Stachyose (BioDeep_00000000210)
Secondary id: BioDeep_00000400079
natural product human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019
代谢物信息卡片
化学式: C24H42O21 (666.2218)
中文名称: 水苏糖 水合物, 水苏糖, 水苏糖水合物来源于块茎水苏
谱图信息:
最多检出来源 Viridiplantae(plant) 15.51%
分子结构信息
SMILES: C(C1C(C(C(C(O1)OCC2C(C(C(C(O2)OCC3C(C(C(C(O3)OC4(C(C(C(O4)CO)O)O)CO)O)O)O)O)O)O)O)O)O)O
InChI: InChI=1/C24H42O21/c25-1-6-10(28)14(32)17(35)21(41-6)39-3-8-11(29)15(33)18(36)22(42-8)40-4-9-12(30)16(34)19(37)23(43-9)45-24(5-27)20(38)13(31)7(2-26)44-24/h6-23,25-38H,1-5H2/t6-,7-,8-,9-,10+,11+,12-,13-,14+,15+,16+,17-,18-,19-,20+,21+,22+,23-,24+/m1/s1
描述信息
Stachyose is a tetrasaccharide consisting of two D-galactose units, one D-glucose unit, and one D-fructose unit sequentially linked. Stachyose is a normal human metabolite present in human milk and is naturally found in many vegetables (e.g. green beans, soybeans and other beans) and plants. The glycosylation of serum transferrin from galactosemic patients with a deficiency of galactose-1-phosphate uridyl transferase (EC 2. 7.7 12) is abnormal but becomes normal after treatment with a galactose-free diet. Adhering to a galactose-free diet by strictly avoiding dairy products and known hidden sources of galactose does not completely normalize galactose-1-phosphate (gal-1-P) in erythrocytes from patients with galactosemia, since galactose released from stachyose may be absorbed and contribute to elevated gal-1-P values in erythrocytes of galactosemic patients (PMID:7671975, 9499382).
Stachyose is a tetrasaccharide consisting of sucrose having an alpha-D-galactosyl-(1->6)-alpha-D-galactosyl moiety attached at the 6-position of the glucose. It has a role as a plant metabolite and a mouse metabolite. It is a raffinose family oligosaccharide and a tetrasaccharide. It is functionally related to a sucrose and a raffinose.
Stachyose is a natural product found in Amaranthus cruentus, Salacia oblonga, and other organisms with data available.
See also: Oligosaccharide (related).
A tetrasaccharide consisting of sucrose having an alpha-D-galactosyl-(1->6)-alpha-D-galactosyl moiety attached at the 6-position of the glucose.
Isolated from soybean meal (Glycine max), tubers of Japanese artichoke (Stachys tubifera) and lentils
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Stachyose, a kind of oligosaccharides, act as a hypoglycemic agent[1].
Stachyose, a kind of oligosaccharides, act as a hypoglycemic agent[1].
同义名列表
35 个代谢物同义名
(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-((((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-((((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-3,4,5-triol; (2R,3R,4S,5S,6R)-2-[[(2R,3S,4S,5R,6R)-6-[(2R,3R,4S,5R,6R)-6-[(2S,3S,4R,5S)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-3,4,5-trihydroxy-oxan-2-yl]methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol; (2R,3R,4S,5S,6R)-2-{[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-({[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-({[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol; (2R,3R,4S,5S,6R)-2-(((2R,3S,4S,5R,6R)-6-((2R,3R,4S,5R,6R)-6-((2S,3S,4R,5S)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl)oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl)oxy-3,4,5-trihydroxy-oxan-2-yl)methoxy)-6-(hydroxymethyl)oxane-3,4,5-triol; (2S,3R,4S,5R,6R)-2-{[(2R,3R,4S,5R,6S)-6-{[(2R,3S,4S,5R,6R)-6-{[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methoxy}-3,4,5-trihydroxyoxan-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol; O-alpha-D-galactopyranosyl-(1->6)o-alpha-D-galactopyranosyl-(1->6)O-alpha-D-galactopyranosyl-beta-D-fructofuranoside; alpha-D-Glucopyranoside, beta-D-fructofuranosyl O-alpha-D-galactopyranosyl-(1->6)-O-alpha-D-galactopyranosyl-(1->6)-; beta-D-fructofuranosyl O-alpha-D-galactopyranosyl-(1->6)-O-alpha-D-galactopyranosyl-(1->6)-alpha-D-Glucopyranoside; beta-D-fructofuranosyl O-alpha-D-galactopyranosyl-(1-6)-O-alpha-D-galactopyranosyl-(1-6)-alpha-D-galactopyranoside; beta-D-Fructofuranosyl O-alpha-D-Galactopyranosyl-(1-6)-O-alpha-D-galactopyranosyl-(1-6)-alpha-D-glucopyranoside; beta-D-fructofuranosyl alpha-D-galactopyranosyl-(1->6)-alpha-D-galactopyranosyl-(1->6)-alpha-D-glucopyranoside; O-Α-D-galactopyranosyl-(1->6)O-α-D-galactopyranosyl-(1->6)O-α-D-galactopyranosyl-β-D-fructofuranoside; O-a-D-Galactopyranosyl-(1->6)O-a-D-galactopyranosyl-(1->6)O-a-D-galactopyranosyl-b-D-fructofuranoside; Β-D-fructofuranosyl O-α-D-galactopyranosyl-(1→6)-O-α-D-galactopyranosyl-(1→6)-α-D-glucopyranoside; alpha-D-Galp-(1->6)-alpha-D-Galp-(1->6)-alpha-D-Glcp-(1<->2)-beta-D-Fruf; alpha-D-Galp-(1->6)-alpha-D-Galp-(1->6)-alpha-D-Glcp-(1->2)-beta-D-Fruf; alpha-D-Galp-(1->6)-alpha-D-Galp-(1->6)-alpha-D-Glcp-(12)-beta-D-Fruf; alpha-D-Gal-(1->6)-alpha-D-Gal-(1->6)-alpha-D-Glc-(1->2)-beta-D-Fru; a-D-Galp-(1->6)-a-D-galp-(1->6)-a-D-GLCP-(12)-b-D-fruf; Α-D-galp-(1->6)-α-D-galp-(1->6)-α-D-GLCP-(12)-β-D-fruf; GAL(alpha1->6)GAL(alpha1->6)GLC(alpha1->2beta)FRU; Stachyose hydrate from Stachys tuberifera; UQZIYBXSHAGNOE-XNSRJBNMSA-N; stachyose tetrahydrate; stachyose hydrate; UNII-25VX64653N; Manneotetrose; D-Stachyose; Stachyose; Lupeose; β-D-Fructofuranosyl-O-α-D-galactopyranosyl-(1→6)-O-α-D-galactopyranosyl-(1→6)-α-D-glucopyranoside; α-D-Gal(1→6)-α-D-Gal-(1→6)-α-D-Glc-(1→2)-β-D-Fru; Stachyose n-Hydrate; Stachyose; Stachyose
