antineoplastic and immune-enhancing activity. 2,6-Dimethoxyquinone (2,6-DMBQ) inhibits anaerobic glycolysis thereby preventing cellular metabolism and inducing apoptosis. As cancer cells use the anaerobic glycolysis pathway to metabolize glucose and cancer cells proliferate at an increased rate as compared to normal, healthy cells, this agent is specifically cytotoxic towards cancer cells. In addition, 2,6-DMBQ exerts immune-enhancing effects by increasing natural killer (NK) cell and T-cell activity against cancer cells. See also: Acai fruit pulp (part of). 2,6-Dimethoxy-1,4-benzoquinone is found in common wheat. 2,6-Dimethoxy-1,4-benzoquinone is a constituent of bark of Phyllostachys heterocycla var. pubescens (moso bamboo) Constituent of bark of Phyllostachys heterocycla variety pubescens (moso bamboo). 2,6-Dimethoxy-1,4-benzoquinone is found in green vegetables and common wheat. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].
Dihydrolipoate
Dihydrolipoic acid is an organic compound that is the reduced form of lipoic acid. This carboxylic acid features a pair of thiol groups. It is optically active but only the R-enantiomer is biochemically significant. The lipoic acid/dihydrolipoic acid pair participate in a variety of biochemical transformations.( from Wiki). Inside the cell, alpha lipoic acid is readily reduced or broken down to dihydrolipoic acid. Dihydrolipoic acid is even more potent than alpha lipoic acid, neutralizing free radicals, preventing them from causing harm. It directly destroys damaging superoxide radicals, hydroperoxy radicals and hydroxyl radicals. It has been shown in vitro that dihydrolipoate (DL-6,8-dithioloctanoic acid) has antioxidant activity against microsomal lipid peroxidation.Dihydrolipoate is tested for its neuroprotective activity using models of hypoxic and excitotoxic neuronal damage in vitro and rodent models of cerebral ischemia in vivo. Dihydrolipoate, similarly to dimethylthiourea, is able to protect neurons against ischemic damage by diminishing the accumulation of reactive oxygen species within the cerebral tissue.(PMID: 1345759). Dihydrolipoic acid is an organic compound that is the reduced form of lipoic acid. This carboxylic acid features a pair of thiol groups. It is optically active but only the R-enantiomer is biochemically significant. The lipoic acid/dihydrolipoic acid pair participate in a variety of biochemical transformations.( from Wiki) D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 162
phenazine-1-carboxylic acid
An aromatic carboxylic acid that is phenazine substituted at C-1 with a carboxy group. CONFIDENCE standard compound; INTERNAL_ID 190 Phenazine-1-carboxylic acid exhibits strong antifungal activity against phytopathogenic fungi.
Penicillamine
Penicillamine is only found in individuals that have used or taken this drug. It is the most characteristic degradation product of the penicillin antibiotics. It is used as an antirheumatic and as a chelating agent in Wilsons disease. [PubChem]Penicillamine is a chelating agent recommended for the removal of excess copper in patients with Wilsons disease. From in vitro studies which indicate that one atom of copper combines with two molecules of penicillamine. Penicillamine also reduces excess cystine excretion in cystinuria. This is done, at least in part, by disulfide interchange between penicillamine and cystine, resulting in formation of penicillamine-cysteine disulfide, a substance that is much more soluble than cystine and is excreted readily. Penicillamine interferes with the formation of cross-links between tropocollagen molecules and cleaves them when newly formed. The mechanism of action of penicillamine in rheumatoid arthritis is unknown although it appears to suppress disease activity. Unlike cytotoxic immunosuppressants, penicillamine markedly lowers IgM rheumatoid factor but produces no significant depression in absolute levels of serum immunoglobulins. Also unlike cytotoxic immunosuppressants which act on both, penicillamine in vitro depresses T-cell activity but not B-cell activity. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01C - Specific antirheumatic agents > M01CC - Penicillamine and similar agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents Penicillamine (D-(-)-Penicillamine) is a penicillin metabolic degradation product, can be used as a heavy metal chelator. Penicillamine increases free copper and enhances oxidative stress. Penicillamine has effect of seizures through nitric oxide/NMDA pathways. Penicillamine is a potential immune modulator. Penicillamine can be used for the research of Wilson disease, rheumatoid arthritis, and cystinuria[1][2][3][4].
