Ergosterol (BioDeep_00000000525)
Secondary id: BioDeep_00000398247
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product
代谢物信息卡片
化学式: C28H44O (396.3392)
中文名称: 麦角甾醇, 麦角固醇
谱图信息:
最多检出来源 Homo sapiens(blood) 18.76%
Last reviewed on 2024-07-12.
Cite this Page
Ergosterol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/ergosterol (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000000525). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1[C@@H](CC2=CC=C3[C@@H]([C@]2(C1)C)CC[C@]1([C@H]3CC[C@@H]1[C@H](/C=C/[C@@H](C(C)C)C)C)C)O
InChI: InChI=1S/C28H44O/c1-18(2)19(3)7-8-20(4)24-11-12-25-23-10-9-21-17-22(29)13-15-27(21,5)26(23)14-16-28(24,25)6/h7-10,18-20,22,24-26,29H,11-17H2,1-6H3/b8-7+/t19-,20+,22-,24+,25-,26-,27-,28+/m0/s1
描述信息
Ergosterol is a phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. It has a role as a fungal metabolite and a Saccharomyces cerevisiae metabolite. It is a 3beta-sterol, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols.
A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL.
Ergosterol is a natural product found in Gladiolus italicus, Ramaria formosa, and other organisms with data available.
ergosterol is a metabolite found in or produced by Saccharomyces cerevisiae.
A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2).
See also: Reishi (part of).
Ergosterol, also known as provitamin D2, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, ergosterol is considered to be a sterol lipid molecule. Ergosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Ergosterol is the biological precursor to vitamin D2. It is turned into viosterol by ultraviolet light, and is then converted into ergocalciferol, which is a form of vitamin D. Ergosterol is a component of fungal cell membranes, serving the same function that cholesterol serves in animal cells. Ergosterol is not found in mammalian cell membranes.
A phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group.
Ergosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-87-4 (retrieved 2024-07-12) (CAS RN: 57-87-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.
Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.
同义名列表
88 个代谢物同义名
(1R,3aR,7S,9aR,9bS,11aR)-1-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1H,2H,3H,3aH,6H,7H,8H,9H,9aH,9bH,10H,11H,11aH-cyclopenta[a]phenanthren-7-ol; (3S,9S,10R,13R,14R,17R)-17-((2R,5R,E)-5,6-dimethylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol; (3S,9S,10R,13R,14R,17R)-10,13-dimethyl-17-[(E,1R,4R)-1,4,5-trimethylhex-2-enyl]-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol; (1S,2R,5S,11R,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol; 14-((2E)(1R,4R)-1,4,5-trimethylhex-2-enyl)(1S,5S,2R,11R,14R,15R)-2,15-dimethyl tetracyclo[8.7.0.0<2,7>.0<11,15>]heptadeca-7,9-dien-5-ol; Ergosterol, Pharmaceutical Secondary Standard; Certified Reference Material; ERGOSTEROL (CONSTITUENT OF GANODERMA LUCIDUM FRUITING BODY) [DSC]; Ergosterol, United States Pharmacopeia (USP) Reference Standard; ERGOSTEROL (CONSTITUENT OF GANODERMA LUCIDUM FRUITING BODY); Ergosterol, European Pharmacopoeia (EP) Reference Standard; Ergosterol, 10 mg/mL in chloroform, analytical standard; (3beta,14beta,17alpha,22E)-ergosta-5,7,22-trien-3-ol; (22E,24S)-24-methylcholesta-5,7,22-trien-3beta-ol; (22E,24S)-24-Methylcholesta-5,7,22-trien-3b-ol; (22E,24S)-24-Methylcholesta-5,7,22-trien-3β-ol; Ergosta-5,7,22-trien-3-ol, (3.beta.,22E)-; 24R-Methylcholesta-5,7,22E-trien-3beta-ol; 24R-Methylcholesta-5,7,2E-trien-3beta-ol; (22E,24R)-Ergosta-5,7,22-trien-3beta-ol; ERGOCALCIFEROL IMPURITY B (EP IMPURITY); Ergosta-5,7,22-trien-3-ol, (3beta,22E)-; (3.beta.,22E)-Ergosta-5,7,22-trien-3-ol; 24-Methylcholesta-5,7,22-trien-3beta-ol; ERGOCALCIFEROL IMPURITY B [EP IMPURITY]; 24R-Methylcholesta-5,7,22E-trien-3b-ol; 24R-Methylcholesta-5,7,22E-trien-3β-ol; 24alpha-Methyl-22E-dehydrocholesterol; (3beta,22E)-Ergosta-5,7,22-trien-3-ol; (22E)-Ergosta-5,7,22-trien-3.beta.-ol; 24-Methylcholesta-5,7,22-trien-3b-ol; 45ED0A4C-6FDA-443F-B886-D6C805A76AF2; (3beta,2E)-Ergosta-5,7,22-trien-3-ol; (22E,24R)-Ergosta-5,7,22-trien-3β-ol; Ergosta-5,7,22-trien-3-ol, (3b,22E)-; 24-Methylcholesta-5,7,22-trien-3β-ol; 24alpha-Methyl-22E-dehydrocholestero; (24R)-Ergosta-5,7,22-trien-3beta-ol; (22E)-ergosta-5,7,22-trien-3beta-ol; 3beta-Hydroxy-5,7,22-ergostatriene; DELTA-5,7,22-ERGOSTATRIEN-3BETA-OL; 3beta-Hydroxyergosta-5,7,22-triene; (3Β,22E)-ergosta-5,7,22-trien-3-ol; (3beta)-Ergosta-5,7,22-trien-3-ol; 24Α-methyl-22E-dehydrocholesterol; 24a-Methyl-22E-dehydrocholesterol; ergosta-5:6,7:8,22:23-trien-3-ol; (24R)-Ergosta-5,7,22-trien-3b-ol; (24R)-Ergosta-5,7,22-trien-3β-ol; (22E)-Ergosta-5,7,22-trien-3-ol; 3Β-hydroxyergosta-5,7,22-triene; Ergosta-5,7,22E-trien-3beta-ol; Ergosta-5,7,22-trien-3beta-ol; 5,7,22-Ergostatrien-3beta-ol; DNVPQKQSNYMLRS-APGDWVJJSA-N; Ergosterol, >=95.0\\% (HPLC); Ergosterol (Provitamin D2); ergosta-5,7,22-trien-3-ol; ERGOSTEROL (USP-RS); ERGOSTEROL [USP-RS]; Ergosterol, >=75\\%; ERGOSTEROL [INCI]; ERGOSTEROL [HSDB]; ERGOSTEROL [MI]; UNII-Z30RAY509F; D2, Pro-Vitamin; Provitamine D2; Pro Vitamin D2; Provitamin D 2; Pro-Vitamin D2; Provitamin D2; MEGxm0_000450; Provitamin D; ACon0_000429; ACon1_000637; Ergosterol; Z30RAY509F; Lumisterol; Ergosterin; AI3-18876; ST 28:3;O; (3S,9S,10R,13R,14R,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol; 24R-Methylcholesta-5,7,22E-trien-3β-ol; 24-Methylcholesta-5,7,22-trien-3β-ol; (3β,22E)-Ergosta-5,7,22-trien-3-ol; 24α-Methyl-22E-dehydrocholestero; (3β,2E)-Ergosta-5,7,22-trien-3-ol; (3β)-Ergosta-5,7,22-trien-3-ol; Ergosterol
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:16933
- KEGG: C01694
- PubChem: 444679
- PubChem: 247705
- HMDB: HMDB0000878
- Metlin: METLIN3516
- DrugBank: DB04038
- ChEMBL: CHEMBL1232562
- Wikipedia: Ergosterol
- LipidMAPS: LMST01030093
- MeSH: Ergosterol
- ChemIDplus: 0000057874
- MetaCyc: ERGOSTEROL
- KNApSAcK: C00023755
- KNApSAcK: C00003652
- chemspider: 392539
- CAS: 57-87-4
- PMhub: MS000008627
- MetaboLights: MTBLC16933
- PDB-CCD: ERG
- 3DMET: B01480
- NIKKAJI: J209.317K
- RefMet: Ergosterol
- medchemexpress: HY-N0181
- PubChem: 4835
- KNApSAcK: 16933
- LOTUS: LTS0171131
分类词条
相关代谢途径
Reactome(0)
BioCyc(5)
PlantCyc(0)
代谢反应
13 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(11)
- superpathway of ergosterol biosynthesis II:
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ cycloartenol
- superpathway of ergosterol biosynthesis I:
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ lanosterol
- ergosterol biosynthesis I:
SAM + zymosterol ⟶ H+ + SAH + fecosterol
- ergosterol biosynthesis II:
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ cycloartenol
- sterol:steryl ester interconversion (yeast):
H2O + ergosteryl oleate ⟶ H+ + ergosterol + oleate
- superpathway of ergosterol biosynthesis:
NADP+ + ergosterol ⟶ H+ + NADPH + ergosta-5,7,22,24(28)-tetraen-3-β-ol
- sterol:steryl ester interconversion:
H2O + ergosteryl oleate ⟶ H+ + ergosterol + oleate
- ergosterol biosynthesis:
NADP+ + ergosterol ⟶ H+ + NADPH + ergosta-5,7,22,24(28)-tetraen-3-β-ol
- superpathway of sterol biosynthesis:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
- ergosterol biosynthesis:
H+ + NADPH + O2 + lanosterol ⟶ 4,4-dimethyl-5-α-cholesta-8,14,24-trien-3-β-ol + H2O + NADP+ + formate
- ergosterol biosynthesis:
NADP+ + ergosterol ⟶ 5,7,22,24(28)-ergostatetraenol + H+ + NADPH
Plant Reactome(0)
INOH(0)
PlantCyc(1)
- sterol:steryl ester interconversion (yeast):
ergosterol + oleoyl-CoA ⟶ coenzyme A + ergosteryl oleate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
666 个相关的物种来源信息
- 4828 - Absidia: LTS0171131
- 159075 - Acremonium: LTS0171131
- 3624 - Actinidia: LTS0171131
- 3625 - Actinidia chinensis: LTS0171131
- 3623 - Actinidiaceae: LTS0171131
- 5339 - Agaricaceae: LTS0171131
- 155619 - Agaricomycetes: LTS0171131
- 5340 - Agaricus: 10.1021/JF0700071
- 5340 - Agaricus: LTS0171131
- 79798 - Agaricus blazei: 10.1093/JN/131.5.1409
- 79798 - Agaricus blazei: LTS0171131
- 72714 - Agelas: 10.1007/BF02536001
- 72714 - Agelas: LTS0171131
- 85771 - Agelasidae: LTS0171131
- 38595 - Ajuga: LTS0171131
- 2714763 - Akanthomyces lecanii: 10.1016/S0031-9422(00)83477-9
- 2714763 - Akanthomyces lecanii: LTS0171131
- 14999 - Alisma: LTS0171131
- 15000 - Alisma plantago-aquatica: LTS0171131
- 262913 - Alisma plantago-aquatica subsp. orientale: 10.1248/YAKUSHI1947.78.10_1156
- 262913 - Alisma plantago-aquatica subsp. orientale: LTS0171131
- 4449 - Alismataceae: LTS0171131
- 5598 - Alternaria: LTS0171131
- 167741 - Alternaria mali: 10.1016/S0040-4020(01)83496-7
- 167741 - Alternaria mali: LTS0171131
- 4037 - Apiaceae: LTS0171131
- 2497646 - Apiosphaeria: LTS0171131
- 36601 - Aria: LTS0171131
- 47424 - Armillaria: LTS0171131
- 47429 - Armillaria mellea: 10.1007/S10600-008-9080-5
- 47429 - Armillaria mellea: LTS0171131
- 4219 - Artemisia: LTS0171131
- 1171830 - Artemisia deserti: 10.1016/S0031-9422(00)90845-8