数据库引用编号
32 个数据库交叉引用编号
- ChEBI: CHEBI:17164
- KEGG: C01613
- PubChem: 439531
- PubChem: 4287569
- HMDB: HMDB0003553
- Metlin: METLIN6951
- ChEMBL: CHEMBL1625803
- Wikipedia: Stachyose
- MeSH: stachyose
- MetaCyc: CPD-170
- KNApSAcK: C00001150
- foodb: FDB012320
- chemspider: 388624
- CAS: 54261-98-2
- CAS: 470-55-3
- MoNA: PS126212
- MoNA: PS126210
- MoNA: PS126207
- MoNA: PS126209
- MoNA: PS126208
- MoNA: PS126211
- medchemexpress: HY-N7910
- PMhub: MS000014829
- MetaboLights: MTBLC17164
- PubChem: 4765
- CAS: 10094-58-3
- 3DMET: B01470
- NIKKAJI: J5.938B
- RefMet: Stachyose
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-361
- KNApSAcK: 17164
- LOTUS: LTS0062089
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
PlantCyc(3)
代谢反应
352 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(9)
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + raffinose ⟶ myo-inositol + stachyose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Stachyose biosynthesis:
Suc + galactinol ⟶ myo-inositol + raffinose
INOH(0)
PlantCyc(332)
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
stachyose ⟶ raffinose + verbascose
- stachyose biosynthesis:
galactinol + raffinose ⟶ myo-inositol + stachyose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + raffinose ⟶ myo-inositol + stachyose
- ajugose biosynthesis II (galactinol-independent):
stachyose ⟶ raffinose + verbascose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose biosynthesis:
galactinol + raffinose ⟶ myo-inositol + stachyose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- ajugose biosynthesis II (galactinol-independent):
raffinose ⟶ stachyose + sucrose
- stachyose biosynthesis:
galactinol + sucrose ⟶ myo-inositol + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- stachyose biosynthesis:
myo-inositol + UDP-α-D-galactose ⟶ H+ + UDP + galactinol
- ajugose biosynthesis I (galactinol-dependent):
galactinol + stachyose ⟶ myo-inositol + verbascose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
- ajugose biosynthesis I (galactinol-dependent):
galactinol + verbascose ⟶ myo-inositol + ajugose
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(7)
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
PharmGKB(0)
142 个相关的物种来源信息
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 4678 - Allium: LTS0062089
- 4682 - Allium sativum: 10.1002/PTR.2650070514
- 4682 - Allium sativum: LTS0062089
- 3563 - Amaranthaceae: LTS0062089
- 3564 - Amaranthus: LTS0062089
- 117272 - Amaranthus cruentus: 10.1111/J.1365-2621.1981.TB03018.X
- 117272 - Amaranthus cruentus: LTS0062089
- 4668 - Amaryllidaceae: LTS0062089
- 3817 - Arachis: LTS0062089
- 3818 - Arachis hypogaea: 10.1111/J.1365-2621.1983.TB09208.X
- 3818 - Arachis hypogaea: LTS0062089
- 6656 - Arthropoda: LTS0062089
- 2 - Bacteria: LTS0062089
- 31953 - Bifidobacteriaceae: LTS0062089
- 1678 - Bifidobacterium: LTS0062089
- 1685 - Bifidobacterium breve: 10.1080/00021369.1987.10868063
- 1685 - Bifidobacterium breve: LTS0062089
- 6658 - Branchiopoda: LTS0062089
- 37411 - Bryaceae: LTS0062089
- 3208 - Bryophyta: LTS0062089
- 3214 - Bryopsida: LTS0062089
- 37412 - Bryum: LTS0062089
- 3820 - Cajanus: LTS0062089
- 3821 - Cajanus cajan: 10.1016/S0021-9673(98)00542-1
- 3821 - Cajanus cajan: LTS0062089
- 3822 - Canavalia: LTS0062089
- 3823 - Canavalia ensiformis: 10.1016/S0021-9673(98)00542-1
- 3823 - Canavalia ensiformis: LTS0062089
- 4200 - Caprifoliaceae: LTS0062089
- 4305 - Celastraceae: LTS0062089
- 6605 - Cephalopoda: LTS0062089
- 30102 - Cicadellidae: LTS0062089
- 3826 - Cicer: LTS0062089
- 3827 - Cicer arietinum: 10.1016/S0031-9422(00)80263-0
- 3827 - Cicer arietinum: LTS0062089
- 3650 - Cucurbitaceae: LTS0062089
- 6668 - Daphnia: LTS0062089
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0062089
- 77658 - Daphniidae: LTS0062089
- 2759 - Eukaryota: LTS0062089
- 3803 - Fabaceae: LTS0062089
- 3846 - Glycine: LTS0062089
- 3847 - Glycine max:
- 3847 - Glycine max: 10.1016/S0031-9422(00)80263-0
- 3847 - Glycine max: 10.1111/J.1365-2621.1983.TB09208.X
- 3847 - Glycine max: 10.1271/BBB.56.99
- 3847 - Glycine max: 10.1271/BBB1961.49.933
- 3847 - Glycine max: LTS0062089
- 3633 - Gossypium: LTS0062089
- 3635 - Gossypium hirsutum: 10.1104/PP.71.3.703
- 3635 - Gossypium hirsutum: LTS0062089
- 562125 - Helionides: LTS0062089
- 9606 - Homo sapiens: -
- 50557 - Insecta: LTS0062089
- 4136 - Lamiaceae: LTS0062089
- 3863 - Lens: LTS0062089
- 3864 - Lens culinaris: 10.1016/S0031-9422(00)80263-0
- 3864 - Lens culinaris: LTS0062089
- 4447 - Liliopsida: LTS0062089
- 49606 - Lonicera: LTS0062089
- 134520 - Lonicera caerulea: 10.1016/S0304-4238(97)00129-5
- 134520 - Lonicera caerulea: LTS0062089
- 3869 - Lupinus: LTS0062089
- 3870 - Lupinus albus: 10.1016/S0031-9422(00)80263-0
- 3870 - Lupinus albus: LTS0062089