Glutaryl-CoA
Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial). [HMDB] Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial).
Acetoin
Acetoin, also known as dimethylketol or 2,3-butanolone, belongs to the class of organic compounds known as acyloins. These are organic compounds containing an alpha hydroxy ketone. Acyloins are formally derived from reductive coupling of carboxylic acyl groups. Thus, acetoin is considered to be an oxygenated hydrocarbon lipid molecule. Acetoin is used as an external energy store by a number of fermentive bacteria. Acetoin, along with diacetyl, is one of the compounds giving butter its characteristic flavor. Acetoin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Acetoin is used as a food flavoring (in baked goods) and a fragrance. Acetoin is a sweet, buttery, and creamy tasting compound. Outside of the human body, Acetoin has been detected, but not quantified in several different foods, such as cocoa and cocoa products, evergreen blackberries, orange bell peppers, tortilla chips, and pomes. This could make acetoin a potential biomarker for the consumption of these foods. Constituent of beer, wine, fresh or cooked apple, fresh or cooked leak, corn, honey, cocoa, butter, cheeses, roasted coffee and other foodstuffs. Acetoin, with regard to humans, has been found to be associated with several diseases such as eosinophilic esophagitis and ulcerative colitis; acetoin has also been linked to the inborn metabolic disorder celiac disease. Acetoin is a colorless or pale yellow to green yellow liquid with a pleasant, buttery odor. It can be found in apples, butter, yogurt, asparagus, black currants, blackberry, wheat, broccoli, brussels sprouts, cantaloupe. Constituent of beer, wine, fresh or cooked apple, fresh or cooked leak, corn, honey, cocoa, butter, cheeses, roasted coffee and other foodstuffs. Flavouring ingredient. [DFC]
Succinyl-CoA
Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203) [HMDB]. Succinyl-CoA is found in many foods, some of which are fruits, sea-buckthornberry, pomegranate, and sweet orange. Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203).
Nitric oxide
The biologically active molecule nitric oxide (NO) is a simple, membrane-permeable gas with unique chemistry. It is formed by the conversion of L-arginine to L-citrulline, with the release of NO. The enzymatic oxidation of L-arginine to L-citrulline takes place in the presence of oxygen and NADPH using flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), heme, thiol, and tetrahydrobiopterin as cofactors. The enzyme responsible for the generation of NO is nitric oxide synthase (E.C. 1.7.99.7; NOS). Three NOS isoforms have been described and shown to be encoded on three distinct genes: neuronal NOS (nNOS, NOS type I), inducible NOS (NOS type II), and endothelial NOS (eNOS, NOS type III). Two of them are constitutively expressed and dependent on the presence of calcium ions and calmodulin to function (nNOS and eNOS), while iNOS is considered non-constitutive and calcium-independent. However, experience has shown that constitutive expression of nNOS and eNOS is not as rigid as previously thought (i.e. either present or absent), but can be dynamically controlled during development and in response to injury. Functionally, NO may act as a hormone, neurotransmitter, paracrine messenger, mediator, cytoprotective molecule, and cytotoxic molecule. NO has multiple cellular molecular targets. It influences the activity of transcription factors, modulates upstream signaling