- 1171830 - Artemisia deserti: LTS0171131
- 6656 - Arthropoda: LTS0171131
- 100986 - Aschersonia: LTS0171131
- 7713 - Ascidiacea: LTS0171131
- 4890 - Ascomycota: LTS0171131
- 1131492 - Aspergillaceae: LTS0171131
- 5052 - Aspergillus: LTS0171131
- 209559 - Aspergillus alliaceus: 10.1016/S0031-9422(00)90666-6
- 209559 - Aspergillus alliaceus: LTS0171131
- 1220192 - Aspergillus austroafricanus: 10.1021/ACS.JNATPROD.5B00975.S001
- 1220192 - Aspergillus austroafricanus: LTS0171131
- 1810909 - Aspergillus desertorum: 10.1039/P19870001735
- 1810909 - Aspergillus desertorum: LTS0171131
- 41900 - Aspergillus flavipes: 10.1186/2191-2858-2-9
- 41900 - Aspergillus flavipes: LTS0171131
- 5059 - Aspergillus flavus:
- 162425 - Aspergillus nidulans:
- 162425 - Aspergillus nidulans: LTS0171131
- 5061 - Aspergillus niger:
- 5061 - Aspergillus niger: LTS0171131
- 40380 - Aspergillus ochraceus:
- 40380 - Aspergillus ochraceus: 10.1021/NP100386Q
- 40380 - Aspergillus ochraceus: LTS0171131
- 5062 - Aspergillus oryzae:
- 91485 - Aspergillus purpureus: 10.1021/NP9903550
- 91485 - Aspergillus purpureus: LTS0171131
- 41735 - Aspergillus quadrilineatus: 10.1515/ZNB-1985-0230
- 41735 - Aspergillus quadrilineatus: LTS0171131
- 41736 - Aspergillus rugulosus:
- 41736 - Aspergillus rugulosus: 10.1021/NP800805F
- 41736 - Aspergillus rugulosus: LTS0171131
- 1549217 - Aspergillus stellatus:
- 1549217 - Aspergillus stellatus: 10.1021/NP0103214
- 1549217 - Aspergillus stellatus: LTS0171131
- 469280 - Aspergillus striatus: 10.1039/P19860000109
- 469280 - Aspergillus striatus: LTS0171131
- 33178 - Aspergillus terreus: 10.1248/CPB.58.1545
- 33178 - Aspergillus terreus: LTS0171131
- 40381 - Aspergillus unguis: 10.1039/P19880002611
- 40381 - Aspergillus unguis: LTS0171131
- 46472 - Aspergillus versicolor: 10.1128/AEM.65.1.138-142.1999
- 46472 - Aspergillus versicolor: LTS0171131
- 4210 - Asteraceae: LTS0171131
- 5579 - Aureobasidium: LTS0171131
- 5580 - Aureobasidium pullulans: 10.1128/AEM.65.1.138-142.1999
- 5580 - Aureobasidium pullulans: LTS0171131
- 40417 - Auriscalpiaceae: LTS0171131
- 12958 - Axinella: LTS0171131
- 798305 - Axinella cannabina: 10.1039/P19830000147
- 798305 - Axinella cannabina: LTS0171131
- 45118 - Axinellidae: LTS0171131
- 2 - Bacteria: LTS0171131
- 2797 - Bangiophyceae: LTS0171131
- 5204 - Basidiomycota: LTS0171131
- 5581 - Beauveria: LTS0171131
- 37994 - Beauveria felina: 10.7164/ANTIBIOTICS.34.1261
- 37994 - Beauveria felina: LTS0171131
- 103887 - Bionectriaceae: LTS0171131
- 6544 - Bivalvia: LTS0171131
- 5368 - Boletaceae: LTS0171131
- 7089 - Bombycidae: LTS0171131
- 7090 - Bombyx: LTS0171131
- 7091 - Bombyx mori: 10.1248/CPB.32.3003
- 7091 - Bombyx mori: LTS0171131
- 7091 - Bombyx Mori L.: -
- 45132 - Botryosphaeria: 10.1021/JF070082B
- 45132 - Botryosphaeria: LTS0171131
- 45131 - Botryosphaeriaceae: LTS0171131
- 33196 - Botrytis: LTS0171131
- 40559 - Botrytis cinerea: 10.1016/0031-9422(90)85178-I
- 40559 - Botrytis cinerea: LTS0171131
- 121095 - Brachystegia: LTS0171131
- 2879473 - Brachystegia nigerica: LTS0171131
- 3208 - Bryophyta: LTS0171131
- 3214 - Bryopsida: LTS0171131
- 73171 - Bulgaria: LTS0171131
- 73172 - Bulgaria inquinans: 10.4268/CJCMM20111611
- 73172 - Bulgaria inquinans: LTS0171131
- 68761 - Calvatia: 10.1016/0031-9422(91)83045-M
- 5475 - Candida: LTS0171131
- 3481 - Cannabaceae: LTS0171131
- 3482 - Cannabis: LTS0171131
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0171131
- 3483 - Cannabis Sativa L.: -
- 57201 - Cantharellaceae: LTS0171131
- 36065 - Cantharellus: LTS0171131
- 36066 - Cantharellus cibarius: 10.1002/PTR.2467
- 36066 - Cantharellus cibarius: LTS0171131
- 4200 - Caprifoliaceae: LTS0171131
- 4305 - Celastraceae: LTS0171131
- 81097 - Cephalosporium: LTS0171131
- 5250 - Ceratobasidiaceae: LTS0171131
- 35718 - Chaetomiaceae: LTS0171131
- 5149 - Chaetomium: LTS0171131
- 5150 - Chaetomium elatum: 10.1007/S12272-010-0801-5
- 5150 - Chaetomium elatum: LTS0171131
- 38033 - Chaetomium globosum: 10.1055/S-2002-34415
- 38033 - Chaetomium globosum: LTS0171131
- 669026 - Chaetomium longicolleum: 10.1021/NP2004903
- 103886 - Chaetosphaeriaceae: LTS0171131
- 3071 - Chlorella: LTS0171131
- 3077 - Chlorella vulgaris: 10.1248/BPB.19.573
- 3077 - Chlorella vulgaris: LTS0171131
- 35461 - Chlorellaceae: LTS0171131
- 3166 - Chlorophyceae: LTS0171131
- 3041 - Chlorophyta: LTS0171131
- 7711 - Chordata: LTS0171131
- 452563 - Cladosporiaceae: LTS0171131
- 5498 - Cladosporium: LTS0171131
- 29917 - Cladosporium cladosporioides: 10.1128/AEM.65.1.138-142.1999
- 29917 - Cladosporium cladosporioides: LTS0171131
- 40105 - Clavariaceae: LTS0171131
- 34397 - Clavicipitaceae: LTS0171131
- 48020 - Clavicorona: LTS0171131
- 182039 - Clitocybula: LTS0171131
- 182040 - Clitocybula oculus:
- 182040 - Clitocybula oculus: 10.1002/CHIN.199902188
- 182040 - Clitocybula oculus: 10.1016/S0031-9422(98)00173-3
- 182040 - Clitocybula oculus: LTS0171131
- 1934365 - Collariella: LTS0171131
- 1934374 - Collariella virescens: 10.1248/CPB.28.2428
- 5455 - Colletotrichum: 10.1016/S0168-9452(99)00199-5
- 5455 - Colletotrichum: LTS0171131
- 13446 - Conium: LTS0171131
- 13447 - Conium maculatum: 10.2298/JSC110206128R
- 13447 - Conium maculatum: LTS0171131
- 474943 - Cordycipitaceae: LTS0171131
- 5326 - Coriolus: -
- 34450 - Cortinariaceae: LTS0171131
- 34451 - Cortinarius: LTS0171131
- 165397 - Cortinarius humidicola: 10.1515/ZNC-2003-9-1011
- 165397 - Cortinarius humidicola: LTS0171131
- 323716 - Cortinarius lucorum: 10.1515/ZNC-2003-9-1011
- 323716 - Cortinarius lucorum: LTS0171131
- 86073 - Cortinarius rubellus:
- 86073 - Cortinarius rubellus: 10.1007/BF01949895
- 86073 - Cortinarius rubellus: 10.2307/3760360
- 86073 - Cortinarius rubellus: LTS0171131
- 181881 - Cortinarius speciosissimus:
- 181881 - Cortinarius speciosissimus: 10.1007/BF01949895
- 181881 - Cortinarius speciosissimus: 10.2307/3760360
- 181881 - Cortinarius speciosissimus: LTS0171131
- 47332 - Cortinarius vibratilis: 10.1002/HLCA.200490170
- 1884633 - Cryptococcaceae: LTS0171131
- 5206 - Cryptococcus: LTS0171131
- 40430 - Cryptoporus: LTS0171131
- 40431 - Cryptoporus volvatus: 10.1016/0031-9422(92)90042-O
- 40431 - Cryptoporus volvatus: LTS0171131
- 4851 - Cunninghamellaceae: LTS0171131
- 3929 - Cuphea: LTS0171131
- 312566 - Cuphea carthagenensis: 10.1055/S-2006-959585
- 312566 - Cuphea carthagenensis: LTS0171131
- 265316 - Cyanidiaceae: LTS0171131
- 2770 - Cyanidium: LTS0171131
- 2771 - Cyanidium caldarium: 10.1016/0031-9422(91)80027-X
- 2771 - Cyanidium caldarium: LTS0171131
- 15437 - Cynodon: LTS0171131
- 28909 - Cynodon dactylon: 10.1016/J.FITOTE.2004.03.007
- 28909 - Cynodon dactylon: LTS0171131
- 34418 - Cystobasidiaceae: LTS0171131
- 432005 - Cystobasidiomycetes: LTS0171131
- 203525 - Cystobasidium: LTS0171131
- 29899 - Cystobasidium minutum: 10.1128/AEM.65.1.138-142.1999
- 29899 - Cystobasidium minutum: LTS0171131
- 4958 - Debaryomyces: LTS0171131
- 4959 - Debaryomyces hansenii: 10.1093/OXFORDJOURNALS.JBCHEM.A130802
- 4959 - Debaryomyces hansenii: LTS0171131
- 766764 - Debaryomycetaceae: LTS0171131
- 6042 - Demospongiae: LTS0171131
- 30294 - Dendrodoa: LTS0171131
- 30295 - Dendrodoa grossularia: 10.1021/NP50047A023
- 30295 - Dendrodoa grossularia: LTS0171131
- 767018 - Diaporthaceae: LTS0171131
- 36922 - Diaporthe: LTS0171131
- 619312 - Diaporthe convolvuli: 10.1139/V92-286
- 619312 - Diaporthe convolvuli: LTS0171131
- 42364 - Diatrypaceae: LTS0171131
- 467309 - Dichotomophthora: LTS0171131
- 467310 - Dichotomophthora lutea: 10.1016/0031-9422(90)80068-R
- 467310 - Dichotomophthora lutea: LTS0171131
- 283990 - Dictyodendrillidae: LTS0171131
- 6068 - Dictyonella: LTS0171131
- 6069 - Dictyonella incisa: 10.1021/JA00165A039
- 6069 - Dictyonella incisa: LTS0171131
- 85793 - Dictyonellidae: LTS0171131
- 1196446 - Dinemasporium: LTS0171131
- 1196449 - Dinemasporium strigosum: 10.1002/EJOC.200800688
- 1196449 - Dinemasporium strigosum: LTS0171131
- 34353 - Dipodascaceae: LTS0171131
- 147541 - Dothideomycetes: LTS0171131
- 64899 - Dothioraceae: LTS0171131
- 33198 - Drechslera: LTS0171131
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 190526 - Dysidea: LTS0171131
- 196820 - Dysidea avara: 10.1016/0305-0491(87)90117-9
- 196820 - Dysidea avara: LTS0171131
- 190525 - Dysideidae: LTS0171131
- 5112 - Epichloe: LTS0171131
- 5047 - Epichloe coenophiala: 10.1021/JF00067A029
- 5047 - Epichloe coenophiala: LTS0171131
- 3035 - Euglenida: LTS0171131
- 2704141 - Euglenophyceae: LTS0171131
- 33682 - Euglenozoa: LTS0171131
- 2759 - Eukaryota: LTS0171131
- 147545 - Eurotiomycetes: LTS0171131
- 96907 - Eutreptia: LTS0171131
- 96908 - Eutreptia viridis: 10.1016/0039-128X(82)90018-6
- 96908 - Eutreptia viridis: LTS0171131
- 97095 - Eutypa: LTS0171131
- 97096 - Eutypa lata: 10.1016/0031-9422(96)00227-0
- 97096 - Eutypa lata: LTS0171131
- 3803 - Fabaceae: LTS0171131
- 4605 - Festuca: LTS0171131
- 52153 - Festuca rubra: 10.1021/JF00067A029