- 53232 - Lupinus mutabilis: 10.1016/0889-1575(88)90035-X
- 53232 - Lupinus mutabilis: LTS0062089
- 3398 - Magnoliopsida: LTS0062089
- 3629 - Malvaceae: LTS0062089
- 33208 - Metazoa: LTS0062089
- 6447 - Mollusca: LTS0062089
- 4085 - Nicotiana: LTS0062089
- 4097 - Nicotiana tabacum: 10.1007/BF02660305
- 4097 - Nicotiana tabacum: LTS0062089
- 4145 - Olea: LTS0062089
- 4146 - Olea europaea: 10.1007/BF00198210
- 4146 - Olea europaea: LTS0062089
- 4144 - Oleaceae: LTS0062089
- 91896 - Orobanchaceae: LTS0062089
- 3883 - Phaseolus: LTS0062089
- 3886 - Phaseolus coccineus: 10.1021/JF00068A034
- 3886 - Phaseolus coccineus: LTS0062089
- 3884 - Phaseolus lunatus:
- 3884 - Phaseolus lunatus: 10.1016/S0021-9673(98)00542-1
- 3884 - Phaseolus lunatus: 10.1021/JF00068A034
- 3884 - Phaseolus lunatus: LTS0062089
- 3885 - Phaseolus vulgaris:
- 3885 - Phaseolus vulgaris: 10.1016/S0031-9422(00)80263-0
- 3885 - Phaseolus vulgaris: 10.1021/JF00068A034
- 3885 - Phaseolus vulgaris: LTS0062089
- 3887 - Pisum: LTS0062089
- 3888 - Pisum sativum:
- 3888 - Pisum sativum: LTS0062089
- 208194 - Pisum sativum subsp. sativum: 10.1016/S0031-9422(00)80263-0
- 208194 - Pisum sativum subsp. sativum: 10.1080/10826079608006294
- 208194 - Pisum sativum subsp. sativum: LTS0062089
- 197796 - Plantago asiatica L.: -
- 411227 - Plantago depressa Willd.: -
- 33090 - Plants: -
- 99299 - Rehmannia: 10.1248/YAKUSHI1947.115.12_992
- 99299 - Rehmannia: LTS0062089
- 99300 - Rehmannia glutinosa:
- 99300 - Rehmannia glutinosa: 10.1248/YAKUSHI1947.115.12_992
- 99300 - Rehmannia glutinosa: 10.1248/YAKUSHI1947.116.2_158
- 99300 - Rehmannia glutinosa: LTS0062089
- 99300 - Rehmannia glutinosa Libosch: -
- 188013 - Rosulabryum: LTS0062089
- 99387 - Rosulabryum capillare: 10.1007/BF00735582
- 4319 - Salacia: LTS0062089
- 1225088 - Salacia oblonga: 10.1248/CPB.47.1725
- 1225088 - Salacia oblonga: LTS0062089
- 4070 - Solanaceae: LTS0062089
- 92479 - Sphenostylis: LTS0062089
- 92480 - Sphenostylis stenocarpa: 10.1016/S0021-9673(98)00542-1
- 92480 - Sphenostylis stenocarpa: LTS0062089
- 53171 - Stachys: 10.1016/J.TALANTA.2006.03.027
- 53171 - Stachys: LTS0062089
- 35493 - Streptophyta: LTS0062089
- 58023 - Tracheophyta: LTS0062089
- 78532 - Trigonella: LTS0062089
- 78534 - Trigonella foenum-graecum:
- 78534 - Trigonella foenum-graecum: 10.1007/BF01088464
- 78534 - Trigonella foenum-graecum: LTS0062089
- 79772 - Verbena officinalis L.: -
- 3904 - Vicia: LTS0062089
- 3906 - Vicia faba: 10.1016/S0031-9422(00)80263-0
- 3906 - Vicia faba: LTS0062089
- 3913 - Vigna: LTS0062089
- 157791 - Vigna radiata: 10.1021/JF00068A034
- 157791 - Vigna radiata: LTS0062089
- 3917 - Vigna unguiculata:
- 3917 - Vigna unguiculata: 10.1021/JF00068A034
- 3917 - Vigna unguiculata: 10.1111/J.1365-2621.1983.TB09203.X
- 3917 - Vigna unguiculata: LTS0062089
- 33090 - Viridiplantae: LTS0062089
- 48239 - Xerosicyos: LTS0062089
- 85297 - Xerosicyos danguyi: 10.1104/PP.87.3.588
- 85297 - Xerosicyos danguyi: LTS0062089
- 33090 - 地黄: -
- 33090 - 水苏: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yuanyuan Li, Bingxue Liu, Xiaoxue Zhang, Yanjie Liu, Siying Wang, Shujun Li, Xiuhua Zhao. Lutein-stachyose (LS) amphiphilic oligosaccharide derivatives improve the oral bioavailability of lutein.
Food chemistry.
2023 Aug; 418(?):136032. doi:
10.1016/j.foodchem.2023.136032
. [PMID: 36996657] - Elisa Driesen, Wouter Saeys, Maurice De Proft, Arthur Lauwers, Wim Van den Ende. Far-Red Light Mediated Carbohydrate Concentration Changes in Leaves of Sweet Basil, a Stachyose Translocating Plant.
International journal of molecular sciences.
2023 May; 24(9):. doi:
10.3390/ijms24098378
. [PMID: 37176086] - Bing Hua, Mengying Zhang, Jinji Zhang, Haibo Dai, Zhiping Zhang, Minmin Miao. CsAGA1 and CsAGA2 Mediate RFO Hydrolysis in Partially Distinct Manner in Cucumber Fruits.
International journal of molecular sciences.
2021 Dec; 22(24):. doi:
10.3390/ijms222413285
. [PMID: 34948084] - Qian Li, Xinlei Tang, Jianghao Xu, Xingyuan Ren, Rui Wang, Songsong Jiang. Study on alleviation effect of stachyose on food allergy through TLR2/NF-κB signal pathway in a mouse model.
Life sciences.
2021 Dec; 286(?):120038. doi:
10.1016/j.lfs.2021.120038
. [PMID: 34653427] - Menglu Xi, Haixia Tang, Yan Zhang, Wupeng Ge, Ying Chen, Xiuxiu Cui. Microbiome-metabolomic analyses of the impacts of dietary stachyose on fecal microbiota and metabolites in infants intestinal microbiota-associated mice.
Journal of the science of food and agriculture.
2021 Jun; 101(8):3336-3347. doi:
10.1002/jsfa.10963
. [PMID: 33222240] - Pauline Okemo, Hao Long, Yen Cheng, Sagadevan Mundree, Brett Williams. Stachyose triggers apoptotic like cell death in drought sensitive but not resilient plants.
Scientific reports.
2021 03; 11(1):7099. doi:
10.1038/s41598-021-86559-7
. [PMID: 33782503] - Yingmei Wu, Yalong Lu, Daoyuan Ren, Xuefeng Chen, Xingbin Yang. Non-digestive stachyose enhances bioavailability of isoflavones for improving hyperlipidemia and hyperglycemia in mice fed with high fat diet.
Journal of food and drug analysis.
