NCBI Taxonomy: 4930
Saccharomyces (ncbi_taxid: 4930)
found 123 associated metabolites at genus taxonomy rank level.
Ancestor: Saccharomycetaceae
Child Taxonomies: Saccharomyces bayanus, Saccharomyces douglasii, Saccharomyces paradoxus, Saccharomyces jurei, Saccharomyces chevalieri, Saccharomyces cerevisiae, Saccharomyces uvarum, Saccharomyces pastorianus, Saccharomyces mikatae, Saccharomyces ellipsoideus, Saccharomyces norbensis, Saccharomyces eubayanus, Saccharomyces cariocanus, Saccharomyces arboricola, unclassified Saccharomyces, Saccharomyces kudriavzevii, Saccharomyces cf. cerevisiae, Saccharomyces cf. bayanus/pastorianus, Saccharomyces aff. eubayanus FYB-2014, Saccharomyces cf. cerevisiae/paradoxus, Saccharomyces bayanus x Saccharomyces uvarum, Saccharomyces eubayanus x Saccharomyces uvarum, Saccharomyces paradoxus x Saccharomyces uvarum, Saccharomyces cerevisiae x Saccharomyces jurei, Saccharomyces uvarum x Saccharomyces eubayanus, Saccharomyces cf. cerevisiae/paradoxus RS-2012, Saccharomyces cerevisiae x Saccharomyces uvarum, Saccharomyces cerevisiae x Saccharomyces mikatae, Saccharomyces bayanus x Saccharomyces cerevisiae, Saccharomyces cerevisiae x Saccharomyces bayanus, Saccharomyces cerevisiae x Saccharomyces paradoxus, Saccharomyces cerevisiae x Saccharomyces eubayanus, Saccharomyces arboricola x Saccharomyces paradoxus, Saccharomyces cerevisiae x Saccharomyces arboricola, Saccharomyces kudriavzevii x Saccharomyces paradoxus, Saccharomyces cerevisiae x Saccharomyces pastorianus, Saccharomyces cerevisiae x Saccharomyces kudriavzevii, Saccharomyces cerevisiae x Saccharomyces cf. kudriavzevii, Saccharomyces cerevisiae x Saccharomyces eubayanus x Saccharomyces uvarum, Saccharomyces uvarum x Saccharomyces mikatae x Saccharomyces kudriavzevii, Saccharomyces cerevisiae x Saccharomyces uvarum x Saccharomyces eubayanus, Saccharomyces cerevisiae x Saccharomyces kudriavzevii x Saccharomyces uvarum, Saccharomyces bayanus x Saccharomyces cerevisiae x Saccharomyces kudriavzevii, Saccharomyces cerevisiae x Saccharomyces kudriavzevii x Saccharomyces bayanus, Saccharomyces cerevisiae x Saccharomyces arboricola x Saccharomyces paradoxus, Saccharomyces cerevisiae x Saccharomyces kudriavzevii x Saccharomyces eubayanus, Saccharomyces bayanus x Saccharomyces cerevisiae x Saccharomyces cf. kudriavzevii, Saccharomyces cerevisiae x Saccharomyces arboricola x Saccharomyces mikatae x Saccharomyces uvarum, Saccharomyces cerevisiae x Saccharomyces kudriavzevii x Saccharomyces mikatae x Saccharomyces uvarum, Saccharomyces cerevisiae x Saccharomyces eubayanus x Saccharomyces kudriavzevii x Saccharomyces uvarum, Saccharomyces cerevisiae x Saccharomyces kudriavzevii x Saccharomyces mikatae x Saccharomyces uvarum x Saccharomyces arboricola x Saccharomyces paradoxus
L-Threonine
L-threonine is an optically active form of threonine having L-configuration. It has a role as a nutraceutical, a micronutrient, a Saccharomyces cerevisiae metabolite, a plant metabolite, an Escherichia coli metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, a threonine and a L-alpha-amino acid. It is a conjugate base of a L-threoninium. It is a conjugate acid of a L-threoninate. It is an enantiomer of a D-threonine. It is a tautomer of a L-threonine zwitterion. An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Threonine is an essential amino acid in humans (provided by food), Threonine is an important residue of many proteins, such as tooth enamel, collagen, and elastin. An important amino acid for the nervous system, threonine also plays an important role in porphyrin and fat metabolism and prevents fat buildup in the liver. Useful with intestinal disorders and indigestion, threonine has also been used to alleviate anxiety and mild depression. (NCI04) Threonine is an essential amino acid in humans. It is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. This amino acid has been useful in the treatment of genetic spasticity disorders and multiple sclerosis at a dose of 1 gram daily. It is highly concentrated in meat products, cottage cheese and wheat germ. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Threonine catabolism in mammals appears to be due primarily (70-80\\\\\\%) to the activity of threonine dehydrogenase (EC 1.1.1.103) that oxidizes threonine to 2-amino-3-oxobutyrate, which forms glycine and acetyl CoA, whereas threonine dehydratase (EC 4.2.1.16) that catabolizes threonine into 2-oxobutyrate and ammonia, is significantly less active. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (A3450). An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. See also: Amlisimod (monomer of) ... View More ... Threonine (Thr) or L-threonine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-threonine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Threonine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. Threonine is sometimes considered as a branched chain amino acid. Threonine was actually the last of the 20 amino acids to be discovered (in 1938). It was named threonine because it was similar in structure to threonic acid, a four-carbon monosaccharide. Threonine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. Foods high in threonine include cottage cheese, poultry, fish, meat, lentils, black turtle bean and sesame seeds. Adult humans require about 20 mg/kg body weight/day. In plants and microorganisms, threonine is synthesized from aspartic acid via alpha-aspartyl-semialdehyde and homoserine. In proteins, the threonine residue is susceptible to numerous posttranslational modifications. The hydroxyl side-chain can undergo O-linked glycosylation and phosphorylation through the action of a threonine kinase. Threonine is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (PMID 9853925). Threonine is metabolized in at least two ways. In many animals it is converted to pyruvate via threonine dehydrogenase. An intermediate in this pathway can undergo thiolysis with CoA to produce acetyl-CoA and glycine. In humans the gene for threonine dehydrogenase is an inactive pseudogene, so threonine is converted to alpha-ketobutyrate. From wide variety of protein hydrolysates. Dietary supplement, nutrient L-Threonine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=72-19-5 (retrieved 2024-07-01) (CAS RN: 72-19-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].
L-Proline
Proline (Pro), also known as L-proline is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Proline is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Proline is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. Proline is derived from the amino acid L-glutamate in which glutamate-5-semialdehyde is first formed by glutamate 5-kinase and glutamate-5-semialdehyde dehydrogenase (which requires NADH or NADPH). This semialdehyde can then either spontaneously cyclize to form 1-pyrroline-5-carboxylic acid, which is reduced to proline by pyrroline-5-carboxylate reductase, or turned into ornithine by ornithine aminotransferase, followed by cyclization by ornithine cyclodeaminase to form proline. L-Proline has been found to act as a weak agonist of the glycine receptor and of both NMDA and non-NMDA ionotropic glutamate receptors. It has been proposed to be a potential endogenous excitotoxin/neurotoxin. Studies in rats have shown that when injected into the brain, proline non-selectively destroys pyramidal and granule cells (PMID: 3409032 ). Therefore, under certain conditions proline can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of proline are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. People with hyperprolinemia type I often do not show any symptoms even though they have proline levels in their blood between 3 and 10 times the normal level. Some individuals with hyperprolinemia type I exhibit seizures, intellectual disability, or other neurological or psychiatric problems. Hyperprolinemia type II results in proline levels in the blood between 10 and 15 times higher than normal, and high levels of a related compound called pyrroline-5-carboxylate. Hyperprolinemia type II has signs and symptoms that vary in severity and is more likely than type I to involve seizures or intellectual disability. L-proline is pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. It has a role as a micronutrient, a nutraceutical, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a member of compatible osmolytes. It is a glutamine family amino acid, a proteinogenic amino acid, a proline and a L-alpha-amino acid. It is a conjugate base of a L-prolinium. It is a conjugate acid of a L-prolinate. It is an enantiomer of a D-proline. It is a tautomer of a L-proline zwitterion. Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. L-Proline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Proline is a cyclic, nonessential amino acid (actually, an imino acid) in humans (synthesized from glutamic acid and other amino acids), Proline is a constituent of many proteins. Found in high concentrations in collagen, proline constitutes almost a third of the residues. Collagen is the main supportive protein of skin, tendons, bones, and connective tissue and promotes their health and healing. (NCI04) L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. Pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. Flavouring ingredient; dietary supplement L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins.