cascades, mRNA stability and translation, and processes the primary gene products. In the brain, many processes are linked to NO. NO activates its receptor, soluble guanylate cyclase by binding to it. The stimulation of this enzyme leads to increased synthesis of the second messenger, cGMP, which in turn activates cGMP-dependent kinases in target cells. NO exerts a strong influence on glutamatergic neurotransmission by directly interacting with the N-methyl-D-aspartate (NMDA) receptor. Neuronal NOS is connected to NMDA receptors (see below) and sharply increases NO production following activation of this receptor. Thus, the level of endogenously produced NO around NMDA synapses reflects the activity of glutamate-mediated neurotransmission. However, there is recent evidence showing that non-NMDA glutamate receptors (i.e. AMPA and type I metabotropic receptors) also contribute to NO generation. Besides its influence on glutamate, NO is known to have effects on the storage, uptake and/or release of most other neurotransmitters in the CNS (acetylcholine, dopamine, noradrenaline, GABA, taurine, and glycine) as well as of certain neuropeptides. Finally, since NO is a highly diffusible molecule, it may reach extrasynaptic receptors at target cell membranes that are some distance away from the place of NO synthesis. NO is thus capable of mediating both synaptic and nonsynaptic communication processes. NO is a potent vasodilator (a major endogenous regulator of vascular tone), and an important endothelium-dependent relaxing factor. NO is synthesized by NO synthases (NOS) and NOS are inhibited by asymmetrical dimethylarginine (ADMA). ADMA is metabolized by dimethylarginine dimethylaminohydrolase (DDAH) and excreted in the kidneys. Lower ADMA levels in pregnant women compared to non-pregnant controls suggest that ADMA has a role in vascular dilatation and blood pressure changes. Several studies show an increase in ADMA levels in pregnancies complicated with preeclampsia. Elevated ADMA levels in preeclampsia are seen before clinical symptoms have developed; these findings suggest that ADMA has a role in the pathogenesis of preeclampsia. In some pulmonary hypertensive states such as ARDS, the production of endogenous NO may be impaired. Nitric oxide inhalation selectively dilates the pulmonary circulation. Significant systemic vasodilation does not occur because NO is inactivated by rapidly binding to hemoglobin. In an injured lung with pulmonary hypertension, inhaled NO produces local vasodilation of well-ventilated lung units and may "steal" blood flow away from unventil... D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents > D045462 - Endothelium-Dependent Relaxing Factors D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D018377 - Neurotransmitter Agents > D064426 - Gasotransmitters D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants R - Respiratory system
Dihydrolipoamide
Dihydrolipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG ID C00579). It is converted to lipoamide via the enzyme dihydrolipoamide dehydrogenase [EC:1.8.1.4]. Dihydrolipoamide is also a substrate of enzyme Acyltransferases [EC 2.3.1.-]. (KEGG) [HMDB]. Dihydrolipoamide is found in many foods, some of which are enokitake, mugwort, welsh onion, and tea. Dihydrolipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG ID C00579). It is converted to lipoamide via the enzyme dihydrolipoamide dehydrogenase [EC:1.8.1.4]. Dihydrolipoamide is also a substrate of enzyme Acyltransferases [EC 2.3.1.-]. (KEGG).