2021 03; 29(1):87-97. doi:
10.38212/2224-6614.3078
. [PMID: 35696221] - Menglu Xi, Jian Li, Guo Hao, Xiaopeng An, Yuxuan Song, Hong Wei, Wupeng Ge. Stachyose increases intestinal barrier through Akkermansia muciniphila and reduces gut inflammation in germ-free mice after human fecal transplantation.
Food research international (Ottawa, Ont.).
2020 11; 137(?):109288. doi:
10.1016/j.foodres.2020.109288
. [PMID: 33233042] - María Ciudad-Mulero, Virginia Fernández-Ruiz, Carmen Cuadrado, Claudia Arribas, Mercedes M Pedrosa, José De J Berrios, James Pan, Patricia Morales. Novel gluten-free formulations from lentil flours and nutritional yeast: Evaluation of extrusion effect on phytochemicals and non-nutritional factors.
Food chemistry.
2020 Jun; 315(?):126175. doi:
10.1016/j.foodchem.2020.126175
. [PMID: 31991254] - Xiaohua Qi, Qianqian Li, Jiatao Shen, Chunlu Qian, Xuewen Xu, Qiang Xu, Xuehao Chen. Sugar enhances waterlogging-induced adventitious root formation in cucumber by promoting auxin transport and signalling.
Plant, cell & environment.
2020 06; 43(6):1545-1557. doi:
10.1111/pce.13738
. [PMID: 32020637] - Cai-Na Li, Xing Wang, Lei Lei, Min-Zhi Liu, Rong-Cui Li, Su-Juan Sun, Shuai-Nan Liu, Yi Huan, Tian Zhou, Quan Liu, Hui Cao, Guo-Liang Bai, Yu-Wei Han, Zhu-Fang Shen. Berberine combined with stachyose induces better glycometabolism than berberine alone through modulating gut microbiota and fecal metabolomics in diabetic mice.
Phytotherapy research : PTR.
2020 May; 34(5):1166-1174. doi:
10.1002/ptr.6588
. [PMID: 31833107] - Liwen He, Feiran Zhang, Zhengyang Jian, Jiachen Sun, Jiamin Chen, Vuekhang Liapao, Qing He. Stachyose modulates gut microbiota and alleviates dextran sulfate sodium-induced acute colitis in mice.
Saudi journal of gastroenterology : official journal of the Saudi Gastroenterology Association.
2020 May; 26(3):153-159. doi:
10.4103/sjg.sjg_580_19
. [PMID: 32270772] - Li Liang, Guimei Liu, Guoyong Yu, Fuming Zhang, Robert J Linhardt, Quanhong Li. Urinary metabolomics analysis reveals the anti-diabetic effect of stachyose in high-fat diet/streptozotocin-induced type 2 diabetic rats.
Carbohydrate polymers.
2020 Feb; 229(?):115534. doi:
10.1016/j.carbpol.2019.115534
. [PMID: 31826396] - Jinji Zhang, Hao Gu, Haibo Dai, Zhiping Zhang, Minmin Miao. Alternative polyadenylation of the stacyose synthase gene mediates source-sink regulation in cucumber.
Journal of plant physiology.
2020 Feb; 245(?):153111. doi:
10.1016/j.jplph.2019.153111
. [PMID: 31926460] - Rima Thapa, Militza Carrero-Colón, Katy M Rainey, Karen Hudson. TILLING by Sequencing: A Successful Approach to Identify Rare Alleles in Soybean Populations.
Genes.
2019 12; 10(12):. doi:
10.3390/genes10121003
. [PMID: 31817015] - Yueyue Liu, Ting Li, Aamina Alim, Daoyuan Ren, Yan Zhao, Xingbin Yang. Regulatory Effects of Stachyose on Colonic and Hepatic Inflammation, Gut Microbiota Dysbiosis, and Peripheral CD4+ T Cell Distribution Abnormality in High-Fat Diet-Fed Mice.
Journal of agricultural and food chemistry.
2019 Oct; 67(42):11665-11674. doi:
10.1021/acs.jafc.9b04731
. [PMID: 31588753] - Kambiz Morabbi Heravi, Hildegard Watzlawick, Josef Altenbuchner. The melREDCA Operon Encodes a Utilization System for the Raffinose Family of Oligosaccharides in Bacillus subtilis.
Journal of bacteriology.
2019 08; 201(15):. doi:
10.1128/jb.00109-19
. [PMID: 31138628] - Sondos Njoumi, Marie Josephe Amiot, Isabelle Rochette, Sihem Bellagha, Claire Mouquet-Rivier. Soaking and cooking modify the alpha-galacto-oligosaccharide and dietary fibre content in five Mediterranean legumes.
International journal of food sciences and nutrition.
2019 Aug; 70(5):551-561. doi:
10.1080/09637486.2018.1544229
. [PMID: 30614326] - Chaoyu Tian, Jiangang Yang, Yan Zeng, Tong Zhang, Yingbiao Zhou, Yan Men, Chun You, Yueming Zhu, Yuanxia Sun. Biosynthesis of Raffinose and Stachyose from Sucrose via an In Vitro Multienzyme System.
Applied and environmental microbiology.
2019 01; 85(2):. doi:
10.1128/aem.02306-18
. [PMID: 30389762] - Xin Li, Jing Du, Jinju Guo, Hongyun Wang, Si Ma, Jianguo Lü, Xiaolei Sui, Zhenxian Zhang. The functions of cucumber sucrose phosphate synthases 4 (CsSPS4) in carbon metabolism and transport in sucrose- and stachyose-transporting plants.
Journal of plant physiology.
2018 Sep; 228(?):150-157. doi:
10.1016/j.jplph.2018.05.013
. [PMID: 29913429] - Guimei Liu, Jia Bei, Li Liang, Guoyong Yu, Lu Li, Quanhong Li. Stachyose Improves Inflammation through Modulating Gut Microbiota of High-Fat Diet/Streptozotocin-Induced Type 2 Diabetes in Rats.
Molecular nutrition & food research.
2018 03; 62(6):e1700954. doi:
10.1002/mnfr.201700954
. [PMID: 29341443] - So Young Oh, So Youn Youn, Myeong Soo Park, Nam In Baek, Geun Eog Ji. Synthesis of Stachyobifiose Using Bifidobacterial α-Galactosidase Purified from Recombinant Escherichia coli.
Journal of agricultural and food chemistry.
2018 Feb; 66(5):1184-1190. doi:
10.1021/acs.jafc.7b04703
. [PMID: 29363955] - Jean Comtet, Robert Turgeon, Abraham D Stroock. Phloem Loading through Plasmodesmata: A Biophysical Analysis.
Plant physiology.