L-Phenylalanine
Phenylalanine (Phe), also known as L-phenylalanine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-phenylalanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Phenylalanine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aromatic, non-polar amino acid. In humans, phenylalanine is an essential amino acid and the precursor of the amino acid tyrosine. Like tyrosine, phenylalanine is also a precursor for catecholamines including tyramine, dopamine, epinephrine, and norepinephrine. Catecholamines are neurotransmitters that act as adrenalin-like substances. Interestingly, several psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper, and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in a number of high protein foods, such as meat, cottage cheese, and wheat germ. An additional dietary source of phenylalanine is artificial sweeteners containing aspartame (a methyl ester of the aspartic acid/phenylalanine dipeptide). As a general rule, aspartame should be avoided by phenylketonurics and pregnant women. When present in sufficiently high levels, phenylalanine can act as a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of phenylalanine are associated with at least five inborn errors of metabolism, including Hartnup disorder, hyperphenylalaninemia due to guanosine triphosphate cyclohydrolase deficiency, phenylketonuria (PKU), tyrosinemia type 2 (or Richner-Hanhart syndrome), and tyrosinemia type III (TYRO3). Phenylketonurics have elevated serum plasma levels of phenylalanine up to 400 times normal. High plasma concentrations of phenylalanine influence the blood-brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into the brain and restrict the entry of other large neutral amino acids (PMID: 19191004). Phenylalanine has been found to interfere with different cerebral enzyme systems. Untreated phenylketonuria (PKU) can lead to intellectual disability, seizures, behavioural problems, and mental disorders. It may also result in a musty smell and lighter skin. Classic PKU dramatically affects myelination and white matter tracts in untreated infants; this may be one major cause of neurological disorders associated with phenylketonuria. Mild phenylketonuria can act as an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. It has been recently suggested that PKU may resemble amyloid diseases, such as Alzheimers disease and Parkinsons disease, due to the formation of toxic amyloid-like assemblies of phenylalanine (PMID: 22706200). Phenylalanine also has some potential benefits. Phenylalanine can act as an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-DOPA, produce a catecholamine-like effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. For instance, some tumours use more phen... L-phenylalanine is an odorless white crystalline powder. Slightly bitter taste. pH (1\\\\\\% aqueous solution) 5.4 to 6. (NTP, 1992) L-phenylalanine is the L-enantiomer of phenylalanine. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a plant metabolite, an algal metabolite, a mouse metabolite, a human xenobiotic metabolite and an EC 3.1.3.1 (alkaline phosphatase) inhibitor. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a phenylalanine and a L-alpha-amino acid. It is a conjugate base of a L-phenylalaninium. It is a conjugate acid of a L-phenylalaninate. It is an enantiomer of a D-phenylalanine. It is a tautomer of a L-phenylalanine zwitterion. Phenylalanine is an essential aromatic amino acid that is a precursor of melanin, [dopamine], [noradrenalin] (norepinephrine), and [thyroxine]. L-Phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phenylalanine is an essential aromatic amino acid in humans (provided by food), Phenylalanine plays a key role in the biosynthesis of other amino acids and is important in the structure and function of many proteins and enzymes. Phenylalanine is converted to tyrosine, used in the biosynthesis of dopamine and norepinephrine neurotransmitters. The L-form of Phenylalanine is incorporated into proteins, while the D-form acts as a painkiller. Absorption of ultraviolet radiation by Phenylalanine is used to quantify protein amounts. (NCI04) Phenylalanine is an essential amino acid and the precursor for the amino acid tyrosine. Like tyrosine, it is the precursor of catecholamines in the body (tyramine, dopamine, epinephrine and norepinephrine). The psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is a precursor of the neurotransmitters called catecholamines, which are adrenalin-like substances. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in high protein foods, such as meat, cottage cheese and wheat germ. A new dietary source of phenylalanine is artificial sweeteners containing aspartame. Aspartame appears to be nutritious except in hot beverages; however, it should be avoided by phenylketonurics and pregnant women. Phenylketonurics, who have a genetic error of phenylalanine metabolism, have elevated serum plasma levels of phenylalanine up to 400 times normal. Mild phenylketonuria can be an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. Phenylalanine can be an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-dopa, produce a catecholamine effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. Some tumors use more phenylalanine (particularly melatonin-producing tumors called melanoma). One strategy is to exclude this amino acid from the diet, i.e., a Phenylketonuria (PKU) diet (compliance is a difficult issue; it is hard to quantify and is under-researched). The other strategy is just to increase phenylalanines competing amino acids, i.e., tryptophan, valine, isoleucine and leucine, but not tyrosine. An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. See also: Plovamer (monomer of); Plovamer Acetate (monomer of) ... View More ... L-phenylalanine, also known as phe or f, belongs to phenylalanine and derivatives class of compounds. Those are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-phenylalanine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). L-phenylalanine can be found in watermelon, which makes L-phenylalanine a potential biomarker for the consumption of this food product. L-phenylalanine can be found primarily in most biofluids, including sweat, blood, urine, and cerebrospinal fluid (CSF), as well as throughout all human tissues. L-phenylalanine exists in all living species, ranging from bacteria to humans. In humans, L-phenylalanine is involved in a couple of metabolic pathways, which include phenylalanine and tyrosine metabolism and transcription/Translation. L-phenylalanine is also involved in few metabolic disorders, which include phenylketonuria, tyrosinemia type 2 (or richner-hanhart syndrome), and tyrosinemia type 3 (TYRO3). Moreover, L-phenylalanine is found to be associated with viral infection, dengue fever, hypothyroidism, and myocardial infarction. L-phenylalanine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylalanine (Phe or F) is an α-amino acid with the formula C 9H 11NO 2. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino acid is classified as neutral, and nonpolar because of the inert and hydrophobic nature of the benzyl side chain. The L-isomer is used to biochemically form proteins, coded for by DNA. The codons for L-phenylalanine are UUU and UUC. Phenylalanine is a precursor for tyrosine; the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline); and the skin pigment melanin . Hepatic. L-phenylalanine that is not metabolized in the liver is distributed via the systemic circulation to the various tissues of the body, where it undergoes metabolic reactions similar to those that take place in the liver (DrugBank). If PKU is diagnosed early, an affected newborn can grow up with normal brain development, but only by managing and controlling phenylalanine levels through diet, or a combination of diet and medication. The diet requires severely restricting or eliminating foods high in phenylalanine, such as meat, chicken, fish, eggs, nuts, cheese, legumes, milk and other dairy products. Starchy foods, such as potatoes, bread, pasta, and corn, must be monitored. Optimal health ranges (or "target ranges") of serum phenylalanine are between 120 and 360 µmol/L, and aimed to be achieved during at least the first 10 years of life. Recently it has been found that a chiral isomer of L-phenylalanine (called D-phenylalanine) actually arrests the fibril formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent amyloid formation by L-phenylalanine. D-phenylalanine may qualify as a therapeutic molecule in phenylketonuria (A8161) (T3DB). L-Phenylalanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-91-2 (retrieved 2024-07-01) (CAS RN: 63-91-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
Ergosterol
Ergosterol is a phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. It has a role as a fungal metabolite and a Saccharomyces cerevisiae metabolite. It is a 3beta-sterol, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL. Ergosterol is a natural product found in Gladiolus italicus, Ramaria formosa, and other organisms with data available. ergosterol is a metabolite found in or produced by Saccharomyces cerevisiae. A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2). See also: Reishi (part of). Ergosterol, also known as provitamin D2, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, ergosterol is considered to be a sterol lipid molecule. Ergosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Ergosterol is the biological precursor to vitamin D2. It is turned into viosterol by ultraviolet light, and is then converted into ergocalciferol, which is a form of vitamin D. Ergosterol is a component of fungal cell membranes, serving the same function that cholesterol serves in animal cells. Ergosterol is not found in mammalian cell membranes. A phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. Ergosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-87-4 (retrieved 2024-07-12) (CAS RN: 57-87-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.
Campesterol
Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
L-Isoleucine
Isoleucine (Ile) or L-isoleucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-isolecuine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Isoleucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Isoleucine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. In plants and microorganisms, isoleucine is synthesized starting from pyruvate and alpha-ketobutyrate. Isoleucine is classified as a branched chain amino acid (BCAA). BCAAs include three amino acids: isoleucine, leucine and valine. They are alpha amino acids whose carbon structure is marked by a beta branch point. Despite their structural similarities, BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. Isoleucine is catabolized via with alpha-ketoglutarate where upon it is oxidized and split into propionyl-CoA and acetyl-CoA. Propionyl-CoA is converted into succinyl-CoA, a TCA cycle intermediate which can be converted into oxaloacetate for gluconeogenesis (hence glucogenic). The acetyl-CoA can be fed into the TCA cycle by condensing with oxaloacetate to form citrate or used in the synthesis of ketone bodies or fatty acids. The different metabolism of BCAAs accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine are required respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. BCAAs are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia. An inability to break down isoleucine, along with other amino acids, is associated with maple syrup urine disease (MSUD) (PMID: 34125801). Isoleucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of isoleucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). Mice fed an isoleucine deprivation diet for one day have improved insulin sensitivity, and feeding of an isoleucine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). L-isoleucine is the L-enantiomer of isoleucine. It has a role as a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a plant metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, an isoleucine and a L-alpha-amino acid. It is a conjugate base of a L-isoleucinium. It is a conjugate acid of a L-isoleucinate. It is an enantiomer of a D-isoleucine. It is a tautomer of a L-isoleucine zwitterion. An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of leucine. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. L-Isoleucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Isoleucine is one of nine essential amino acids in humans (present in dietary proteins), Isoleucine has diverse physiological functions, such as assisting wound healing, detoxification of nitrogenous wastes, stimulating immune function, and promoting secretion of several hormones. Necessary for hemoglobin formation and regulating blood sugar and energy levels, isoleucine is concentrated in muscle tissues in humans. Isoleucine is found especially in meats, fish, cheese, eggs, and most seeds and nuts. (NCI04) L-Isoleucine is one of the essential amino acids that cannot be made by the body and is known for its ability to help endurance and assist in the repair and rebuilding of muscle. This amino acid is important to body builders as it helps boost energy and helps the body recover from training. L-Isoleucine is also classified as a branched-chain amino acid (BCAA). It helps promote muscle recovery after exercise. Isoleucine is actually broken down for energy within the muscle tissue. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. L-Isoleucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-32-5 (retrieved 2024-07-01) (CAS RN: 73-32-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid. L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.
serin
Serine is an alpha-amino acid that is alanine substituted at position 3 by a hydroxy group. It has a role as a fundamental metabolite. It is an alpha-amino acid and a polar amino acid. It contains a hydroxymethyl group. It is a conjugate base of a serinium. It is a conjugate acid of a serinate. It is a tautomer of a serine zwitterion. DL-Serine, a fundamental metabolite, is a mixture of D-Serine and L-Serine. DL-Serine has antiviral activity against the multiplication of tobacco mosaic virus (TMV)[1]. DL-Serine, a fundamental metabolite, is a mixture of D-Serine and L-Serine. DL-Serine has antiviral activity against the multiplication of tobacco mosaic virus (TMV)[1]. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2]. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2]. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.