- 52153 - Festuca rubra: LTS0171131
- 5408 - Filobasidiaceae: LTS0171131
- 1769247 - Fomitopsidaceae: LTS0171131
- 34474 - Fomitopsis: LTS0171131
- 270279 - Fomitopsis officinalis: 10.1248/CPB.57.195
- 29178 - Foraminifera: LTS0171131
- 4751 - Fungi: LTS0171131
- 2710535 - Furcasterigmium: LTS0171131
- 2710536 - Furcasterigmium furcatum: 10.1128/AEM.65.1.138-142.1999
- 2710536 - Furcasterigmium furcatum: LTS0171131
- 1046361 - Fuscopostia leucomallella: 10.1016/J.PHYTOCHEM.2005.10.025
- 41579 - Galactites: LTS0171131
- 92911 - Galactites tomentosa: LTS0171131
- 92911 - Galactites tomentosus: 10.1007/S10600-017-2003-6
- 83373 - Galdieria: LTS0171131
- 130081 - Galdieria sulphuraria: 10.1016/0031-9422(91)80027-X
- 130081 - Galdieria sulphuraria: LTS0171131
- 3039359 - Galdieriaceae: LTS0171131
- 5314 - Ganoderma: -
- 5314 - Ganoderma: 10.1248/CPB.56.642
- 5314 - Ganoderma: LTS0171131
- 34456 - Ganoderma adspersum: 10.1002/CHIN.200405150
- 29884 - Ganoderma applanatum:
- 29884 - Ganoderma applanatum: 10.1016/J.PHYTOCHEM.2006.07.004
- 29884 - Ganoderma applanatum: 10.1016/S0031-9422(00)84132-1
- 29884 - Ganoderma applanatum: 10.1016/S0367-326X(02)00013-8
- 29884 - Ganoderma applanatum: 10.1135/CCCC19802710
- 29884 - Ganoderma applanatum: LTS0171131
- 34457 - Ganoderma australe:
- 34457 - Ganoderma australe: 10.1002/CHIN.200405150
- 34457 - Ganoderma australe: 10.1002/HLCA.200390251
- 34457 - Ganoderma australe: 10.1016/S0031-9422(00)80410-0
- 34457 - Ganoderma australe: LTS0171131
- 36070 - Ganoderma colossus: 10.1016/J.PHYTOCHEM.2006.07.004
- 101938 - Ganoderma lipsiense: 10.1016/S0031-9422(00)00165-5
- 101938 - Ganoderma lipsiense: LTS0171131
- 5315 - Ganoderma lucidum:
- 5315 - Ganoderma lucidum: LTS0171131
- 49747 - Gladiolus: LTS0171131
- 1007786 - Gladiolus italicus: 10.1007/S13369-010-0015-7
- 1007786 - Gladiolus italicus: LTS0171131
- 681950 - Glomerellaceae: LTS0171131
- 218102 - Gnomoniaceae: LTS0171131
- 60108 - Gomphaceae: LTS0171131
- 5626 - Grifola: LTS0171131
- 5627 - Grifola frondosa:
- 5627 - Grifola frondosa: 10.1021/JF0257648
- 5627 - Grifola frondosa: 10.1271/NOGEIKAGAKU1924.59.1053
- 5627 - Grifola frondosa: LTS0171131
- 152678 - Grifola umbellata: 10.1016/S0040-4020(01)82446-7
- 2028216 - Grifolaceae: LTS0171131
- 86085 - Gymnopilus: LTS0171131
- 171613 - Gymnopilus spectabilis:
- 171613 - Gymnopilus spectabilis: 10.1021/NP50073A017
- 171613 - Gymnopilus spectabilis: 10.1248/CPB.34.3465
- 171613 - Gymnopilus spectabilis: LTS0171131
- 42310 - Halosphaeriaceae: LTS0171131
- 34453 - Hebeloma: LTS0171131
- 246641 - Hebeloma vinosophyllum: 10.1248/CPB.39.1958
- 246641 - Hebeloma vinosophyllum: LTS0171131
- 53722 - Heliopsis: LTS0171131
- 53723 - Heliopsis helianthoides: LTS0171131
- 192637 - Heliopsis helianthoides var. scabra: 10.18535/IJETST/V2I8.18
- 192637 - Heliopsis helianthoides var. scabra: LTS0171131
- 40458 - Hericiaceae: LTS0171131
- 40459 - Hericium: LTS0171131
- 91752 - Hericium erinaceus: 10.1016/0031-9422(91)83478-4
- 91752 - Hericium erinaceus: LTS0171131
- 47605 - Hibiscus: 10.1002/PTR.1628
- 9606 - Homo sapiens: -
- 3484 - Humulus: LTS0171131
- 3486 - Humulus lupulus: 10.1021/JF071308D
- 3486 - Humulus lupulus: LTS0171131
- 68758 - Hydnaceae: LTS0171131
- 68815 - Hydnellum: LTS0171131
- 2780567 - Hydnellum scabrosum: 10.1016/J.BMCL.2012.02.031
- 2780567 - Hydnellum scabrosum: LTS0171131
- 40424 - Hymenochaetaceae: LTS0171131
- 80649 - Hymenogastraceae: LTS0171131
- 71944 - Hypholoma: LTS0171131
- 2082196 - Hypholoma lateritium: 10.1021/NP50015A020
- 2082196 - Hypholoma lateritium: LTS0171131
- 42305 - Hypocrella: 10.1021/NP200429B
- 42305 - Hypocrella: LTS0171131
- 2033035 - Hypoxylaceae: LTS0171131
- 39966 - Hypsizygus marmoreus:
- 2013945 - Imleria: LTS0171131
- 36058 - Imleria badia: 10.1007/BF02856303
- 36058 - Imleria badia: LTS0171131
- 40468 - Inonotus: LTS0171131
- 167356 - Inonotus obliquus: 10.1615/INTJMEDMUSHR.V4.I2.10
- 167356 - Inonotus obliquus: LTS0171131
- 50557 - Insecta: LTS0171131
- 275430 - Irciniidae: LTS0171131
- 26339 - Iridaceae: LTS0171131
- 34444 - Lactarius: LTS0171131
- 55514 - Lactarius deliciosus: 10.1021/NP50108A026
- 55514 - Lactarius deliciosus: LTS0171131
- 416442 - Lactarius hatsudake: 10.1007/S10600-007-0215-X
- 416442 - Lactarius hatsudake: LTS0171131
- 71967 - Lactarius volemus: 10.1271/BBB.58.1542
- 596919 - Lactifluus: LTS0171131
- 71967 - Lactifluus volemus: LTS0171131
- 4136 - Lamiaceae: LTS0171131
- 341553 - Langermannia: 10.1016/0031-9422(91)83045-M
- 341553 - Langermannia: LTS0171131
- 66739 - Lasiodiplodia: LTS0171131
- 45133 - Lasiodiplodia theobromae: 10.1021/JF070082B
- 45133 - Lasiodiplodia theobromae: LTS0171131
- 291363 - Lecanicillium: LTS0171131
- 147547 - Lecanoromycetes: LTS0171131
- 147548 - Leotiomycetes: LTS0171131
- 5021 - Leptosphaeria: LTS0171131
- 5022 - Leptosphaeria maculans: 10.1016/S0031-9422(02)00505-8
- 34374 - Leptosphaeriaceae: LTS0171131
- 688353 - Lichtheimia: LTS0171131
- 42458 - Lichtheimia corymbifera: 10.1016/J.PHYTOCHEM.2004.04.004
- 42458 - Lichtheimia corymbifera: LTS0171131
- 499202 - Lichtheimiaceae: LTS0171131
- 4447 - Liliopsida: LTS0171131
- 129109 - Lobariaceae: LTS0171131
- 4606 - Lolium arundinaceum: 10.1021/JF00067A029
- 5426 - Lycoperdaceae: LTS0171131
- 3928 - Lythraceae: LTS0171131
- 3398 - Magnoliopsida: LTS0171131
- 654128 - Marasmiaceae: LTS0171131
- 1450294 - Melanopsaceae: LTS0171131
- 378266 - Meripilaceae: LTS0171131
- 33208 - Metazoa: LTS0171131
- 162481 - Microbotryomycetes: LTS0171131
- 371130 - Microdiplodia: 10.1021/NP100730B
- 371130 - Microdiplodia: LTS0171131
- 102786 - Mikania: LTS0171131
- 6447 - Mollusca: LTS0171131
- 5097 - Monascus: LTS0171131
- 89488 - Monascus pilosus: 10.1248/CPB.56.394
- 89488 - Monascus pilosus: LTS0171131
- 2364055 - Monteverdia: LTS0171131
- 1081520 - Monteverdia ilicifolia: 10.1590/S0103-50531999000600017
- 1081520 - Monteverdia ilicifolia: LTS0171131
- 1825850 - Monteverdia truncata: 10.1590/S0103-50531999000600017
- 5193 - Morchella: LTS0171131
- 39407 - Morchella esculenta: 10.1080/14786410802425746
- 39407 - Morchella esculenta: LTS0171131
- 5192 - Morchellaceae: LTS0171131
- 2212703 - Mucoromycetes: LTS0171131
- 1913637 - Mucoromycota: LTS0171131
- 2024004 - Mycenaceae: LTS0171131
- 41254 - Mycosphaerella: LTS0171131
- 93133 - Mycosphaerellaceae: LTS0171131
- 6547 - Mytilidae: LTS0171131
- 6548 - Mytilus: LTS0171131
- 6550 - Mytilus edulis: 10.1002/RECL.19480670311
- 6550 - Mytilus edulis: LTS0171131
- 1851509 - Naganishia: LTS0171131
- 100951 - Naganishia albida: 10.1128/AEM.65.1.138-142.1999
- 100951 - Naganishia albida: LTS0171131
- 78815 - Nervilia: LTS0171131
- 152892 - Nervilia aragoana: 10.1248/YAKUSHI1947.106.12_1092
- 152892 - Nervilia aragoana: LTS0171131
- 2806780 - Nervilia concolor: 10.1248/YAKUSHI1947.106.12_1092
- 2806780 - Nervilia concolor: LTS0171131
- 163058 - Nervilia plicata:
- 163058 - Nervilia plicata: 10.1248/CPB.33.2235
- 163058 - Nervilia plicata: 10.1248/YAKUSHI1947.106.12_1092
- 163058 - Nervilia plicata: LTS0171131
- 3070 - Oocystaceae: LTS0171131
- 474995 - Ophiocordyceps: LTS0171131
- 72228 - Ophiocordyceps sinensis:
- 72228 - Ophiocordyceps sinensis: 10.1021/NP100902F
- 72228 - Ophiocordyceps sinensis: 10.1248/CPB.57.411
- 72228 - Ophiocordyceps sinensis: 10.21767/2172-0479.100132
- 72228 - Ophiocordyceps sinensis: LTS0171131
- 474942 - Ophiocordycipitaceae: LTS0171131
- 4747 - Orchidaceae: LTS0171131
- 1934392 - Ovatospora: LTS0171131
- 1934393 - Ovatospora brasiliensis:
- 1934393 - Ovatospora brasiliensis: 10.1021/NP9003189
- 1934393 - Ovatospora brasiliensis: LTS0171131
- 5635 - Panellus: 10.1248/CPB.49.589
- 5635 - Panellus: LTS0171131
- 78060 - Parmeliaceae: LTS0171131
- 59171 - Patrinia: LTS0171131
- 59172 - Patrinia rupestris: 10.1002/JCCS.200700064
- 59172 - Patrinia rupestris: LTS0171131
- 5394 - Paxillaceae: LTS0171131
- 5395 - Paxillus: LTS0171131
- 71150 - Paxillus involutus:
- 71150 - Paxillus involutus: 10.1002/CHIN.200331232
- 71150 - Paxillus involutus: 10.1139/V02-194
- 71150 - Paxillus involutus: LTS0171131
- 5073 - Penicillium: LTS0171131
- 5074 - Penicillium brevicompactum: 10.1128/AEM.65.1.138-142.1999
- 5074 - Penicillium brevicompactum: LTS0171131
- 36653 - Penicillium commune: 10.3390/MOLECULES15053270
- 36656 - Penicillium crustosum: 10.1248/CPB.38.3473
- 36656 - Penicillium crustosum: LTS0171131
- 69781 - Penicillium oxalicum: 10.1055/S-2005-837755
- 69781 - Penicillium oxalicum: LTS0171131
- 60172 - Penicillium solitum: 10.1248/CPB.38.3473
- 60172 - Penicillium solitum: LTS0171131
- 5186 - Pezizaceae: LTS0171131
- 147549 - Pezizomycetes: LTS0171131
- 66516 - Phacidiaceae: LTS0171131
- 182014 - Phaeolepiota: LTS0171131
- 182015 - Phaeolepiota aurea:
- 182015 - Phaeolepiota aurea: 10.1021/NP50073A017
- 182015 - Phaeolepiota aurea: 10.1248/CPB.34.3465
- 182015 - Phaeolepiota aurea: LTS0171131
- 2075271 - Phaeosphaeria sowerbyi: 10.1016/S0031-9422(02)00505-8