2017 Oct; 175(2):904-915. doi:
10.1104/pp.16.01041
. [PMID: 28794259] - Jianguo Lü, Xiaolei Sui, Si Ma, Xin Li, Huan Liu, Zhenxian Zhang. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance.
Plant molecular biology.
2017 Sep; 95(1-2):1-15. doi:
10.1007/s11103-017-0621-9
. [PMID: 28608281] - Ting Li, Xinshan Lu, Xingbin Yang. Evaluation of clinical safety and beneficial effects of stachyose-enriched α-galacto-oligosaccharides on gut microbiota and bowel function in humans.
Food & function.
2017 Jan; 8(1):262-269. doi:
10.1039/c6fo01290f
. [PMID: 28001151] - Yongfeng Ai, Karen A Cichy, Janice B Harte, James D Kelly, Perry K W Ng. Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders.
Food chemistry.
2016 Nov; 211(?):538-45. doi:
10.1016/j.foodchem.2016.05.095
. [PMID: 27283664] - Vasfiye Hazal Ozyurt, Semih Ötles. Effect of food processing on the physicochemical properties of dietary fibre.
Acta scientiarum polonorum. Technologia alimentaria.
2016 Jul; 15(3):233-245. doi:
10.17306/j.afs.2016.3.23
. [PMID: 28071023] - Wenfeng Li, Zhao Li, Xiao Han, Di Huang, Yalong Lu, Xingbin Yang. Enhancing the hepatic protective effect of genistein by oral administration with stachyose in mice with chronic high fructose diet consumption.
Food & function.
2016 May; 7(5):2420-30. doi:
10.1039/c6fo00038j
. [PMID: 27157892] - Yang Zhou, De-sheng Xu, Li Liu, Fu-rong Qiu, Jiong-liang Chen, Guang-lin Xu. A LC-MS/MS method for the determination of stachyose in rat plasma and its application to a pharmacokinetic study.
Journal of pharmaceutical and biomedical analysis.
2016 May; 123(?):24-30. doi:
10.1016/j.jpba.2015.11.041
. [PMID: 26859612] - Manu P Gangola, Sarita Jaiswal, Udhaya Kannan, Pooran M Gaur, Monica Båga, Ravindra N Chibbar. Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds.
Phytochemistry.
2016 May; 125(?):88-98. doi:
10.1016/j.phytochem.2016.02.009
. [PMID: 26953100] - Wenfeng Li, Di Huang, Anning Gao, Xingbin Yang. Stachyose increases absorption and hepatoprotective effect of tea polyphenols in high fructose-fed mice.
Molecular nutrition & food research.
2016 Mar; 60(3):502-10. doi:
10.1002/mnfr.201500547
. [PMID: 26582073] - Jun Yan, Songshan Shi, Hongwei Wang, Ruimin Liu, Ning Li, Yonglin Chen, Shunchun Wang. Neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides by high performance liquid chromatography.
Carbohydrate polymers.
2016 Jan; 136(?):1273-80. doi:
10.1016/j.carbpol.2015.10.028
. [PMID: 26572471] - Dan Qiu, Tri Vuong, Babu Valliyodan, Haiying Shi, Binhui Guo, J Grover Shannon, Henry T Nguyen. Identification and characterization of a stachyose synthase gene controlling reduced stachyose content in soybean.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2015 Nov; 128(11):2167-76. doi:
10.1007/s00122-015-2575-0
. [PMID: 26179337] - Sarah Findling, Klaus Zanger, Stephan Krueger, Gertrud Lohaus. Subcellular distribution of raffinose oligosaccharides and other metabolites in summer and winter leaves of Ajuga reptans (Lamiaceae).
Planta.
2015 Jan; 241(1):229-41. doi:
10.1007/s00425-014-2183-2
. [PMID: 25269399] - Ting Li, Xinshan Lu, Xingbin Yang. Stachyose-enriched α-galacto-oligosaccharides regulate gut microbiota and relieve constipation in mice.
Journal of agricultural and food chemistry.
2013 Dec; 61(48):11825-31. doi:
10.1021/jf404160e
. [PMID: 24245736] - Chunliu Zhuo, Ting Wang, Shaoyun Lu, Yaqing Zhao, Xiaoguang Li, Zhenfei Guo. A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses.
Physiologia plantarum.
2013 Sep; 149(1):67-78. doi:
10.1111/ppl.12019
. [PMID: 23253102] - Manu P Gangola, Yogendra P Khedikar, Pooran M Gaur, Monica Båga, Ravindra N Chibbar. Genotype and growing environment interaction shows a positive correlation between substrates of raffinose family oligosaccharides (RFO) biosynthesis and their accumulation in chickpea ( Cicer arietinum L.) seeds.
Journal of agricultural and food chemistry.
2013 May; 61(20):4943-52. doi:
10.1021/jf3054033
. [PMID: 23621405] - Raquel dos Santos, Rudy Vergauwen, Pieter Pacolet, Eveline Lescrinier, Wim Van den Ende. Manninotriose is a major carbohydrate in red deadnettle (Lamium purpureum, Lamiaceae).
Annals of botany.
2013 Mar; 111(3):385-93. doi:
10.1093/aob/mcs288
. [PMID: 23264235] - Katherine B Hagely, Debra Palmquist, Kristin D Bilyeu. Classification of distinct seed carbohydrate profiles in soybean.
Journal of agricultural and food chemistry.
2013 Feb; 61(5):1105-11. doi:
10.1021/jf303985q
. [PMID: 23317449] - Mei-Liang Zhou, Qian Zhang, Ming Zhou, Zhan-Min Sun, Xue-Mei Zhu, Ji-Rong Shao, Yi-Xiong Tang, Yan-Min Wu. Genome-wide identification of genes involved in raffinose metabolism in Maize.
Glycobiology.
2012 Dec; 22(12):1775-85. doi:
10.1093/glycob/cws121
. [PMID: 22879458] - M Cervera-Tison, L E Tailford, C Fuell, L Bruel, G Sulzenbacher, B Henrissat, J G Berrin, M Fons, T Giardina, N Juge. Functional analysis of family GH36 α-galactosidases from Ruminococcus gnavus E1: insights into the metabolism of a plant oligosaccharide by a human gut symbiont.
Applied and environmental microbiology.
2012 Nov; 78(21):7720-32. doi:
10.1128/aem.01350-12
. [PMID: 22923411] - J W Ren, K M Chan, Patrick K K Lai, Clara B S Lau, H Yu, P C Leung, K P Fung, Walter F X Yu, C H Cho. Extracts from Radix Astragali and Radix Rehmanniae promote keratinocyte proliferation by regulating expression of growth factor receptors.
Phytotherapy research : PTR.