Bromide
Bromine is a brown or red liquid with a characteristic odor. Bromine is mainly used in the manufacture of dyes, inks, flame retardants, pharmaceuticals and chemical warfare agents. Occupational exposure to bromine may occur during the production and the application of bromine compounds and during other industrial activities. This compound is adsorbed into the human body through the respiratory tract, skin (occupational exposure) and alimentary tract (general population). Physiologically, bromine exists as an ion in the body. Slight eye irritation occurs as a consequence of chronic exposure to bromine vapors at concentration of 1 mg/m3. Higher concentrations increase this effect and cause nasal and skin irritation. Many years observations have shown that during occupational exposure to bromine vapors at concentrations of up to 0.7 mg/m3 (0.1 ppm), there are no observed adverse effects. From cytotoxicity and mutagenicity assays, it is known that brominated organic compounds are more toxic than chlorinated organic compounds. However, only a limited number of brominated organic compounds have been regulated. (PMID: 17316744). Bromine is a brown or red liquid with a characteristic odor. Bromine is mainly used in the manufacture of dyes, inks, flame retardants, pharmaceuticals and chemical warfare agents. Occupational exposure to bromine may occur during the production and the application of bromine compounds and during other industrial activities. This compound is adsorbed into the human body through the respiratory tract, skin (occupational exposure) and alimentary tract (general population). Physiologically, bromine exists as an ion in the body. Slight eye irritation occurs as a consequence of chronic exposure to bromine vapors at concentration of 1 mg/m3. Higher concentrations increase this effect and cause nasal and skin irritation. Many years observations have shown that during occupational exposure to bromine vapors at concentrations of up to 0.7 mg/m3 (0.1 ppm), there are no observed adverse effects. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants > D001965 - Bromides N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives
Trypanothione disulfide
This compound belongs to the family of Cyclic Peptides. These are compounds containing a cyclic moiety bearing a peptide backbone
N,N'-Bis(gamma-glutamyl)cystine
N,N-Bis(gamma-glutamyl)cystine is found in mushrooms. N,N-Bis(gamma-glutamyl)cystine is isolated from chives (Allium schoenoprasum) and from shiitake mushrooms (Lentinus edodes). Isolated from chives (Allium schoenoprasum) and from shiitake mushrooms (Lentinus edodes). N,N-Bis(gamma-glutamyl)cystine is found in mushrooms and onion-family vegetables.
5-Fluorodeoxyuridine monophosphate
5-Fluorodeoxyuridine monophosphate is a metabolite of floxuridine. Floxuridine (also 5-fluorodeoxyuridine) is an oncology drug that belongs to the class known as antimetabolites. The drug is most often used in the treatment of colorectal cancer. (Wikipedia)
1,3-Dichloropropene
1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. [HMDB] 1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
MELARSOPROL
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CD - Arsenic compounds D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent
Deltamethrin
Deltamethrin is a pyrethroid ester insecticide. Deltamethrin plays key role in controlling malaria vectors, and is used in the manufacture of long-lasting insecticidal mosquito nets. It is used as one of a battery of pyrethroid insecticides in control of malarial vectors, particularly Anopheles gambiae, and whilst being the most employed pyrethroid insecticide, can be used in conjunction with, or as an alternative to, permethrin, cypermethrin and other organophosphate-based insecticides, such as malathion and fenthion. Resistance to deltamethrin (and its counterparts) is now extremely widespread and threatens the success of worldwide vector control programmes. Deltamethrin products are among the most popular and widely used insecticides in the world[citation needed] and have become very popular with pest control operators and individuals in the United States. This material is a member of one of the safest classes of pesticides: synthetic pyrethroids. This pesticide is highly toxic to aquatic life, particularly fish, and therefore must be used with extreme caution around water. It is neurotoxic to humans and has been found in human breast milk. Since deltamethrin is a neurotoxin, it attacks the nervous system. Skin contact can lead to tingling or reddening of the skin local to the application. If taken in through the eyes or mouth, a common symptom is facial paraesthesia, which can feel like many different abnormal sensations, including burning, partial