- 40470 - Phellinus: LTS0171131
- 189357 - Phomatospora: LTS0171131
- 1962985 - Phomatosporaceae: LTS0171131
- 34399 - Phomopsis: LTS0171131
- 4836 - Phycomyces: LTS0171131
- 4837 - Phycomyces blakesleeanus: 10.1021/NP980199H
- 4837 - Phycomyces blakesleeanus: LTS0171131
- 1344966 - Phycomycetaceae: LTS0171131
- 5136 - Phyllachoraceae: LTS0171131
- 862241 - Physalacriaceae: LTS0171131
- 50934 - Physciaceae: LTS0171131
- 58019 - Pinopsida: LTS0171131
- 227329 - Pisolithaceae: LTS0171131
- 37467 - Pisolithus: LTS0171131
- 80664 - Pisolithus arhizus: 10.1016/0031-9422(88)80770-2
- 80664 - Pisolithus arhizus: LTS0171131
- 37468 - Pisolithus tinctorius: 10.1016/0031-9422(88)80770-2
- 37468 - Pisolithus tinctorius: LTS0171131
- 1033978 - Plectosphaerellaceae: LTS0171131
- 28556 - Pleosporaceae: LTS0171131
- 71909 - Pleurocybella: LTS0171131
- 71910 - Pleurocybella porrigens: 10.1248/CPB.54.1213
- 71910 - Pleurocybella porrigens: LTS0171131
- 104366 - Pleurotaceae: LTS0171131
- 5320 - Pleurotus: LTS0171131
- 98342 - Pleurotus citrinopileatus: 10.1021/JF052890D
- 98342 - Pleurotus citrinopileatus: LTS0171131
- 5322 - Pleurotus ostreatus:
- 5322 - Pleurotus ostreatus: 10.1016/S0031-9422(97)00249-5
- 5322 - Pleurotus ostreatus: LTS0171131
- 4479 - Poaceae: LTS0171131
- 5317 - Polyporaceae: LTS0171131
- 5637 - Polyporus: LTS0171131
- 38806 - Polyporus tuberaster: 10.1021/NP50083A015
- 38806 - Polyporus tuberaster: LTS0171131
- 158314 - Polyporus umbellatus:
- 3211 - Polytrichaceae: LTS0171131
- 113509 - Polytrichopsida: LTS0171131
- 3212 - Polytrichum: LTS0171131
- 3213 - Polytrichum commune: 10.1021/NP800830V
- 3213 - Polytrichum commune: LTS0171131
- 6040 - Porifera: LTS0171131
- 175857 - Porodaedalea: LTS0171131
- 108901 - Porodaedalea pini: 10.1016/0031-9422(96)00125-2
- 108901 - Porodaedalea pini: LTS0171131
- 2759800 - Porotheleaceae: LTS0171131
- 3110 - Prototheca: LTS0171131
- 3111 - Prototheca wickerhamii: 10.1007/BF02543980
- 3111 - Prototheca wickerhamii: LTS0171131
- 88743 - Pseudevernia: LTS0171131
- 136282 - Pseudevernia furfuracea: LTS0171131
- 167352 - Pseudoinonotus dryadeus: 10.1016/S0040-4020(01)82446-7
- 71950 - Psilocybe: LTS0171131
- 209653 - Psilocybe argentipes: 10.1021/NP50015A023
- 209653 - Psilocybe argentipes: LTS0171131
- 5642 - Pycnoporus: LTS0171131
- 5027 - Pyrenophora: LTS0171131
- 5028 - Pyrenophora graminea: 10.1139/M86-014
- 5028 - Pyrenophora graminea: LTS0171131
- 53485 - Pyrenophora teres: 10.1139/M86-014
- 53485 - Pyrenophora teres: LTS0171131
- 56479 - Ramalina: 10.1002/CHIN.199517179
- 56479 - Ramalina: LTS0171131
- 56478 - Ramalinaceae: LTS0171131
- 68779 - Ramaria: LTS0171131
- 113081 - Ramaria botrytis: 10.1016/0305-1978(88)90070-1
- 113081 - Ramaria botrytis: LTS0171131
- 113089 - Ramaria fennica: 10.1016/0305-1978(88)90070-1
- 113089 - Ramaria fennica: LTS0171131
- 150188 - Ramaria flavescens: 10.1016/0305-1978(88)90070-1
- 150188 - Ramaria flavescens: LTS0171131
- 104235 - Ramaria formosa: 10.1016/0305-1978(88)90070-1
- 104235 - Ramaria formosa: LTS0171131
- 1322061 - Rhizoctonia: 10.1016/J.FITOTE.2004.03.007
- 1322061 - Rhizoctonia: LTS0171131
- 2763 - Rhodophyta: LTS0171131
- 5533 - Rhodotorula: LTS0171131
- 5535 - Rhodotorula glutinis: 10.1016/0003-9861(52)90388-3
- 5535 - Rhodotorula glutinis: LTS0171131
- 5537 - Rhodotorula mucilaginosa: 10.1128/AEM.65.1.138-142.1999
- 5537 - Rhodotorula mucilaginosa: LTS0171131
- 5286 - Rhodotorula toruloides: 10.1016/0003-9861(52)90388-3
- 5286 - Rhodotorula toruloides: LTS0171131
- 23263 - Rodgersia: LTS0171131
- 1277869 - Rodgersia sambucifolia: 10.1002/JCCS.200700013
- 1277869 - Rodgersia sambucifolia: LTS0171131
- 3745 - Rosaceae: LTS0171131
- 5402 - Russula: LTS0171131
- 258989 - Russula subnigricans: 10.1248/CPB.35.3482
- 258989 - Russula subnigricans: LTS0171131
- 5401 - Russulaceae: LTS0171131
- 1217168 - Ryvardenia cretacea: 10.1016/S0040-4020(01)82446-7
- 4930 - Saccharomyces: 10.1002/PS.2780150206
- 4930 - Saccharomyces: LTS0171131
- 4932 - Saccharomyces cerevisiae: LTS0171131
- 4893 - Saccharomycetaceae: LTS0171131
- 4891 - Saccharomycetes: LTS0171131
- 1570301 - Saccotheciaceae: LTS0171131
- 57135 - Sarcodon: LTS0171131
- 178525 - Sarcodon scabrosus: 10.1016/J.BMCL.2012.02.031
- 178525 - Sarcodon scabrosus: LTS0171131
- 468351 - Sarcotragus: LTS0171131
- 3792 - Saxifragaceae: LTS0171131
- 218135 - Schedonorus: LTS0171131
- 37466 - Sclerodermataceae: LTS0171131
- 28983 - Sclerotiniaceae: LTS0171131
- 375856 - Scolochloa: LTS0171131
- 375857 - Scolochloa festucacea: 10.1021/JF00067A029
- 375857 - Scolochloa festucacea: LTS0171131
- 121179 - Semelidae: LTS0171131
- 53922 - Senna: LTS0171131
- 1268652 - Senna racemosa: LTS0171131
- 99101 - Seriphidium: LTS0171131
- 83884 - Sirococcus: 10.1139/V92-238
- 83884 - Sirococcus: LTS0171131
- 49657 - Smilax China: -
- 4070 - Solanaceae: LTS0171131
- 147550 - Sordariomycetes: LTS0171131
- 1162794 - Spongionella: LTS0171131
- 1799696 - Sporidiobolaceae: LTS0171131
- 1667166 - Stachybotryaceae: LTS0171131
- 74721 - Stachybotrys: LTS0171131
- 74722 - Stachybotrys chartarum:
- 74722 - Stachybotrys chartarum: LTS0171131
- 669026 - Staphylotrichum longicolle: 10.1021/NP2004903
- 669026 - Staphylotrichum longicolle: LTS0171131
- 238244 - Stenocarpella: LTS0171131
- 371126 - Stenocarpella macrospora: 10.1002/HLCA.19880710806
- 371126 - Stenocarpella macrospora: LTS0171131
- 137528 - Sticta: LTS0171131
- 534618 - Sticta caulescens: 10.1016/S0305-1978(99)00092-7
- 534618 - Sticta caulescens: LTS0171131
- 1883 - Streptomyces: LTS0171131
- 285454 - Streptomyces anandii: 10.3390/MD14050084
- 67351 - Streptomyces californicus: 10.1128/AEM.65.1.138-142.1999
- 67351 - Streptomyces californicus: LTS0171131
- 2062 - Streptomycetaceae: LTS0171131
- 35493 - Streptophyta: LTS0171131
- 40562 - Strophariaceae: LTS0171131
- 7721 - Styelidae: LTS0171131
- 320360 - Taiwanofungus: LTS0171131
- 2696576 - Taiwanofungus camphoratus:
- 2696576 - Taiwanofungus camphoratus: 10.1016/J.BMC.2010.10.032
- 2696576 - Taiwanofungus camphoratus: 10.1021/NP1002143
- 2696576 - Taiwanofungus camphoratus: LTS0171131
- 5094 - Talaromyces: LTS0171131
- 5095 - Talaromyces flavus: 10.1135/CCCC19920408
- 5095 - Talaromyces flavus: LTS0171131
- 198730 - Talaromyces verruculosus:
- 198730 - Talaromyces verruculosus: 10.1021/NP50055A008
- 198730 - Talaromyces verruculosus: 10.1055/S-2006-957645
- 198730 - Talaromyces verruculosus: LTS0171131
- 25623 - Taxaceae: LTS0171131
- 25628 - Taxus: LTS0171131
- 147273 - Taxus wallichiana: LTS0171131
- 74855 - Terfezia: 10.1139/M85-212
- 74855 - Terfezia: LTS0171131
- 56488 - Thelephoraceae: LTS0171131
- 205646 - Tornabea: LTS0171131
- 205647 - Tornabea scutellifera: 10.1002/CHIN.199517179
- 205647 - Tornabea scutellifera: LTS0171131
- 58023 - Tracheophyta: LTS0171131
- 5324 - Trametes: LTS0171131
- 5325 - Trametes versicolor: 10.1016/S0040-4020(01)82446-7
- 5325 - Trametes versicolor: LTS0171131
- 75966 - Trebouxiophyceae: LTS0171131
- 5215 - Tremellaceae: LTS0171131
- 155616 - Tremellomycetes: LTS0171131
- 28568 - Trichocomaceae: LTS0171131
- 5351 - Tricholomataceae: LTS0171131
- 231006 - Trichothecium: LTS0171131
- 47278 - Trichothecium roseum: 10.1002/JCCS.199900094
- 47278 - Trichothecium roseum: LTS0171131
- 36048 - Tuber: 10.1139/M85-212
- 36048 - Tuber: LTS0171131
- 39416 - Tuber melanosporum: 10.1016/S0039-128X(96)00121-3
- 39416 - Tuber melanosporum: LTS0171131
- 40289 - Tuberaceae: LTS0171131
- 5024 - Venturia: LTS0171131
- 5025 - Venturia inaequalis: 10.1016/0031-9422(95)00787-3
- 5025 - Venturia inaequalis: LTS0171131
- 5023 - Venturiaceae: LTS0171131
- 33090 - Viridiplantae: LTS0171131
- 3602 - Vitaceae: LTS0171131
- 3603 - Vitis: LTS0171131
- 29760 - Vitis vinifera: 10.1007/BF00713348
- 29760 - Vitis vinifera: LTS0171131
- 126908 - Withania: LTS0171131
- 126910 - Withania somnifera: 10.1080/10286020.2011.622719
- 126910 - Withania somnifera: LTS0171131
- 81055 - Wolfiporia: LTS0171131
- 81056 - Wolfiporia cocos: 10.4268/CJCMM20140615
- 81056 - Wolfiporia cocos: LTS0171131
- 5385 - Xerocomus: LTS0171131
- 36058 - Xerocomus badius: 10.1007/BF02856303
- 37991 - Xylaria: LTS0171131
- 498170 - Xylaria obovata: 10.1016/S0031-9422(96)00780-7
- 498170 - Xylaria obovata: LTS0171131
- 37990 - Xylariaceae: LTS0171131
- 4951 - Yarrowia: LTS0171131
- 4952 - Yarrowia lipolytica: 10.1016/S0031-9422(00)84131-X
- 4952 - Yarrowia lipolytica: LTS0171131
- 78902 - Zoopagaceae: LTS0171131
- 2233521 - Zoopagomycetes: LTS0171131
- 1913638 - Zoopagomycota: LTS0171131
- 78906 - Zoophagus: LTS0171131
- 78907 - Zoophagus insidians: 10.1016/0031-9422(82)83069-0
- 78907 - Zoophagus insidians: LTS0171131
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Dan Cai, Yun-Yun Liu, Xin-Ping Tang, Mei Zhang, Yong-Xian Cheng. Minor ergosteroids and a 19-nor labdane-type diterpenoid with anti-inflammatory effects from Ganoderma lucidum.