2012 Oct; 26(10):1547-54. doi:
10.1002/ptr.4615
. [PMID: 22359405] - Jérémy Pillet, Aurélie Egert, Philippe Pieri, Fatma Lecourieux, Christian Kappel, Justine Charon, Eric Gomès, Felix Keller, Serge Delrot, David Lecourieux. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries.
Plant & cell physiology.
2012 Oct; 53(10):1776-92. doi:
10.1093/pcp/pcs121
. [PMID: 22952249] - Rebecca R L Atkinson, Mike M Burrell, Colin P Osborne, Karen E Rose, Mark Rees. A non-targeted metabolomics approach to quantifying differences in root storage between fast- and slow-growing plants.
The New phytologist.
2012 Oct; 196(1):200-211. doi:
10.1111/j.1469-8137.2012.04274.x
. [PMID: 22924406] - Lidor Gil, Julius Ben-Ari, Robert Turgeon, Shmuel Wolf. Effect of CMV infection and high temperatures on the enzymes involved in raffinose family oligosaccharide biosynthesis in melon plants.
Journal of plant physiology.
2012 Jul; 169(10):965-70. doi:
10.1016/j.jplph.2012.02.019
. [PMID: 22575056] - Yan Wang, Ana P Alonso, Curtis G Wilkerson, Kenneth Keegstra. Deep EST profiling of developing fenugreek endosperm to investigate galactomannan biosynthesis and its regulation.
Plant molecular biology.
2012 Jun; 79(3):243-58. doi:
10.1007/s11103-012-9909-y
. [PMID: 22527750] - Shunsuke Inoguchi, Yuji Ohashi, Asako Narai-Kanayama, Keiichi Aso, Takenori Nakagaki, Tomohiko Fujisawa. Effects of non-fermented and fermented soybean milk intake on faecal microbiota and faecal metabolites in humans.
International journal of food sciences and nutrition.
2012 Jun; 63(4):402-10. doi:
10.3109/09637486.2011.630992
. [PMID: 22040525] - Junpei Zhou, Lu Pan, Junjun Li, Xianghua Tang, Zunxi Huang. [A novel alpha-galactosidase from Arthrobacter sp. GN14 isolated from Grus nigricollis feces: gene cloning, heterologous expression and characterization].
Wei sheng wu xue bao = Acta microbiologica Sinica.
2012 May; 52(5):611-9. doi:
. [PMID: 22803347]
- Yingzhi Liu, Bo Su, Xian Wang. Study on the noncovalent interactions of saikosaponins and cytochrome c by electrospray ionization mass spectrometry.
Rapid communications in mass spectrometry : RCM.
2012 Apr; 26(7):719-27. doi:
10.1002/rcm.6151
. [PMID: 22368050] - Priti Katrolia, Huiyong Jia, Qiaojuan Yan, Shuang Song, Zhengqiang Jiang, Haibo Xu. Characterization of a protease-resistant α-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides.
Bioresource technology.
2012 Apr; 110(?):578-86. doi:
10.1016/j.biortech.2012.01.144
. [PMID: 22349190] - Cankui Zhang, Xiyan Yu, Brian G Ayre, Robert Turgeon. The origin and composition of cucurbit 'phloem' exudate.
Plant physiology.
2012 Apr; 158(4):1873-82. doi:
10.1104/pp.112.194431
. [PMID: 22331409] - Faride Unda, Thomas Canam, Lindsay Preston, Shawn D Mansfield. Isolation and characterization of galactinol synthases from hybrid poplar.
Journal of experimental botany.
2012 Mar; 63(5):2059-69. doi:
10.1093/jxb/err411
. [PMID: 22197892] - J M Deng, K S Mai, Q H Ai, W B Zhang, X J Wang, W Xu, Z G Liufu, Y H Cai, W Chen. Effects of antinutritional factors on plasma lipoprotein levels in Japanese flounder Paralichthys olivaceus.
Journal of fish biology.
2012 Feb; 80(2):286-300. doi:
10.1111/j.1095-8649.2011.03170.x
. [PMID: 22268430] - Gregory P Lech, Robert C Reigh. Plant products affect growth and digestive efficiency of cultured Florida pompano (Trachinotus carolinus) fed compounded diets.
PloS one.
2012; 7(4):e34981. doi:
10.1371/journal.pone.0034981
. [PMID: 22536344] - Aakash Chawade, Pernilla Lindén, Marcus Bräutigam, Rickard Jonsson, Anders Jonsson, Thomas Moritz, Olof Olsson. Development of a model system to identify differences in spring and winter oat.
PloS one.
2012; 7(1):e29792. doi:
10.1371/journal.pone.0029792
. [PMID: 22253782] - Donna M Winham, Andrea M Hutchins. Perceptions of flatulence from bean consumption among adults in 3 feeding studies.
Nutrition journal.
2011 Nov; 10(?):128. doi:
10.1186/1475-2891-10-128
. [PMID: 22104320] - Jason D Gillman, Ashley Tetlow, Jeong-Deong Lee, J Grover Shannon, Kristin Bilyeu. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats.
BMC plant biology.
2011 Nov; 11(?):155. doi:
10.1186/1471-2229-11-155
. [PMID: 22070454] - Liping Hu, Huihui Sun, Ruifu Li, Lingyun Zhang, Shaohui Wang, Xiaolei Sui, Zhenxian Zhang. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage.
Plant, cell & environment.
2011 Nov; 34(11):1835-48. doi:
10.1111/j.1365-3040.2011.02380.x
. [PMID: 21707653] - Xu Li, Jiajin Zhuo, Yin Jing, Xiao Liu, Xiaofeng Wang. Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development.
Journal of plant physiology.
2011 Oct; 168(15):1761-70. doi:
10.1016/j.jplph.2011.04.006
. [PMID: 21680054] - Li-Li Zhang, Min-Gui Zhao, Qiu-Ying Tian, Wen-Hao Zhang. Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing.
Planta.
2011 Sep; 234(3):445-57. doi:
10.1007/s00425-011-1416-x
. [PMID: 21523386] - Jason W Holder, Jil C Ulrich, Anthony C DeBono, Paul A Godfrey, Christopher A Desjardins, Jeremy Zucker, Qiandong Zeng, Alex L B Leach, Ion Ghiviriga, Christine Dancel, Thomas Abeel, Dirk Gevers, Chinnappa D Kodira, Brian Desany, Jason P Affourtit, Bruce W Birren, Anthony J Sinskey. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
PLoS genetics.
2011 Sep; 7(9):e1002219. doi:
10.1371/journal.pgen.1002219
. [PMID: 21931557] - Joana Gasperazzo Ferreira, Angélica Pataro Reis, Valéria Monteze Guimarães, Daniel Luciano Falkoski, Lílian da Silva Fialho, Sebastião Tavares de Rezende. Purification and characterization of Aspergillus terreus α-galactosidases and their use for hydrolysis of soymilk oligosaccharides.