Asparagine
Asparagine (Asn) or L-asparagine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Asparagine is found in all organisms ranging from bacteria to plants to animals. In humans, asparagine is not an essential amino acid, which means that it can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. The precursor to asparagine is oxaloacetate. Oxaloacetate is converted to aspartate using a transaminase enzyme. This enzyme transfers the amino group from glutamate to oxaloacetate producing alpha-ketoglutarate and aspartate. The enzyme asparagine synthetase produces asparagine, AMP, glutamate, and pyrophosphate from aspartate, glutamine, and ATP. In the asparagine synthetase reaction, ATP is used to activate aspartate, forming beta-aspartyl-AMP. Glutamine donates an ammonium group which reacts with beta-aspartyl-AMP to form asparagine and free AMP. Since the asparagine side chain can make efficient hydrogen bond interactions with the peptide backbone, asparagines are often found near the beginning and end of alpha-helices, and in turn motifs in beta sheets. Its role can be thought as "capping" the hydrogen bond interactions which would otherwise need to be satisfied by the polypeptide backbone. Asparagine also provides key sites for N-linked glycosylation, a modification of the protein chain that is characterized by the addition of carbohydrate chains. A reaction between asparagine and reducing sugars or reactive carbonyls produces acrylamide (acrylic amide) in food when heated to sufficient temperature (i.e. baking). These occur primarily in baked goods such as French fries, potato chips, and roasted coffee. Asparagine was first isolated in 1806 from asparagus juice --hence its name. Asparagine was the first amino acid to be isolated. The smell observed in the urine of some individuals after the consumption of asparagus is attributed to a byproduct of the metabolic breakdown of asparagine, asparagine-amino-succinic-acid monoamide. However, some scientists disagree and implicate other substances in the smell, especially methanethiol. [Spectral] L-Asparagine (exact mass = 132.05349) and L-Aspartate (exact mass = 133.03751) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. One of the nonessential amino acids. Dietary supplement, nutrient. Widely distributed in the plant kingdom. Isolated from asparagus, beetroot, peas, beans, etc. (-)-Asparagine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-47-3 (retrieved 2024-07-15) (CAS RN: 70-47-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue.
L-Cystathionine
Cystathionine is a dipeptide formed by serine and homocysteine. Cystathioninuria is a prominent manifestation of vitamin-B6 deficiency. The transsulfuration of methionine yields homocysteine, which combines with serine to form cystathionine, the proximate precursor of cysteine through the enzymatic activity of cystathionase. In conditions in which cystathionine gamma-synthase or cystathionase is deficient, for example, there is cystathioninuria. Although cystathionine has not been detected in normal human serum or plasma by most conventional methods, gas chromatographic/mass spectrometric methodology detected a mean concentration of cystathionine in normal human serum of 140 nM, with a range of 65 to 301 nM. Cystathionine concentrations in CSF have been 10, 1, and 0.5 uM, and "not detected". Only traces (i.e., <1 uM) of cystathionine are present in normal CSF.587. Gamma-cystathionase deficiency (also known as Cystathioninuria), which is an autosomal recessive disorder (NIH: 2428), provided the first instance in which, in a human, the major biochemical abnormality due to a defined enzyme defect was clearly shown to be alleviated by administration of large doses of pyridoxine. The response in gamma-cystathionase-deficient patients is not attributable to correction of a preexisting deficiency of this vitamin (OMMBID, Chap. 88). Isolated from Phallus impudicus (common stinkhorn) CONFIDENCE standard compound; INTERNAL_ID 146 KEIO_ID C019; [MS2] KO008910 KEIO_ID C047 KEIO_ID C019 Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 30 L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].