Phytochemistry.
2024 Jun; 222(?):114052. doi:
10.1016/j.phytochem.2024.114052
. [PMID: 38518849] - Jinhong Xie, Jeffrey M Rybak, Adela Martin-Vicente, Xabier Guruceaga, Harrison I Thorn, Ashley V Nywening, Wenbo Ge, Josie E Parker, Steven L Kelly, P David Rogers, Jarrod R Fortwendel. The sterol C-24 methyltransferase encoding gene, erg6, is essential for viability of Aspergillus species.
Nature communications.
2024 May; 15(1):4261. doi:
10.1038/s41467-024-48767-3
. [PMID: 38769341] - Sebastian Janik, Rafal Luchowski, Ewa Grela, Wojciech Grudzinski, Wieslaw I Gruszecki. How Does the Antibiotic Amphotericin B Enter Membranes and What Does It Do There?.
The journal of physical chemistry letters.
2024 May; 15(18):4823-4827. doi:
10.1021/acs.jpclett.4c00496
. [PMID: 38668706] - Shuo Qian, Gergely Nagy, Piotr Zolnierczuk, Eugene Mamontov, Robert Standaert. Nonstereotypical Distribution and Effect of Ergosterol in Lipid Membranes.
The journal of physical chemistry letters.
2024 May; 15(17):4745-4752. doi:
10.1021/acs.jpclett.4c00385
. [PMID: 38661394] - Zahra Mozafari, Masoomeh Shams-Ghahfarokhi, Mahdi Yahyazadeh, Mehdi Razzaghi-Abyaneh. Effects of Tripleurospermum caucasicum, Salvia rosmarinus and Tanacetum fruticulosum essential oils on aflatoxin B1 production and aflR gene expression in Aspergillus flavus.
International journal of food microbiology.
2024 Apr; 415(?):110639. doi:
10.1016/j.ijfoodmicro.2024.110639
. [PMID: 38417281] - Yaning Wu, Hongwei Zhang, Jianguang Zhu, Zhenling Zhang, Songbo Ma, Yongqi Zhao, Yiming Wang, Jun Yuan, Xing Guo, Yajing Li, Shuai Zhang. The Effect of Fermentation on the Chemical Constituents of Gastrodia Tuber Hallimasch Powder (GTHP) Estimated by UHPLC-Q-Orbitrap HRMS and HPLC.
Molecules (Basel, Switzerland).
2024 Apr; 29(7):. doi:
10.3390/molecules29071663
. [PMID: 38611942] - Sarfaraz Hussain, Bowen Tai, Maratab Ali, Israt Jahan, Suha Sakina, Gang Wang, Xinlong Zhang, Yixuan Yin, Fuguo Xing. Antifungal potential of lipopeptides produced by the Bacillus siamensis Sh420 strain against Fusarium graminearum.
Microbiology spectrum.
2024 Apr; 12(4):e0400823. doi:
10.1128/spectrum.04008-23
. [PMID: 38451229] - Chengying Shen, Zhong Luo, Ping Zhan, Fengyi Deng, Pei Zhang, Baode Shen, Jianxin Hu. Antifungal activity and potential mechanism of action of Huangqin decoction against Trichophyton rubrum.
Journal of medical microbiology.
2024 Feb; 73(2):. doi:
10.1099/jmm.0.001805
. [PMID: 38348868] - Zoha Daroodi, Parissa Taheri, Saeed Tarighi, Mehrdad Iranshahi, Maryam Akaberi. Efficacy of ergosterol peroxide obtained from the endophytic fungus Acrophialophora jodhpurensis against Rhizoctonia solani.
Journal of applied microbiology.
2024 Feb; 135(2):. doi:
10.1093/jambio/lxae031
. [PMID: 38346851] - Wenchan Chen, Bao Tang, Rongxian Hou, Weibo Sun, Chenyang Han, Baodian Guo, Yangyang Zhao, Chaohui Li, Cong Sheng, Yancun Zhao, Fengquan Liu. The natural polycyclic tetramate macrolactam HSAF inhibit Fusarium graminearum through altering cell membrane integrity by targeting FgORP1.
International journal of biological macromolecules.
2024 Jan; 261(Pt 1):129744. doi:
10.1016/j.ijbiomac.2024.129744
. [PMID: 38281534] - Adriana Cruz, Eva Sánchez-Hernández, Ana Teixeira, Rui Oliveira, Ana Cunha, Pablo Martín-Ramos. Phytoconstituents and Ergosterol Biosynthesis-Targeting Antimicrobial Activity of Nutmeg (Myristica fragans Houtt.) against Phytopathogens.
Molecules (Basel, Switzerland).
2024 Jan; 29(2):. doi:
10.3390/molecules29020471
. [PMID: 38257384] - Lei Chen, Xiuyun Tian, Lanyue Zhang, Wenzhao Wang, Pengjie Hu, Zhongyi Ma, Yeqi Li, Shibin Li, Zhenghao Shen, Xin Fan, Leixin Ye, Weixin Ke, Yao Wu, Guanghou Shui, Meng Xiao, Guang-Jun He, Ying Yang, Wenxia Fang, Fan Bai, Guojian Liao, Min Chen, Xiaorong Lin, Chong Li, Linqi Wang. Brain glucose induces tolerance of Cryptococcus neoformans to amphotericin B during meningitis.
Nature microbiology.
2024 Jan; ?(?):. doi:
10.1038/s41564-023-01561-1
. [PMID: 38225460] - Huimin Huo, Haiying Bao. Comparative study on the anti-tumor effect of steroids derived from different organisms in H22 tumor-bearing mice and analysis of their mechanisms.
European journal of pharmacology.
2024 Jan; 963(?):176269. doi:
10.1016/j.ejphar.2023.176269
. [PMID: 38096966] - Astrid Radkohl, Veronika Schusterbauer, Lukas Bernauer, Gerald N Rechberger, Heimo Wolinski, Matthias Schittmayer, Ruth Birner-Gruenberger, Gerhard G Thallinger, Erich Leitner, Melanie Baeck, Harald Pichler, Anita Emmerstorfer-Augustin. Human Sterols Are Overproduced, Stored and Excreted in Yeasts.
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020781
. [PMID: 38255855] - Monika Vishwakarma, Tanweer Haider, Vandana Soni. Update on fungal lipid biosynthesis inhibitors as antifungal agents.
Microbiological research.
2024 Jan; 278(?):127517. doi:
10.1016/j.micres.2023.127517
. [PMID: 37863019] - H B Zhou, L J Feng, X H Weng, T Wang, H Lu, Y B Bian, Z Y Huang, J L Zhang. Inhibition mechanism of cordycepin and ergosterol from Cordyceps militaris Link. against xanthine oxidase and cyclooxygenase-2.
International journal of biological macromolecules.
2023 Dec; 258(Pt 2):128898. doi:
10.1016/j.ijbiomac.2023.128898
. [PMID: 38141695] - Yuxuan Cao, Xu Zhang, Xiaoning Song, Wenkui Li, Zheng Ren, Juntao Feng, Zhiqing Ma, Xili Liu, Yong Wang. Efficacy and toxic action of the natural product natamycin against Sclerotinia sclerotiorum.
Pest management science.
2023 Dec; ?(?):. doi:
10.1002/ps.7930
. [PMID: 38087429] - Lukas Bernauer, Paula Berzak, Leonie Lehmayer, Julia Messenlehner, Gustav Oberdorfer, Günther Zellnig, Heimo Wolinski, Christoph Augustin, Melanie Baeck, Anita Emmerstorfer-Augustin. Sterol interactions influence the function of Wsc sensors.
Journal of lipid research.
2023 12; 64(12):100466. doi:
10.1016/j.jlr.2023.100466
. [PMID: 37918524] - Sylwia Adamczyk, Satu Latvala, Anna Poimala, Bartosz Adamczyk, Tuija Hytönen, Taina Pennanen. Diterpenes and triterpenes show potential as biocides against pathogenic fungi and oomycetes: a screening study.
Biotechnology letters.
2023 Dec; 45(11-12):1555-1563. doi:
10.1007/s10529-023-03438-z
. [PMID: 37910278] - Limin Wang, Xiaoyu Song, Yi-Nan Cheng, Senxiang Cheng, Tong Chen, Honglian Li, Jingming Yan, Xiafei Wang, Haifeng Zhou. 1,2,4-Triazole benzamide derivative TPB against Gaeumannomyces graminis var. tritici as a novel dual-target fungicide inhibiting ergosterol synthesis and adenine nucleotide transferase function.
Pest management science.
2023 Nov; ?(?):. doi:
10.1002/ps.7900
. [PMID: 38010196] - Tessa Siswina, Mia Miranti Rustama, Dadan Sumiarsa, Eti Apriyanti, Hirofumi Dohi, Dikdik Kurnia. Antifungal Constituents of Piper crocatum and Their Activities as Ergosterol Biosynthesis Inhibitors Discovered via In Silico Study Using ADMET and Drug-Likeness Analysis.
Molecules (Basel, Switzerland).
2023 Nov; 28(23):. doi:
10.3390/molecules28237705
. [PMID: 38067436] - Yuxuan Cao, Xiaoning Song, Guanyou Xu, Xu Zhang, He Yan, Juntao Feng, Zhiqing Ma, Xili Liu, Yong Wang. Study on the Antifungal Activity and Potential Mechanism of Natamycin against Colletotrichum fructicola.
Journal of agricultural and food chemistry.