Applied biochemistry and biotechnology.
2011 Aug; 164(7):1111-25. doi:
10.1007/s12010-011-9198-y
. [PMID: 21331589] - Ulrike Lingner, Steffen Münch, Björn Sode, Holger B Deising, Norbert Sauer. Functional characterization of a eukaryotic melibiose transporter.
Plant physiology.
2011 Jul; 156(3):1565-76. doi:
10.1104/pp.111.178624
. [PMID: 21593216] - Stefanie Endres, Raimund Tenhaken. Down-regulation of the myo-inositol oxygenase gene family has no effect on cell wall composition in Arabidopsis.
Planta.
2011 Jul; 234(1):157-69. doi:
10.1007/s00425-011-1394-z
. [PMID: 21394467] - Silke Schiebold, Henning Tschiersch, Ljudmilla Borisjuk, Nicolas Heinzel, Ruslana Radchuk, Hardy Rolletschek. A novel procedure for the quantitative analysis of metabolites, storage products and transcripts of laser microdissected seed tissues of Brassica napus.
Plant methods.
2011 Jun; 7(?):19. doi:
10.1186/1746-4811-7-19
. [PMID: 21718489] - Tiago B dos Santos, Ilara G F Budzinski, Celso J Marur, Carmen L O Petkowicz, Luiz F P Pereira, Luiz G E Vieira. Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses.
Plant physiology and biochemistry : PPB.
2011 Apr; 49(4):441-8. doi:
10.1016/j.plaphy.2011.01.023
. [PMID: 21330144] - Melvin J Oliver, Lining Guo, Danny C Alexander, John A Ryals, Bernard W M Wone, John C Cushman. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus.
The Plant cell.
2011 Apr; 23(4):1231-48. doi:
10.1105/tpc.110.082800
. [PMID: 21467579] - Lesław B Lahuta, Tomasz Dzik. D-chiro-inositol affects accumulation of raffinose family oligosaccharides in developing embryos of Pisum sativum.
Journal of plant physiology.
2011 Mar; 168(4):352-8. doi:
10.1016/j.jplph.2010.07.027
. [PMID: 20947202] - Jorge Mc Mondego, Ramon O Vidal, Marcelo F Carazzolle, Eric K Tokuda, Lucas P Parizzi, Gustavo Gl Costa, Luiz Fp Pereira, Alan C Andrade, Carlos A Colombo, Luiz Ge Vieira, Gonçalo Ag Pereira. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora.
BMC plant biology.
2011 Feb; 11(?):30. doi:
10.1186/1471-2229-11-30
. [PMID: 21303543] - Paula Menna Barreto Dias, Sophie Brunel-Muguet, Carolyne Dürr, Thierry Huguet, Didier Demilly, Marie-Helene Wagner, Béatrice Teulat-Merah. QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2011 Feb; 122(2):429-44. doi:
10.1007/s00122-010-1458-7
. [PMID: 20878383] - Yi-Fei Liu, Hong-Yan Qi, Chun-Ming Bai, Ming-Fang Qi, Chuan-Qiang Xu, Jing-Hong Hao, Yan Li, Tian-Lai Li. Grafting helps improve photosynthesis and carbohydrate metabolism in leaves of muskmelon.
International journal of biological sciences.
2011; 7(8):1161-70. doi:
10.7150/ijbs.7.1161
. [PMID: 22043173] - Dumitrita Iftime, Matthew A Hannah, Thomas Peterbauer, Arnd G Heyer. Stachyose in the cytosol does not influence freezing tolerance of transgenic Arabidopsis expressing stachyose synthase from adzuki bean.
Plant science : an international journal of experimental plant biology.
2011 Jan; 180(1):24-30. doi:
10.1016/j.plantsci.2010.07.012
. [PMID: 21421343] - Wen-Te Chang, Young Hae Choi, Rob Van der Heijden, Meng-Shiou Lee, Ming-Kuem Lin, Hongwei Kong, Hye Kyong Kim, Robert Verpoorte, Thomas Hankemeier, Jan Van der Greef, Mei Wang. Traditional processing strongly affects metabolite composition by hydrolysis in Rehmannia glutinosa roots.
Chemical & pharmaceutical bulletin.
2011; 59(5):546-52. doi:
10.1248/cpb.59.546
. [PMID: 21532190] - Robert Turgeon, Richard Medville. Amborella trichopoda, plasmodesmata, and the evolution of phloem loading.
Protoplasma.
2011 Jan; 248(1):173-80. doi:
10.1007/s00709-010-0237-2
. [PMID: 21080011] - Linkun Wu, Haibin Wang, Zhixing Zhang, Rui Lin, Zhongyi Zhang, Wenxiong Lin. Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil.
PloS one.
2011; 6(5):e20611. doi:
10.1371/journal.pone.0020611
. [PMID: 21655235] - David Cohen, Marie-Béatrice Bogeat-Triboulot, Emilie Tisserant, Sandrine Balzergue, Marie-Laure Martin-Magniette, Gaëlle Lelandais, Nathalie Ningre, Jean-Pierre Renou, Jean-Philippe Tamby, Didier Le Thiec, Irène Hummel. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes.
BMC genomics.
2010 Nov; 11(?):630. doi:
10.1186/1471-2164-11-630
. [PMID: 21073700] - Hui Wang, Huiying Luo, Jiang Li, Yingguo Bai, Huoqing Huang, Pengjun Shi, Yunliu Fan, Bin Yao. An alpha-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with beta-mannanase.
Bioresource technology.
2010 Nov; 101(21):8376-82. doi:
10.1016/j.biortech.2010.06.045
. [PMID: 20591661] - Agnieszka Wanda Piastowska-Ciesielska, Mikolaj Antoni Gralak. Influence of a low dose of dietary soybean on bone properties and mineral status in young rats.
BioFactors (Oxford, England).
2010 Nov; 36(6):451-8. doi:
10.1002/biof.113
. [PMID: 20806285] - Bożena Szal, Agata Jastrzębska, Marek Kulka, Karolina Leśniak, Anna Podgórska, Tiit Pärnik, Hiie Ivanova, Olav Keerberg, Per Gardeström, Anna M Rychter. Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism.
Planta.
2010 Nov; 232(6):1371-82. doi:
10.1007/s00425-010-1261-3
. [PMID: 20830597] - Andrea Louis, Frank Petereit, Matthias Lechtenberg, Alexandra Deters, Andreas Hensel. Phytochemical characterization of Rhododendron ferrugineum and in vitro assessment of an aqueous extract on cell toxicity.
Planta medica.