numbness, pins and needles, skin crawling, etc. There are no reports indicating that chronic intoxication from pyrethroid insecticides causes motor neuron damage or motor neuron disease. However, in 2011, a case report was published demonstrating pathologically proven motor neuron death in a Japanese woman after acute massive ingestion of pesticides containing pyrethroids and organochlorine. There are many uses for deltamethrin, ranging from agricultural uses to home pest control. Deltamethrin has been instrumental in preventing the spread of diseases carried by tick-infested prairie dogs, rodents and other burrowing animals[citation needed]. It is helpful in eliminating and preventing a wide variety of household pests, especially spiders, fleas, ticks, carpenter ants, carpenter bees, cockroaches and bedbugs. Deltamethrin is also one of the primary ingredients in ant chalk. P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals Same as: D07785
N-Methylformamide
N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959) [HMDB] N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959). C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents
Methanophenazine
Adipoyl-CoA
Adipoyl-CoA is formed as the degradation beta-oxidation product (CoA ester) of the dicarboxylic acid formed via w-oxidation of fatty acids in the endoplasmic reticulum. Fatty acid oxidation is an important source of energy, especially during fasting and diabetes. Although mitochondria are considered the primary site for beta-oxidation of fatty acids for energy utilization, peroxisomes play a key role in the metabolism of a variety of lipids such as very long-chain fatty acids, branched-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A. Acyl-CoA hydrolase 8 (ACOT8, EC 3.1.2.20) preferentially hydrolyzes medium-chain dicarboxylyl-CoA esters such as Adipoyl-CoA and is responsible for the termination of beta-oxidation of dicarboxylic acids of medium-chain length with the concomitant release of the corresponding free acids. In mitochondria, Adipoyl-CoA is a substrate of the enzyme Hydroxymethylglutarate coenzyme A-transferase (E.C. 2.8.3.13). Both synthesis and degradation of dicarboxylic acids occur mainly in kidney and liver, and the chain-shortened dicarboxylic acids are excreted in the urine as the free acids. (PMID: 16141203) [HMDB] Adipoyl-CoA is formed as the degradation beta-oxidation product (CoA ester) of the dicarboxylic acid formed via w-oxidation of fatty acids in the endoplasmic reticulum. Fatty acid oxidation is an important source of energy, especially during fasting and diabetes. Although mitochondria are considered the primary site for beta-oxidation of fatty acids for energy utilization, peroxisomes play a key role in the metabolism of a variety of lipids such as very long-chain fatty acids, branched-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A. Acyl-CoA hydrolase 8 (ACOT8, EC 3.1.2.20) preferentially hydrolyzes medium-chain dicarboxylyl-CoA esters such as Adipoyl-CoA and is responsible for the termination of beta-oxidation of dicarboxylic acids of medium-chain length with the concomitant release of the corresponding free acids. In mitochondria, Adipoyl-CoA is a substrate of the enzyme Hydroxymethylglutarate coenzyme A-transferase (E.C. 2.8.3.13). Both synthesis and degradation of dicarboxylic acids occur mainly in kidney and liver, and the chain-shortened dicarboxylic acids are excreted in the urine as the free acids. (PMID: 16141203).
Fenobucarb
C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor
(R)-Lipoic acid
A vitamin-like antioxidant that acts as a free-radical scavenger. Alpha-lipoic acid is also known as thioctic acid. It is a naturally occurring compound that is synthesized by both plants and animals. Lipoic acid contains two thiol groups which may be either oxidized or reduced. The reduced form is known as dihydrolipoic acid (DHLA). Lipoic acid (Delta E= -0.288) is therefore capable of thiol-disulfide exchange, giving it antioxidant activity. Lipoate is a critical cofactor for aerobic metabolism, participating in the transfer of acyl or methylamine groups via the 2-Oxoacid dehydrogenase (2-OADH) or alpha-ketoglutarate dehydrogenase complex. This enzyme catalyzes the conversion of alpha-ketoglutarate to succinyl CoA. This activity results in the catabolism of the branched chain amino acids (leucine, isoleucine and valine). Lipoic acid also participates in the glycine cleavage system(GCV). The glycine cleavage system is a multi-enzyme complex that catalyzes the oxidation of glycine to form 5,10 methylene tetrahydrofolate, an important cofactor in nucleic acid synthesis. Since Lipoic acid is an essential cofactor for many enzyme complexes, it is essential for aerobic life as we know