2023 Nov; ?(?):. doi:
10.1021/acs.jafc.3c05154
. [PMID: 37943656] - Arun Maji, Corinne P Soutar, Jiabao Zhang, Agnieszka Lewandowska, Brice E Uno, Su Yan, Yogesh Shelke, Ganesh Murhade, Evgeny Nimerovsky, Collin G Borcik, Andres S Arango, Justin D Lange, Jonnathan P Marin-Toledo, Yinghuan Lyu, Keith L Bailey, Patrick J Roady, Jordan T Holler, Anuj Khandelwal, Anna M SantaMaria, Hiram Sanchez, Praveen R Juvvadi, Gina Johns, Michael J Hageman, Joanna Krise, Teclegiorgis Gebremariam, Eman G Youssef, Ken Bartizal, Kieren A Marr, William J Steinbach, Ashraf S Ibrahim, Thomas F Patterson, Nathan P Wiederhold, David R Andes, Taras V Pogorelov, Charles D Schwieters, Timothy M Fan, Chad M Rienstra, Martin D Burke. Tuning sterol extraction kinetics yields a renal-sparing polyene antifungal.
Nature.
2023 Nov; ?(?):. doi:
10.1038/s41586-023-06710-4
. [PMID: 37938782] - Romério R S Silva, Ellen A Malveira, Tawanny K B Aguiar, Nilton A S Neto, Renato R Roma, Maria H C Santos, Ana L E Santos, Ayrles F B Silva, Cleverson D T Freitas, Bruno A M Rocha, Pedro F N Souza, Claudener S Teixeira. DVL, lectin from Dioclea violacea seeds, has multiples mechanisms of action against Candida spp via carbohydrate recognition domain.
Chemico-biological interactions.
2023 Sep; 382(?):110639. doi:
10.1016/j.cbi.2023.110639
. [PMID: 37468117] - Tianze Li, Min Lv, Houpeng Wen, Jiawei Du, Zhen Wang, Shaoyong Zhang, Hui Xu. Natural products in crop protection: thiosemicarbazone derivatives of 3-acetyl-N-benzylindoles as antifungal agents and their mechanism of action.
Pest management science.
2023 Aug; 79(8):2801-2810. doi:
10.1002/ps.7457
. [PMID: 36929618] - Moyu Nie, Tao Liu, Xunhan Qiu, Jingjing Yang, Jun Liu, Jiali Ren, Bo Zhou. Regulation mechanism of lipids for extracellular yellow pigments production by Monascus purpureus BWY-5.
Applied microbiology and biotechnology.
2023 Aug; 107(16):5191-5208. doi:
10.1007/s00253-023-12654-6
. [PMID: 37405437] - Shizuka Fukuda, Yushi Kono, Yohei Ishibashi, Mitsuaki Tabuchi, Motohiro Tani. Impaired biosynthesis of ergosterol confers resistance to complex sphingolipid biosynthesis inhibitor aureobasidin A in a PDR16-dependent manner.
Scientific reports.
2023 07; 13(1):11179. doi:
10.1038/s41598-023-38237-z
. [PMID: 37429938] - Hau Lam Choy, Elizabeth A Gaylord, Tamara L Doering. Ergosterol distribution controls surface structure formation and fungal pathogenicity.
mBio.
2023 Jul; ?(?):e0135323. doi:
10.1128/mbio.01353-23
. [PMID: 37409809] - Meng Zhang, Pu-Ting Dong, Hassan E Eldesouky, Yuewei Zhan, Haonan Lin, Zian Wang, Ehab A Salama, Sebastian Jusuf, Cheng Zong, Zhicong Chen, Mohamed N Seleem, Ji-Xin Cheng. Fingerprint Stimulated Raman Scattering Imaging Unveils Ergosteryl Ester as a Metabolic Signature of Azole-Resistant Candida albicans.
Analytical chemistry.
2023 Jun; ?(?):. doi:
10.1021/acs.analchem.3c00900
. [PMID: 37310727] - Xiaoli Yang, Ping Wu, Jinghua Xue, Hanxiang Li, Xiaoyi Wei. Seco-pimarane diterpenoids and androstane steroids from an endophytic Nodulisporium fungus derived from Cyclosorus parasiticus.
Phytochemistry.
2023 Jun; 210(?):113679. doi:
10.1016/j.phytochem.2023.113679
. [PMID: 37059288] - Yuhong Chen, Ying Gao, Mingan Yuan, Zhaisheng Zheng, Junfeng Yin. Anti-Candida albicans Effects and Mechanisms of Theasaponin E1 and Assamsaponin A.
International journal of molecular sciences.
2023 May; 24(11):. doi:
10.3390/ijms24119350
. [PMID: 37298302] - Chaitanya S Haram, Samrat Moitra, Rilee Keane, F Matthew Kuhlmann, Cheryl Frankfater, Fong-Fu Hsu, Stephen M Beverley, Kai Zhang, Peter A Keyel. The sphingolipids ceramide and inositol phosphorylceramide protect the Leishmania major membrane from sterol-specific toxins.
The Journal of biological chemistry.
2023 Apr; ?(?):104745. doi:
10.1016/j.jbc.2023.104745
. [PMID: 37094699] - Ka Pui Sharon Yau, Harshini Weerasinghe, Francios A B Olivier, Tricia L Lo, David R Powell, Barbara Koch, Traude H Beilharz, Ana Traven. The proteasome regulator Rpn4 controls antifungal drug tolerance by coupling protein homeostasis with metabolic responses to drug stress.
PLoS pathogens.
2023 Apr; 19(4):e1011338. doi:
10.1371/journal.ppat.1011338
. [PMID: 37075064] - Nahla Alsayd Bouqellah. In silico and in vitro investigation of the antifungal activity of trimetallic Cu-Zn-magnetic nanoparticles against Fusarium oxysporum with stimulation of the tomato plant's drought stress tolerance response.
Microbial pathogenesis.
2023 Mar; 178(?):106060. doi:
10.1016/j.micpath.2023.106060
. [PMID: 36889369] - Luís Ferraz, Karola Vorauer-Uhl, Michael Sauer, Maria J Sousa, Paola Branduardi. Impact of ergosterol content on acetic and lactic acids toxicity to Saccharomyces cerevisiae.
Yeast (Chichester, England).
2023 03; 40(3-4):152-165. doi:
10.1002/yea.3828
. [PMID: 36380459] - Yusen Yue, Zhirong Wang, Tao Zhong, Meiling Guo, Luhan Huang, Lili Yang, Jianquan Kan, Zsolt Zalán, Ferenc Hegyi, Krisztina Takács, Muying Du. Antifungal mechanisms of volatile organic compounds produced by Pseudomonas fluorescens ZX as biological fumigants against Botrytis cinerea.
Microbiological research.
2023 Feb; 267(?):127253. doi:
10.1016/j.micres.2022.127253
. [PMID: 36455309] - Julia Borzyszkowska-Bukowska, Jacek Czub, Paweł Szczeblewski, Tomasz Laskowski. Antibiotic-sterol interactions provide insight into the selectivity of natural aromatic analogues of amphotericin B and their photoisomers.
Scientific reports.
2023 Jan; 13(1):762. doi:
10.1038/s41598-023-28036-x
. [PMID: 36641464] - Yong-Nan Liu, Feng-Yuan Wu, Ren-Yuan Tian, Yi-Xin Shi, Zi-Qi Xu, Ji-Ye Liu, Jia Huang, Fei-Fei Xue, Bi-Yang Liu, Gao-Qiang Liu. The bHLH-zip transcription factor SREBP regulates triterpenoid and lipid metabolisms in the medicinal fungus Ganoderma lingzhi.
Communications biology.
2023 01; 6(1):1. doi:
10.1038/s42003-022-04154-6
. [PMID: 36596887] - Tsuyoshi Yoda. Phase-Separated Structures of Sake Flavors-Containing Cell Model Membranes.
Chemistry & biodiversity.
2023 Jan; 20(1):e202200750. doi:
10.1002/cbdv.202200750
. [PMID: 36427230] - Wei Wang, Yong Nie, Xiao-Yong Liu, Bo Huang. The genome and transcriptome of Sarocladium terricola provide insight into ergosterol biosynthesis.
Frontiers in cellular and infection microbiology.
2023; 13(?):1181287. doi:
10.3389/fcimb.2023.1181287
. [PMID: 37124038] - Hiroyuki Tada, Kazuyoshi Kawahara, Hiraku Osawa, Li-Ting Song, Kento Numazaki, Junya Kawai, Sakura Onoue, Takashi Nishioka, Eiji Nemoto, Kenji Matsushita, Shunji Sugawara. Hericium erinaceus ethanol extract and ergosterol exert anti-inflammatory activities by neutralizing lipopolysaccharide-induced pro-inflammatory cytokine production in human monocytes.
Biochemical and biophysical research communications.
2022 12; 636(Pt 2):1-9. doi:
10.1016/j.bbrc.2022.10.090
. [PMID: 36335857] - Yeseul Choi, Eunji Jeong, Dong-Gi Lee, Jae-Hyung Jin, Yee-Seul So, Seong-Ryong Yu, Kyung-Jo Lee, Yoonjie Ha, Chi-Jan Lin, Ying-Lien Chen, Jun Bae Park, Hyun-Soo Cho, Anna F Averette, Joseph Heitman, Kyu-Ho Lee, Kangseok Lee, Yong-Sun Bahn. Unraveling the Pathobiological Role of the Fungal KEOPS Complex in Cryptococcus neoformans.
mBio.
2022 12; 13(6):e0294422. doi:
10.1128/mbio.02944-22
. [PMID: 36377896] - Dominik Šťastný, Lívia Petrisková, Dana Tahotná, Jacob Bauer, Lucia Pokorná, Roman Holič, Martin Valachovič, Vladimír Pevala, Shamshad Cockcroft, Peter Griač. Yeast Sec14-like lipid transfer proteins Pdr16 and Pdr17 bind and transfer the ergosterol precursor lanosterol in addition to phosphatidylinositol.
FEBS letters.
2022 Dec; ?(?):. doi:
10.1002/1873-3468.14558
. [PMID: 36482167] - Kaja Rola, Ewa Latkowska, Wiktoria Ogar, Piotr Osyczka. Towards understanding the effect of heavy metals on mycobiont physiological condition in a widespread metal-tolerant lichen Cladonia rei.
Chemosphere.
2022 Dec; 308(Pt 2):136365. doi:
10.1016/j.chemosphere.2022.136365
. [PMID: 36087724] - Siyu Liu, Xiayu Liu, Ying Shi, Shulin Zhuang, Qihe Chen. The adaptive mechanism of halophilic Brachybacterium muris in response to salt stress and its mitigation of copper toxicity in hydroponic plants.
Environmental pollution (Barking, Essex : 1987).
2022 Nov; 313(?):120124. doi:
10.1016/j.envpol.2022.120124
. [PMID: 36089137] - Inês Gomes Castro, Shawn P Shortill, Samantha Katarzyna Dziurdzik, Angela Cadou, Suriakarthiga Ganesan, Rosario Valenti, Yotam David, Michael Davey, Carsten Mattes, Ffion B Thomas, Reut Ester Avraham, Hadar Meyer, Amir Fadel, Emma J Fenech, Robert Ernst, Vanina Zaremberg, Tim P Levine, Christopher Stefan, Elizabeth Conibear, Maya Schuldiner. Systematic analysis of membrane contact sites in Saccharomyces cerevisiae uncovers modulators of cellular lipid distribution.
eLife.
2022 Nov; 11(?):. doi:
10.7554/elife.74602
. [PMID: 36354737] - Haixia Wang, Yun Chen, Tingjun Hou, Yunqing Jian, Zhonghua Ma. The very long-chain fatty acid elongase FgElo2 governs tebuconazole sensitivity and virulence in Fusarium graminearum.
Environmental microbiology.