2010 Oct; 76(14):1550-7. doi:
10.1055/s-0029-1241016
. [PMID: 20309793] - Vellingiri Vadivel, Muthiah Pugalenthi. Studies on the incorporation of velvet bean (Mucuna pruriens var. utilis) as an alternative protein source in poultry feed and its effect on growth performance of broiler chickens.
Tropical animal health and production.
2010 Oct; 42(7):1367-76. doi:
10.1007/s11250-010-9594-2
. [PMID: 20509048] - Cesarettin Alasalvar, Ebru Pelvan, Ryszard Amarowicz. Effects of roasting on taste-active compounds of Turkish hazelnut varieties ( Corylus avellana L.).
Journal of agricultural and food chemistry.
2010 Aug; 58(15):8674-9. doi:
10.1021/jf101039f
. [PMID: 20681657] - Yanbin Yin, Huiling Chen, Michael G Hahn, Debra Mohnen, Ying Xu. Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8.
Plant physiology.
2010 Aug; 153(4):1729-46. doi:
10.1104/pp.110.154229
. [PMID: 20522722] - Nicole Regier, Sebastian Streb, Samuel C Zeeman, Beat Frey. Seasonal changes in starch and sugar content of poplar (Populus deltoides x nigra cv. Dorskamp) and the impact of stem girdling on carbohydrate allocation to roots.
Tree physiology.
2010 Aug; 30(8):979-87. doi:
10.1093/treephys/tpq047
. [PMID: 20538808] - Xingbin Yang, Yan Zhao, Nianwu He, Kevin D Croft. Isolation, characterization, and immunological effects of alpha-galacto-oligosaccharides from a new source, the herb Lycopus lucidus Turcz.
Journal of agricultural and food chemistry.
2010 Jul; 58(14):8253-8. doi:
10.1021/jf101217f
. [PMID: 20583842] - Dennis Janz, Katja Behnke, Jörg-Peter Schnitzler, Basem Kanawati, Philippe Schmitt-Kopplin, Andrea Polle. Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms.
BMC plant biology.
2010 Jul; 10(?):150. doi:
10.1186/1471-2229-10-150
. [PMID: 20637123] - Federico E Rey, Jeremiah J Faith, James Bain, Michael J Muehlbauer, Robert D Stevens, Christopher B Newgard, Jeffrey I Gordon. Dissecting the in vivo metabolic potential of two human gut acetogens.
The Journal of biological chemistry.
2010 Jul; 285(29):22082-90. doi:
10.1074/jbc.m110.117713
. [PMID: 20444704] - María Dolores Tenorio, Irene Espinosa-Martos, Guadalupe Préstamo, Pilar Rupérez. Soybean whey enhance mineral balance and caecal fermentation in rats.
European journal of nutrition.
2010 Apr; 49(3):155-63. doi:
10.1007/s00394-009-0060-8
. [PMID: 19830378] - Heather Ray, Fawzy Georges. A genomic approach to nutritional, pharmacological and genetic issues of faba bean (Vicia faba): prospects for genetic modifications.
GM crops.
2010 Mar; 1(2):99-106. doi:
10.4161/gmcr.1.2.11891
. [PMID: 21865878] - Ming-der Shih, Tzung-Yang Hsieh, Tsai-Piao Lin, Yue-Ie C Hsing, Folkert A Hoekstra. Characterization of two soybean (Glycine max L.) LEA IV proteins by circular dichroism and Fourier transform infrared spectrometry.
Plant & cell physiology.
2010 Mar; 51(3):395-407. doi:
10.1093/pcp/pcq005
. [PMID: 20071374] - Kerry A Campbell, Charles E Glatz. Protein recovery from enzyme-assisted aqueous extraction of soybean.
Biotechnology progress.
2010 Mar; 26(2):488-95. doi:
10.1002/btpr.341
. [PMID: 19941332] - Maria Schubert, Anna N Melnikova, Nikola Mesecke, Elena K Zubkova, Rocco Fortte, Denis R Batashev, Inga Barth, Norbert Sauer, Yuri V Gamalei, Natalia S Mamushina, Lutz F Tietze, Olga V Voitsekhovskaja, Katharina Pawlowski. Two novel disaccharides, rutinose and methylrutinose, are involved in carbon metabolism in Datisca glomerata.
Planta.
2010 Feb; 231(3):507-21. doi:
10.1007/s00425-009-1049-5
. [PMID: 19915863] - Natacha Fontes, Rui Silva, Céline Vignault, Fatma Lecourieux, Hernâni Gerós, Serge Delrot. Purification and functional characterization of protoplasts and intact vacuoles from grape cells.
BMC research notes.
2010 Jan; 3(?):19. doi:
10.1186/1756-0500-3-19
. [PMID: 20181000] - Ruey-Hua Lee, Jen-Hung Hsu, Hao-Jen Huang, Shu-Fang Lo, Shu-Chen Grace Chen. Alkaline alpha-galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice.
The New phytologist.
2009 Nov; 184(3):596-606. doi:
10.1111/j.1469-8137.2009.02999.x
. [PMID: 19703114] - Giulio Galla, Gianni Barcaccia, Angelo Ramina, Silvio Collani, Fiammetta Alagna, Luciana Baldoni, Nicolò G M Cultrera, Federico Martinelli, Luca Sebastiani, Pietro Tonutti. Computational annotation of genes differentially expressed along olive fruit development.
BMC plant biology.
2009 Oct; 9(?):128. doi:
10.1186/1471-2229-9-128
. [PMID: 19852839] - R Campos-Vega, R Reynoso-Camacho, G Pedraza-Aboytes, J A Acosta-Gallegos, S H Guzman-Maldonado, O Paredes-Lopez, B D Oomah, G Loarca-Piña. Chemical composition and in vitro polysaccharide fermentation of different beans (Phaseolus vulgaris L.).
Journal of food science.
2009 Sep; 74(7):T59-65. doi:
10.1111/j.1750-3841.2009.01292.x
. [PMID: 19895501] - Stanisława Pukacka, Ewelina Ratajczak, Ewa Kalemba. Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage.
Journal of plant physiology.
2009 Sep; 166(13):1381-90. doi:
10.1016/j.jplph.2009.02.013
. [PMID: 19359065] - Emily C Dierking, Kristin D Bilyeu. Raffinose and stachyose metabolism are not required for efficient soybean seed germination.
Journal of plant physiology.
2009 Aug; 166(12):1329-1335. doi:
10.1016/j.jplph.2009.01.008
. [PMID: 19286275] - Shaun Peters, Felix Keller. Frost tolerance in excised leaves of the common bugle (Ajuga reptans L.) correlates positively with the concentrations of raffinose family oligosaccharides (RFOs).
Plant, cell & environment.
2009 Aug; 32(8):1099-107. doi:
10.1111/j.1365-3040.2009.01991.x
. [PMID: 19422612]