L-Histidinol
L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumour cells of animal origin (PMID:8297120). L-Histidinol inhibits human myristoyl-CoA:protein-myristoyltransferase (hNMT), an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate into the NH2-terminal glycine residue of a number of important proteins of diverse function (PMID:9778369). L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumor cells of animal origin. (PMID 8297120)
L-Lysine
Lysine (Lys), also known as L-lysine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Lysine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Lysine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, positively charged or basic amino acid. In humans, lysine is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. Lysine is high in foods such as wheat germ, cottage cheese and chicken. Of meat products, wild game and pork have the highest concentration of lysine. Fruits and vegetables contain little lysine, except avocados. Normal requirements for lysine have been found to be about 8 g per day or 12 mg/kg in adults. Children and infants need more, 44 mg/kg per day for an eleven to-twelve-year old, and 97 mg/kg per day for three-to six-month old. In organisms that synthesise lysine, it has two main biosynthetic pathways, the diaminopimelate and α-aminoadipate pathways, which employ distinct enzymes and substrates and are found in diverse organisms. Lysine catabolism occurs through one of several pathways, the most common of which is the saccharopine pathway. Lysine plays several roles in humans, most importantly proteinogenesis, but also in the crosslinking of collagen polypeptides, uptake of essential mineral nutrients, and in the production of carnitine, which is key in fatty acid metabolism. Lysine is also often involved in histone modifications, and thus, impacts the epigenome. Lysine is highly concentrated in muscle compared to most other amino acids. Normal lysine metabolism is dependent upon many nutrients including niacin, vitamin B6, riboflavin, vitamin C, glutamic acid and iron. Excess arginine antagonizes lysine. Several inborn errors of lysine metabolism are known, such as cystinuria, hyperdibasic aminoaciduria I, lysinuric protein intolerance, propionic acidemia, and tyrosinemia I. Most are marked by mental retardation with occasional diverse symptoms such as absence of secondary sex characteristics, undescended testes, abnormal facial structure, anemia, obesity, enlarged liver and spleen, and eye muscle imbalance. Lysine also may be a useful adjunct in the treatment of osteoporosis. Although high protein diets result in loss of large amounts of calcium in urine, so does lysine deficiency. Lysine may be an adjunct therapy because it reduces calcium losses in urine. Lysine deficiency also may result in immunodeficiency. Requirements for lysine are probably increased by stress. Lysine toxicity has not occurred with oral doses in humans. Lysine dosages are presently too small and may fail to reach the concentrations necessary to prove potential therapeutic applications. Lysine metabolites, amino caproic acid and carnitine have already shown their therapeutic potential. Thirty grams daily of amino caproic acid has been used as an initial daily dose in treating blood clotting disorders, indicating that the proper doses of lysine, its precursor, have yet to be used in medicine. Low lysine levels have been found in patients with Parkinsons, hypothyroidism, kidney disease, asthma and depression. The exact significance of these levels is unclear, yet lysine therapy can normalize the level and has been associated with improvement of some patients with these conditions. Abnormally elevated hydroxylysines have been found in virtually all chronic degenerative diseases and those treated with coumadin therapy. The levels of this stress marker may be improved by high doses of vitamin C. Lysine is particularly useful in therapy for marasmus (wasting) (http://www.dcnutrition.com). Lysine has also been sh... [Spectral] L-Lysine (exact mass = 146.10553) and Carnosine (exact mass = 226.10659) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, nutrient. Found widely in protein hydrolysates, e.g. casein, egg albumen, fibrin, gelatin, beet molasses. Flavouring agent for a variety of foods L-Lysine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-87-1 (retrieved 2024-07-01) (CAS RN: 56-87-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2]. L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2].
Pyridoxine
Pyridoxine, also known vitamin B6, is commonly found in food and is used as a dietary supplement. Pyridoxine is an essential nutrient, meaning the body cannot synthesize it, and it must be obtained from the diet. Sources in the diet include fruit, vegetables, and grain. Although pyridoxine and vitamin B6 are still frequently used as synonyms, especially by medical researchers, this practice is sometimes misleading (PMID: 2192605). Technically, pyridoxine is one of the compounds that can be called vitamin B6 or it is a member of the family of B6 vitamins. Healthy human blood levels of pyridoxine are 2.1 - 21.7 ng/mL. Pyridoxine is readily converted to pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids and aminolevulinic acid. Pyridoxine assists in the balancing of sodium and potassium as well as promoting red blood cell production. Therefore pyridoxine is required by the body to make amino acids, carbohydrates, and lipids. It is linked to cancer immunity and helps fight the formation of homocysteine. It has been suggested that pyridoxine might help children with learning difficulties, and may also prevent dandruff, eczema, and psoriasis. In addition, pyridoxine can help balance hormonal changes in women and aid in immune system. Lack of pyridoxine may cause anemia, nerve damage, seizures, skin problems, and sores in the mouth (Wikipedia). Deficiency of pyridoxine, though rare because of widespread distribution in foods, leads to the development of peripheral neuritis in adults and affects the central nervous system in children (DOSE - 3rd edition). As a supplement pyridoxine is used to treat and prevent pyridoxine deficiency, sideroblastic anaemia, pyridoxine-dependent epilepsy, certain metabolic disorders, problems from isoniazid, and certain types of mushroom poisoning. Pyridoxine in combination with doxylamine is used as a treatment for morning sickness in pregnant women. Found in rice husks, cane molasses, yeast, wheat germ and cod liver oils. Vitamin, dietary supplement, nutrient. Pyridoxine is one of the compounds that can be called vitamin B6, along with pyridoxal and pyridoxamine. It differs from pyridoxamine by the substituent at the 4 position. It is often used as pyridoxine hydrochloride. Pyridoxine in the urine is a biomarker for the consumption of soy products. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map KEIO_ID P053 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.