2022 11; 24(11):5362-5377. doi:
10.1111/1462-2920.16212
. [PMID: 36111363] - Letícia Souza Lima, Suellen Rodrigues Ramalho, Graziele Custódia Sandim, Eduardo Benedetti Parisotto, Janaina de Cássia Orlandi Sardi, Maria Lígia Rodrigues Macedo. Prevention of hospital pathogen biofilm formation by antimicrobial peptide KWI18.
Microbial pathogenesis.
2022 Nov; 172(?):105791. doi:
10.1016/j.micpath.2022.105791
. [PMID: 36150557] - Somenath Das, Anand Kumar Chaudhari, Vipin Kumar Singh, Bijendra Kumar Singh, Nawal Kishore Dubey. High speed homogenization assisted encapsulation of synergistic essential oils formulation: Characterization, in vitro release study, safety profile, and efficacy towards mitigation of aflatoxin B1 induced deterioration in rice samples.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2022 Nov; 169(?):113443. doi:
10.1016/j.fct.2022.113443
. [PMID: 36167259] - Songyang Han, Boxiang Sheng, Dan Zhu, Jiaxin Chen, Hongsheng Cai, Shuzhen Zhang, Changhong Guo. Role of FoERG3 in ergosterol biosynthesis by Fusarium oxysporum and the associated regulation by Bacillus subtilis HSY21.
Plant disease.
2022 Nov; ?(?):. doi:
10.1094/pdis-05-22-1010-re
. [PMID: 36320138] - Yanqi Hao, Lan Wei, Li Li, Yanlei Wang, Ning Li, Yingni Pan, Yi Sun. New cytotoxic ergosterols from a plant-associated fungus Colletotrichum magnisporum.
Natural product research.
2022 Nov; 36(21):5606-5613. doi:
10.1080/14786419.2021.2022670
. [PMID: 34994267] - Tobiloba Christiana Elebiyo, Oghenemaero Oghale Olori, Damilare Emmanuel Rotimi, Wafa Abdullah I Al-Megrin, Michel De Waard, Afrah Fahd Alkhuriji, Gaber El-Saber Batiha, Adebukola Anne Adeyanju, Oluyomi Stephen Adeyemi. Chemical fingerprinting, comparative in vitro antioxidant properties, and biochemical effects of ginger and bitterleaf infusion.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Nov; 155(?):113788. doi:
10.1016/j.biopha.2022.113788
. [PMID: 36271566] - Maria Szomek, Peter Reinholdt, Hanna-Loisa Walther, Holger A Scheidt, Peter Müller, Sebastian Obermaier, Bert Poolman, Jacob Kongsted, Daniel Wüstner. Natamycin sequesters ergosterol and interferes with substrate transport by the lysine transporter Lyp1 from yeast.
Biochimica et biophysica acta. Biomembranes.
2022 11; 1864(11):184012. doi:
10.1016/j.bbamem.2022.184012
. [PMID: 35914570] - Shi-Yu Li, Xue-Qiong Yang, Jing-Xin Chen, Ya-Mei Wu, Ya-Bin Yang, Zhong-Tao Ding. The induced cryptic metabolites and antifungal activities from culture of Penicillium chrysogenum by supplementing with host Ziziphus jujuba extract.
Phytochemistry.
2022 Nov; 203(?):113391. doi:
10.1016/j.phytochem.2022.113391
. [PMID: 36007667] - Svyatoslav S Sokolov, Pavel E Volynsky, Olga T Zangieva, Fedor F Severin, Elena S Glagoleva, Dmitry A Knorre. Cytostatic effects of structurally different ginsenosides on yeast cells with altered sterol biosynthesis and transport.
Biochimica et biophysica acta. Biomembranes.
2022 10; 1864(10):183993. doi:
10.1016/j.bbamem.2022.183993
. [PMID: 35724740] - Sk Abdul Mohid, Karishma Biswas, TaeJun Won, Lakshmi S Mallela, Arin Gucchait, Lena Butzke, Riddhiman Sarkar, Timothy Barkham, Bernd Reif, Enrico Leipold, Sanhita Roy, Anup K Misra, Rajamani Lakshminarayanan, DongKuk Lee, Anirban Bhunia. Structural insights into the interaction of antifungal peptides and ergosterol containing fungal membrane.
Biochimica et biophysica acta. Biomembranes.
2022 10; 1864(10):183996. doi:
10.1016/j.bbamem.2022.183996
. [PMID: 35753394] - Bijendra Kumar Singh, Anand Kumar Chaudhari, Somenath Das, Shikha Tiwari, Nawal Kishore Dubey. Preparation and characterization of a novel nanoemulsion consisting of chitosan and Cinnamomum tamala essential oil and its effect on shelf-life lengthening of stored millets.
Pesticide biochemistry and physiology.
2022 Oct; 187(?):105214. doi:
10.1016/j.pestbp.2022.105214
. [PMID: 36127040] - Julia Kühn, Corinna Brandsch, Mikis Kiourtzidis, Anika Nier, Simone Bieler, Bertrand Matthäus, Carola Griehl, Gabriele I Stangl. Microalgae-derived sterols do not reduce the bioavailability of oral vitamin D3 in mice.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2022 Sep; ?(?):. doi:
10.1024/0300-9831/a000766
. [PMID: 36124519] - Moumita Das, Geetha V, Mehrdad Zarei, Nanishankar V Harohally, Suresh Kumar G. Modulation of obesity associated metabolic dysfunction by novel lipophilic fraction obtained from Agaricus bisporus.
Life sciences.
2022 Sep; 305(?):120779. doi:
10.1016/j.lfs.2022.120779
. [PMID: 35798070] - Yu Liang, Lanqin Li, Yong Shen, Yuyi Zheng, Qin Li, Qingyi Tong, Qun Zhou, Xiao-Nian Li, Dongyan Li, Hucheng Zhu, Weiguang Sun, Chunmei Chen, Yonghui Zhang. Four undescribed ergostane-type steroids from Lasiodiplodia pseudotheobromae and their neuroprotective activity.
Phytochemistry.
2022 Sep; 201(?):113248. doi:
10.1016/j.phytochem.2022.113248
. [PMID: 35643122] - Paulo H F Carmo, Gustavo J C Freitas, João C M Dornelas, Bruna C T Almeida, Ludmila M Baltazar, Gabriella F Ferreira, Nalu T A Peres, Daniel A Santos. Reactive oxygen and nitrogen species are crucial for the antifungal activity of amorolfine and ciclopirox olamine against the dermatophyte Trichophyton interdigitale.
Medical mycology.
2022 Aug; 60(8):. doi:
10.1093/mmy/myac058
. [PMID: 35896502] - Veronika Betinova, Nora Toth Hervay, Daniel Elias, Agnes Horvathova, Yvetta Gbelska. The UPC2 gene in Kluyveromyces lactis stress adaptation.
Folia microbiologica.
2022 Aug; 67(4):641-647. doi:
10.1007/s12223-022-00968-3
. [PMID: 35352326] - Xiaofan Jin, Huirong Yang, Moutong Chen, Teodora Emilia Coldea, Haifeng Zhao. Improved osmotic stress tolerance in brewer's yeast induced by wheat gluten peptides.
Applied microbiology and biotechnology.
2022 Aug; 106(13-16):4995-5006. doi:
10.1007/s00253-022-12073-z
. [PMID: 35819513] - Sang Hu Kim, Luke Steere, Yong-Kang Zhang, Cari McGregor, Chris Hahne, Yasheen Zhou, Chunliang Liu, Yan Cai, Haibo Zhou, Xuefei Chen, Emily Puumala, Dustin Duncan, Gerard D Wright, C Tony Liu, Luke Whitesell, Leah E Cowen. Inhibiting C-4 Methyl Sterol Oxidase with Novel Diazaborines to Target Fungal Plant Pathogens.
ACS chemical biology.
2022 06; 17(6):1343-1350. doi:
10.1021/acschembio.2c00257
. [PMID: 35584803] - Nanbiao Long, Guowei Zhong. The C-22 sterol desaturase Erg5 is responsible for ergosterol biosynthesis and conidiation in Aspergillus fumigatus.
Journal of microbiology (Seoul, Korea).
2022 Jun; 60(6):620-626. doi:
10.1007/s12275-022-1564-7
. [PMID: 35437626] - Xiao-Li Zhang, Er-Kun Chao, Meng-Chu Sun, Hong-Fei Zhao, Cai-Xia Wang, Bo-Lin Zhang. [Effects of tHMGR from three different plant sources on mevalonate (MVA) pathway flux in Saccharomyces cerevisiae].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 May; 47(10):2614-2622. doi:
10.19540/j.cnki.cjcmm.20220116.102
. [PMID: 35718479] - Damián A Madrigal-Aguilar, Adilene Gonzalez-Silva, Blanca Rosales-Acosta, Celia Bautista-Crescencio, Jossué Ortiz-Álvarez, Carlos H Escalante, Jaime Sánchez-Navarrete, César Hernández-Rodríguez, Germán Chamorro-Cevallos, Joaquín Tamariz, Lourdes Villa-Tanaca. Antifungal Activity of Fibrate-Based Compounds and Substituted Pyrroles That Inhibit the Enzyme 3-Hydroxy-methyl-glutaryl-CoA Reductase of Candida glabrata (CgHMGR), Thus Decreasing Yeast Viability and Ergosterol Synthesis.
Microbiology spectrum.
2022 04; 10(2):e0164221. doi:
10.1128/spectrum.01642-21
. [PMID: 35377226] - Li-Jing Min, Han Wang, Joanna Bajsa-Hirschel, Chen-Sheng Yu, Bin Wang, Meng-Meng Yao, Liang Han, Charles L Cantrell, Stephen O Duke, Na-Bo Sun, Xing-Hai Liu. Novel Dioxolane Ring Compounds for the Management of Phytopathogen Diseases as Ergosterol Biosynthesis Inhibitors: Synthesis, Biological Activities, and Molecular Docking.
Journal of agricultural and food chemistry.
2022 Apr; 70(14):4303-4315. doi:
10.1021/acs.jafc.2c00541
. [PMID: 35357135] - Vijay V, Kavya St. A Novel Study of Correlation of Lipid Parameters with Clinical Profile, Staging and Onset of Rhino Orbito Cerebral Mucormycosis Covid 19 Pandemic.
The Journal of the Association of Physicians of India.
2022 Apr; 70(4):11-12. doi:
NULL
. [PMID: 35443508] - Hui Huang, Yali Niu, Qi Jin, Kunhai Qin, Li Wang, Yitong Shang, Bin Zeng, Zhihong Hu. Identification of Six Thiolases and Their Effects on Fatty Acid and Ergosterol Biosynthesis in Aspergillus oryzae.
Applied and environmental microbiology.
2022 03; 88(6):e0237221. doi:
10.1128/aem.02372-21
. [PMID: 35138925] - Mohamed Shaaban, Hamdi Nasr, Tahia K Mohamed, Samy F Mahmoud, Mohammad M El-Metwally, Ahmed B Abdelwahab. Bioactive secondary metabolites from Trichoderma viride MM21: structure elucidation, molecular docking and biological activity.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2022 Mar; ?(?):. doi:
10.1515/znc-2021-0284
. [PMID: 35304839] - Marcin Wit, Piotr Ochodzki, Roman Warzecha, Emilia Jabłońska, Ewa Mirzwa-Mróz, Elżbieta Mielniczuk, Wojciech Wakuliński. Influence of Endosperm Starch Composition on Maize Response to Fusarium temperatum Scaufl. & Munaut.
Toxins.
2022 03; 14(3):. doi:
10.3390/toxins14030200
. [PMID: 35324697] - Nathaniel Yakobov, Nassira Mahmoudi, Guillaume Grob, Daisuke Yokokawa, Yusuke Saga, Tetsuo Kushiro, Danielle Worrell, Hervé Roy, Hubert Schaller, Bruno Senger, Laurence Huck, Gisela Riera Gascon, Hubert D Becker, Frédéric Fischer. RNA-dependent synthesis of ergosteryl-3β-O-glycine in Ascomycota expands the diversity of steryl-amino acids.
The Journal of biological chemistry.