it. This system is used by many organisms and plays a crucial role in the photosynthetic carbon cycle. Lipoic acid was first postulated to be an effective antioxidant when it was found it prevented vitamin C and vitamin E deficiency. It is able to scavenge reactive oxygen species and reduce other metabolites, such as glutathione or vitamins, maintaining a healthy cellular redox state. Lipoic acid has been shown in cell culture experiments to increase cellular uptake of glucose by recruiting the glucose transporter GLUT4 to the cell membrane, suggesting its use in diabetes. Studies of rat aging have suggested that the use of L-carnitine and lipoic acid results in improved memory performance and delayed structural mitochondrial decay. As a result, it may be helpful for people with Alzheimers disease or Parkinsons disease. -- Wikipedia [HMDB] Lipoic acid is a vitamin-like antioxidant that acts as a free-radical scavenger. Alpha-lipoic acid is also known as thioctic acid. It is a naturally occurring compound that is synthesized by both plants and animals. Lipoic acid contains two thiol groups which may be either oxidized or reduced. The reduced form is known as dihydrolipoic acid (DHLA). Lipoic acid (Delta E= -0.288) is therefore capable of thiol-disulfide exchange, giving it antioxidant activity. Lipoate is a critical cofactor for aerobic metabolism, participating in the transfer of acyl or methylamine groups via the 2-Oxoacid dehydrogenase (2-OADH) or alpha-ketoglutarate dehydrogenase complex. This enzyme catalyzes the conversion of alpha-ketoglutarate to succinyl CoA. This activity results in the catabolism of the branched chain amino acids (leucine, isoleucine and valine). Lipoic acid also participates in the glycine cleavage system(GCV). The glycine cleavage system is a multi-enzyme complex that catalyzes the oxidation of glycine to form 5,10 methylene tetrahydrofolate, an important cofactor in nucleic acid synthesis. Since Lipoic acid is an essential cofactor for many enzyme complexes, it is essential for aerobic life as we know it. This system is used by many organisms and plays a crucial role in the photosynthetic carbon cycle. Lipoic acid was first postulated to be an effective antioxidant when it was found it prevented vitamin C and vitamin E deficiency. It is able to scavenge reactive oxygen species and reduce other metabolites, such as glutathione or vitamins, maintaining a healthy cellular redox state. Lipoic acid has been shown in cell culture experiments to increase cellular uptake of glucose by recruiting the glucose transporter GLUT4 to the cell membrane, suggesting its use in diabetes. Studies of rat aging have suggested that the use of L-carnitine and lipoic acid results in improved memory performance and delayed structural mitochondrial decay. As a result, it may be helpful for people with Alzheimers disease or Parkinsons disease. D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid. Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid.
Gibberellin A24
Gibberellin a24 is a member of the class of compounds known as c20-gibberellin 6-carboxylic acids. C20-gibberellin 6-carboxylic acids are c20-gibberellins with a carboxyl group at the 6-position. Gibberellin a24 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Gibberellin a24 can be found in a number of food items such as root vegetables, breadnut tree seed, lime, and carob, which makes gibberellin a24 a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
2-Hydroxybutyric acid
(S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
Gibberellin A19
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins A C20-gibberellin.
Cefazolin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins A cephalosporin compound having [(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl]methyl and (1H-tetrazol-1-ylacetyl)amino side-groups. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; INTERNAL_ID 1045 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3663
perphenazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Perphenazine is an orally active dopamine receptor and histamine-1 receptor antagonist, with Ki values of 0.56 nM (D2), 0.43 nM (D3), 6 nM (5-HT2A), respectively. Perphenazine also binds to Alpha-1A adrenergic receptor. Perphenazine inhibits cancer cell proliferation, and induces apoptosis. Perphenazine can be used in the research of mental disease, cancer, inflammation[1][3][5].
dethiobiotin
A hexanoic acid having a 5-methyl-2-oxoimidazolidin-4-yl group at the 6-position. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens D-Desthiobiotin is a biotin derivative used in affinity chromatography and protein chromatography. D-Desthiobiotin also can be used for protein and cell labeling, detection and isolation[1].