Phosphoserine
The phosphoric acid ester of serine. As a constituent (residue) of proteins, its side chain can undergo O-linked glycosylation. This might be important in explaining some of the devastating consequences of diabetes. It is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. Phosphorylated serine residues are often referred to as phosphoserine. Serine proteases are a common type of protease. Serine, organic compound, one of the 20 amino acids commonly found in animal proteins. Only the L-stereoisomer appears in mammalian protein. It is not essential to the human diet, since it can be synthesized in the body from other metabolites, including glycine. Serine was first obtained from silk protein, a particularly rich source, in 1865. Its name is derived from the Latin for silk, sericum. Serines structure was established in 1902. [HMDB] Phosphoserine is the phosphoric acid ester of the amino acid serine. It is found in essentially all living organisms ranging from microbes to plants to mammals. Phosphoserine is a component of many proteins as the result of posttranslational modifications to the native protein’s serine residue(s). The phosphorylation of the hydroxyl functional group in serine to produce phosphoserine is catalyzed by various types of kinases. Serine is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. Free phosphoserine is found in many biofluids and likely arises from the proteolysis of proteins containing phosphoserine residues (PMID: 7693088). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P060 DL-O-Phosphoserine, a normal metabolite in human biofluid, is an ester of serine and phosphoric acid.
Cholesterol
Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
Lanosterol
Lanosterol, also known as lanosterin, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Thus, lanosterol is considered to be a sterol lipid molecule. Lanosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Lanosterol is biochemically synthesized starting from acetyl-CoA by the HMG-CoA reductase pathway. The critical step is the enzymatic conversion of the acyclic terpene squalene to the polycylic lanosterol via 2,3-squalene oxide. Constituent of wool fat used e.g. as chewing-gum softenerand is) also from yeast COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
fecosterol
Fecosterol, also known as 24-methylene-5alpha-cholest-8-en-3beta-ol or delta-8(24),28-ergostadienol, belongs to ergosterols and derivatives class of compounds. Those are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, fecosterol is considered to be a sterol lipid molecule. Fecosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Fecosterol can be synthesized from 5alpha-ergostane. Fecosterol can also be synthesized into fecosterol ester. Fecosterol can be found in a number of food items such as jews ear, lima bean, persimmon, and european plum, which makes fecosterol a potential biomarker for the consumption of these food products. Fecosterol may be a unique S.cerevisiae (yeast) metabolite. Fecosterol is a sterol made by certain fungi and lichens .
7-Dehydrodesmosterol
7-dehydrodesmosterol, also known as cholesta-5,7,24-trien-3beta-ol or 24-dehydroprovitamin d3, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, 7-dehydrodesmosterol is considered to be a sterol lipid molecule. 7-dehydrodesmosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 7-dehydrodesmosterol can be found in a number of food items such as nectarine, orange bell pepper, cinnamon, and carrot, which makes 7-dehydrodesmosterol a potential biomarker for the consumption of these food products. In humans, 7-dehydrodesmosterol is involved in several metabolic pathways, some of which include atorvastatin action pathway, simvastatin action pathway, pamidronate action pathway, and steroid biosynthesis. 7-dehydrodesmosterol is also involved in several metabolic disorders, some of which include mevalonic aciduria, wolman disease, chondrodysplasia punctata II, X linked dominant (CDPX2), and hyper-igd syndrome. 7-Dehydrodesmosterol is a sterol intermediate in the biosynthesis of steroids. 7-Dehydrodesmosterol is a substrate of the enzyme 24-dehydrocholesterol reductase (EC:1.3.1.72), an important enzyme in the biosynthesis of Cholesterol. Cholesterol is synthesized from either Lathosterol, 7-Dehydrocholesterol, Desmosterol or Cholestenol by the enzyme 3beta-hydroxysterol delta7 reductase (EC 1.3.1.21, Dhcr7). The Smith-Lemli-Opitz syndrome (SLOS, OMIM 270400) is caused by a genetic defect in cholesterol biosynthesis; mutations in the enzyme 3beta-hydroxysterol delta7 reductase lead to a failure of cholesterol synthesis, with an accumulation of precursor sterols, such as 7-Dehydrodesmosterol. SLOS results in craniofacial, limb as well as major organ defects, including the brain. In individuals with this syndrome, mental retardation, as well as other CNS dysfunction, is almost 100\\% prevalent. (PMID: 15862627, 17197219).
Episterol
Episterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, episterol is considered to be a sterol lipid molecule. Episterol is involved in the biosynthesis of steroids. Episterol is converted from 24-methylenelophenol. Episterol is converted into 5-dehydroepisterol by lathosterol oxidase (EC 1.14.21.6). Episterol is involved in the biosynthesis of steroids. Episterol is converted from 24-Methylenelophenol. Episterol is converted to 5-Dehydroepisterol by lathosterol oxidase [EC:1.14.21.6]. [HMDB]. Episterol is found in many foods, some of which are common chokecherry, eggplant, wax gourd, and red huckleberry.