2022 03; 298(3):101657. doi:
10.1016/j.jbc.2022.101657
. [PMID: 35131263] - Ana-María González, Maximiliano Venegas, Salvador Barahona, Melissa Gómez, María-Soledad Gutiérrez, Dionisia Sepúlveda, Marcelo Baeza, Víctor Cifuentes, Jennifer Alcaíno. Damage response protein 1 (Dap1) functions in the synthesis of carotenoids and sterols in Xanthophyllomyces dendrorhous.
Journal of lipid research.
2022 03; 63(3):100175. doi:
10.1016/j.jlr.2022.100175
. [PMID: 35120994] - Huahua Zhao, Xian Tao, Wen Song, Haorong Xu, Meixia Li, Yiqiang Cai, Jianxin Wang, Yabing Duan, Mingguo Zhou. Mechanism of Fusarium graminearum Resistance to Ergosterol Biosynthesis Inhibitors: G443S Substitution of the Drug Target FgCYP51A.
Journal of agricultural and food chemistry.
2022 Feb; 70(6):1788-1798. doi:
10.1021/acs.jafc.1c07543
. [PMID: 35129347] - Daria Derkacz, Przemysław Bernat, Anna Krasowska. K143R Amino Acid Substitution in 14-α-Demethylase (Erg11p) Changes Plasma Membrane and Cell Wall Structure of Candida albicans.
International journal of molecular sciences.
2022 Jan; 23(3):. doi:
10.3390/ijms23031631
. [PMID: 35163552] - Danielle Duanis-Assaf, Ortal Galsurker, Olga Davydov, Dalia Maurer, Oleg Feygenberg, Moshe Sagi, Elena Poverenov, Robert Fluhr, Noam Alkan. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls Botrytis cinerea and postharvest grey mould.
Plant biotechnology journal.
2022 01; 20(1):226-237. doi:
10.1111/pbi.13708
. [PMID: 34520611] - S Nagul Kumar, K Buvanesvaragurunathan, R Govindaraj, S Rajan, K Balakrishna, O Shirota, A Radha, Perumal Pandikumar, S Ignacimuthu. Hepatoprotective Constituents of Macrocybe gigantea (Agaricomycetes) from India.
International journal of medicinal mushrooms.
2022; 24(11):35-47. doi:
10.1615/intjmedmushrooms.2022045329
. [PMID: 36374947] - Zhisi Zhang, Xueping Liu, Zhibin Shen, Yanfen Chen, Cong Chen, Ying SiTu, Chunping Tang, Tao Jiang. Isoflavaspidic Acid PB Extracted from Dryopteris fragrans (L.) Schott Inhibits Trichophyton rubrum Growth via Membrane Permeability Alternation and Ergosterol Biosynthesis Disruption.
BioMed research international.
2022; 2022(?):6230193. doi:
10.1155/2022/6230193
. [PMID: 35782069] - Zihao Deng, Yanyang Yang, Jiazhen Luo, Biling Zhang, Jiyong Liu, Guanghou Shui, Renjie Jiao, Chuanxian Wei. An Integrated Transcriptomics and Lipidomics Analysis Reveals That Ergosterol Is Required for Host Defense Against Bacterial Infection in Drosophila.
Frontiers in immunology.
2022; 13(?):933137. doi:
10.3389/fimmu.2022.933137
. [PMID: 35874695] - Hittanahallikoppal Gajendramurthy Gowtham, Mahadevamurthy Murali, Sudarshana Brijesh Singh, Chandan Shivamallu, Sushma Pradeep, C S Shivakumar, Satish Anandan, Anjana Thampy, Raghu Ram Achar, Ekaterina Silina, Victor Stupin, Joaquín Ortega-Castro, Juan Frau, Norma Flores-Holguín, Kestur Nagaraj Amruthesh, Shiva Prasad Kollur, Daniel Glossman-Mitnik. Phytoconstituents of Withania somnifera unveiled Ashwagandhanolide as a potential drug targeting breast cancer: Investigations through computational, molecular docking and conceptual DFT studies.
PloS one.
2022; 17(10):e0275432. doi:
10.1371/journal.pone.0275432
. [PMID: 36201520] - Tomye L Ollinger, Bao Vu, Daniel Murante, Josie E Parker, Lucia Simonicova, Laura Doorley, Mark A Stamnes, Steven L Kelly, P David Rogers, W Scott Moye-Rowley, Damian J Krysan. Loss-of-Function ROX1 Mutations Suppress the Fluconazole Susceptibility of upc2AΔ Mutation in Candida glabrata, Implicating Additional Positive Regulators of Ergosterol Biosynthesis.
mSphere.
2021 12; 6(6):e0083021. doi:
10.1128/msphere.00830-21
. [PMID: 34935446] - Agnieszka Lewandowska, Corinne P Soutar, Alexander I Greenwood, Evgeny Nimerovsky, Ashley M De Lio, Jordan T Holler, Grant S Hisao, Anuj Khandelwal, Jiabao Zhang, Anna M SantaMaria, Charles D Schwieters, Taras V Pogorelov, Martin D Burke, Chad M Rienstra. Fungicidal amphotericin B sponges are assemblies of staggered asymmetric homodimers encasing large void volumes.
Nature structural & molecular biology.
2021 12; 28(12):972-981. doi:
10.1038/s41594-021-00685-4
. [PMID: 34887566] - Pratistha Singh, Renuka Ranjan, Ruchita Tripathi, Jyoti Dixit, Neeraj Sinha, Anil Kumar Singh, Kavindra Nath Tiwari. GC-MS and NMR spectroscopy based metabolite profiling of Panchvalkal kwath (polyherbal formulation).
Natural product research.
2021 Oct; ?(?):1-6. doi:
10.1080/14786419.2021.1990919
. [PMID: 34661480] - Md Taj Shafi, Tanvir Bamra, Sushmita Das, Ashish Kumar, Kumar Abhishek, Manjay Kumar, Vinod Kumar, Ajay Kumar, Rimi Mukherjee, Abhik Sen, Pradeep Das. Mevalonate kinase of Leishmania donovani protects parasite against oxidative stress by modulating ergosterol biosynthesis.
Microbiological research.
2021 Oct; 251(?):126837. doi:
10.1016/j.micres.2021.126837
. [PMID: 34375804] - Shou-Bai Liu, Zheng Cui, Hui-Qin Chen, Hao Wang, Wen-Hua Dong, Cai-Hong Cai, Wen-Li Mei, Hao-Fu Dai. A new ergostane derivative from the leaves of Heynea trijuga Roxburgh.
Natural product research.
2021 Oct; 35(20):3494-3499. doi:
10.1080/14786419.2020.1712383
. [PMID: 31951483] - Stefanos Stravoravdis, Robert E Marra, Nicholas R LeBlanc, Jo Anne Crouch, Jonathan P Hulvey. Evidence for the Role of CYP51A and Xenobiotic Detoxification in Differential Sensitivity to Azole Fungicides in Boxwood Blight Pathogens.
International journal of molecular sciences.
2021 Aug; 22(17):. doi:
10.3390/ijms22179255
. [PMID: 34502161] - Jonna Bouwknegt, Sanne J Wiersma, Raúl A Ortiz-Merino, Eline S R Doornenbal, Petrik Buitenhuis, Martin Giera, Christoph Müller, Jack T Pronk. A squalene-hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-limited anaerobic environments.
Proceedings of the National Academy of Sciences of the United States of America.
2021 08; 118(32):. doi:
10.1073/pnas.2105225118
. [PMID: 34353908] - Xingtao Bao, Rui Yang, Shilong Jiang, Jinping Zhao, Delu Wang, Dongxue Li, Xian Wu, Baoan Song, Zhuo Chen. A Novel Sulfone Derivative Controls Lasiodiplodia theobromae in Tea Leaf Spot by Reducing the Ergosterol Content.
Molecular plant-microbe interactions : MPMI.
2021 Aug; 34(8):922-938. doi:
10.1094/mpmi-12-20-0343-r
. [PMID: 33822647] - Karolina Połeć, Karolina Olechowska, Amanda Klejdysz, Michał Dymek, Rafał Rachwalik, Elżbieta Sikora, Katarzyna Hąc-Wydro. The influence of ergosterol on the action of the hop oil and its major terpenes on model fungi membranes. Towards understanding the mechanism of action of phytocompounds for food and plant protection.
Chemistry and physics of lipids.
2021 08; 238(?):105092. doi:
10.1016/j.chemphyslip.2021.105092
. [PMID: 34000279] - Nour Fattouh, Dana Hdayed, Geovanni Geukgeuzian, Sima Tokajian, Roy A Khalaf. Molecular mechanism of fluconazole resistance and pathogenicity attributes of Lebanese Candida albicans hospital isolates.
Fungal genetics and biology : FG & B.
2021 08; 153(?):103575. doi:
10.1016/j.fgb.2021.103575
. [PMID: 34033880] - Adam Voshall, Nakeirah T M Christie, Suzanne L Rose, Maya Khasin, James L Van Etten, Jennifer E Markham, Wayne R Riekhof, Kenneth W Nickerson. Sterol Biosynthesis in Four Green Algae: A Bioinformatic Analysis of the Ergosterol Versus Phytosterol Decision Point.
Journal of phycology.
2021 08; 57(4):1199-1211. doi:
10.1111/jpy.13164
. [PMID: 33713347] - Benesh M Somai, Vuyokazi Belewa, Carminita Frost. Tulbaghia violacea (Harv) Exerts its Antifungal Activity by Reducing Ergosterol Production in Aspergillus flavus.
Current microbiology.
2021 Aug; 78(8):2989-2997. doi:
10.1007/s00284-021-02546-1
. [PMID: 34100987] - Azadeh Alavizargar, Fabian Keller, Roland Wedlich-Söldner, Andreas Heuer. Effect of Cholesterol Versus Ergosterol on DPPC Bilayer Properties: Insights from Atomistic Simulations.
The journal of physical chemistry. B.
2021 07; 125(28):7679-7690. doi:
10.1021/acs.jpcb.1c03528
. [PMID: 34255501] - Issei Kato, Yuuta Ukai, Noriyasu Kondo, Kohei Nozu, Chiaki Kimura, Kumi Hashimoto, Eri Mizusawa, Hideki Maki, Akira Naito, Makoto Kawai. Identification of Thiazoyl Guanidine Derivatives as Novel Antifungal Agents Inhibiting Ergosterol Biosynthesis for Treatment of Invasive Fungal Infections.
Journal of medicinal chemistry.
2021 07; 64(14):10482-10496. doi:
10.1021/acs.jmedchem.1c00883
. [PMID: 34189911] - Takuma Kishimoto, Tetsuo Mioka, Eriko Itoh, David E Williams, Raymond J Andersen, Kazuma Tanaka. Phospholipid flippases and Sfk1 are essential for the retention of ergosterol in the plasma membrane.
Molecular biology of the cell.
2021 07; 32(15):1374-1392. doi:
10.1091/mbc.e20-11-0699
. [PMID: 34038161] - Yin Zheng, Yanhong Shang, Mengyun Li, Yunzhou Li, Wuqing Ouyang. Antifungal Activities of cis-trans Citral Isomers against Trichophyton rubrum with ERG6 as a Potential Target.
Molecules (Basel, Switzerland).
2021 Jul; 26(14):. doi:
10.3390/molecules26144263
. [PMID: 34299538] - Bin Li, Yi Kuang, Yang Yi, Xue Qiao, Lei Liang, Min Ye. Chemical modifications of ergostane-type triterpenoids from Antrodia camphorata and their cytotoxic activities.
Bioorganic & medicinal chemistry letters.
2021 07; 43(?):128066. doi:
10.1016/j.bmcl.2021.128066
. [PMID: 33915258] - A A Baghirova, Kh M Kasumov. [Antifungal macrocycle antibiotic amphotericin B - its present and future. Multidisciplinary perspective for the use in the medical practice].
Biomeditsinskaia khimiia.
2021 Jul; 67(4):311-322. doi:
10.18097/pbmc20216704311
. [PMID: 34414889]