Lupeose
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Stachyose, a kind of oligosaccharides, act as a hypoglycemic agent[1]. Stachyose, a kind of oligosaccharides, act as a hypoglycemic agent[1].
Oxoadipic acid
An oxo dicarboxylic acid that is adipic acid substituted by an oxo group at position 2. Oxoadipic acid is a key metabolite of the essential amino acids tryptophan and lysine.
Fenobucarb
C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor
Gamma-glutamylcysteine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RITKHVBHSGLULN_STSL_0116_5-Glutamylcysteine_8000fmol_180506_S2_LC02_MS02_219; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Gamma-glutamylcysteine (γ-Glutamylcysteine), a dipeptide containing cysteine and glutamic acid, is a precursor to glutathione (GSH). Gamma-glutamylcysteine is a cofactor for glutathione peroxidase (GPx) to increase GSH levels[1].
Lipoic Acid
A heterocyclic thia fatty acid comprising pentanoic acid with a 1,2-dithiolan-3-yl group at the 5-position. The (R)-enantiomer of lipoic acid. A vitamin-like, C8 thia fatty acid with anti-oxidant properties. D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid. Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid.
prochlorperazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D005765 - Gastrointestinal Agents > D000932 - Antiemetics
2,6-Dimethoxyquinone
2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].
promethazine
D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents
trimeprazine
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D003879 - Dermatologic Agents > D000982 - Antipruritics
tubermycin B
Origin: Microbe; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids Phenazine-1-carboxylic acid exhibits strong antifungal activity against phytopathogenic fungi.
L-Lactic acid
L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid.
Thiamine
A - Alimentary tract and metabolism > A11 - Vitamins > A11D - Vitamin b1, plain and in combination with vitamin b6 and b12 > A11DA - Vitamin b1, plain D018977 - Micronutrients > D014815 - Vitamins
N-g-Glutamylcystine
Glutaryl-CoA
An omega-carboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of glutaric acid.
Gibberellin A53
A C20-gibberellin, initially identified in Vicia faba, that is gibberellin A12 in which a hydroxy substituent is present at the 7alpha- position.
chlorpropham
D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
530-55-2
2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].
trans-1,3-Dichloropropene
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Penicillamine
An alpha-amino acid having the structure of valine substituted at the beta position with a sulfanyl group. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01C - Specific antirheumatic agents > M01CC - Penicillamine and similar agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents Penicillamine (D-(-)-Penicillamine) is a penicillin metabolic degradation product, can be used as a heavy metal chelator. Penicillamine increases free copper and enhances oxidative stress. Penicillamine has effect of seizures through nitric oxide/NMDA pathways. Penicillamine is a potential immune modulator. Penicillamine can be used for the research of Wilson disease, rheumatoid arthritis, and cystinuria[1][2][3][4].
dicyclomine
A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
promazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics
(S)-2-Hydroxybutyric acid
An optically active form of 2-hydroxybutyric acid having (S)-configuration. (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
(R)-Leucic acid
The (R)-enantiomer of 2-hydroxy-4-methylpentanoic acid. Found in patients with short-bowel syndrome (an inborn error of metabolism), and in maple syrup urine disease, MSUD. (R)-Leucic acid is an amino acid metabolite[1].
Desthiobiotin
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens D-Desthiobiotin is a biotin derivative used in affinity chromatography and protein chromatography. D-Desthiobiotin also can be used for protein and cell labeling, detection and isolation[1].
Decamethrin
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals Same as: D07785
DL-Penicillamine
D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents
N-METHYLFORMAMIDE
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents
Dihydrolipoic acid
A thio-fatty acid that is reduced form of lipoic acid. A potent antioxidant shown to directly destroy superoxide, hydroperoxy and hydroxyl radicals; also has neuroprotective and anti-tumour effects. D020011 - Protective Agents > D000975 - Antioxidants
Adipyl-CoA
An alpha,omega dicarboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of adipic acid.