D-Glucose
Glucose is a monosaccharide containing six carbon atoms and an aldehyde group. It is referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a primary source of energy for all living organisms. It is a fundamental metabolite found in all organisms, ranging from bacteria to plants to humans. Most of the world’s glucose is made by plants and algae during photosynthesis from water and carbon dioxide, where it is used to make cellulose (and other polymeric forms of glucose called polysaccharides) that stabilize plant cell walls. Glucose is also found in fruits and other parts of plants in its free state. In animals, glucose can be generated from the breakdown of glycogen in a process known as glycogenolysis. Glucose can also be synthesized de novo in animals. In particular it can be synthesized in the liver and kidneys from non-carbohydrate intermediates, such as pyruvate and glycerol, by a process known as gluconeogenesis. Humans also consume large amounts of glucose as part of their regular diet. Ingested glucose initially binds to the receptor for sweet taste on the tongue in humans. This complex of the proteins T1R2 and T1R3 makes it possible to identify glucose-containing food sources. Glucose in the body mainly comes from food - about 300 g per day for the average adult. In humans, the breakdown of glucose-containing polysaccharides happens partly during chewing by means of the enzyme known as amylase, which is contained in saliva, as well as by other enzymes such as maltase, lactase and sucrase on the brush border of the small intestine. The blood sugar content of a healthy person in the short-time fasting state, e.g. after overnight fasting, is about 70 to 100 mg/dL of blood (4 to 5.5 mM). In blood plasma, the measured values are about 10–15\\\\% higher. Dysregulated metabolism of glucose can lead to a number of diseases including diabetes. Diabetes is a metabolic disorder where the body is unable to regulate levels of glucose in the blood either because of a lack of insulin in the body or the failure, by cells in the body, to respond properly to insulin. Each of these situations can be caused by persistently high elevations of blood glucose levels, through pancreatic burnout and insulin resistance. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolysed by purely chemical means, or decomposed by fermentation or enzymes. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.
D-Leucine
An essential branched-chain amino acid important for hemoglobin formation. [PubChem]; Branched chain amino acids (BCAA) are essential amino acids whose carbon structure is marked by a branch point. These three amino acids are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAA denotes valine, isoleucine and leucine which are branched chain essential amino acids. Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are useful because they are metabolized primarily by muscle. Stress state- e.g surgery, trauma, cirrhosis, infections, fever and starvation--require proportionately more BCAA than other amino acids and probably proportionately more leucine than either valine or isoleucine. BCAA and other amino acids are frequently fed intravenously (TPN) to malnourished surgical patients and in some cases of severe trauma. BCAA, particularly leucine, stimulate protein synthesis, increase reutilization of amino acids in many organs and reduce protein breakdown. Furthermore, leucine can be an important source of calories, and is superior as fuel to the ubiquitous intravenous glucose (dextrose). Leucine also stimulates insulin release, which in turn stimulates protein synthesis and inhibits protein breakdown. These effects are particularly useful in athletic training. BCAA should also replace the use of steroids as commonly used by weightlifters. Huntingtons chorea and anorexic disorders both are characterized by low serum BCAA. These diseases, as well as forms of Parkinsons, may respond to BCAA therapy. BCAA, and particularly leucine, are among the amino acids most essential for muscle health. (http://www.dcnutrition.com); Leucine (abbreviated as Leu or L) is a branched-chain amino acid with the chemical formula HO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin and other buffer proteins. Leucine is an essential amino acid. Leucine is a branched-chain amino acid (BCAA) since it possesses an aliphatic side-chain that is non-linear. D-Leucine is a more potent anti-seizure agent than L-leucine. D-leucine potently terminates seizures even after the onset of seizure activity. D-leucine, but not L-leucine, reduces long-term potentiation but had no effect on basal synaptic transmission in vitro[1]. D-Leucine is a more potent anti-seizure agent than L-leucine. D-leucine potently terminates seizures even after the onset of seizure activity. D-leucine, but not L-leucine, reduces long-term potentiation but had no effect on basal synaptic transmission in vitro[1].
DL-2-Aminopropionic acid
(alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein), also known as ALA or 2-Aminopropanoic acid, is classified as an alanine or an Alanine derivative. Alanines are compounds containing alanine or a derivative thereof resulting from reaction of alanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) is considered to be soluble (in water) and acidic. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) can be synthesized from propionic acid. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) can be synthesized into alanine derivative. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) is an odorless tasting compound found in Green bell peppers, Green zucchinis, Italian sweet red peppers, and Red bell peppers Dietary supplement, nutrient, sweetening flavour enhancer in pickling spice mixts. DL-alanine, an amino acid, is the racemic compound of L- and D-alanine. DL-alanine is employed both as a reducing and a capping agent, used with silver nitrate aqueous solutions for the production of nanoparticles. DL-alanine can be used for the research of transition metals chelation, such as Cu(II), Zn(II), Cd(11). DL-alanine, a sweetener, is classed together with glycine, and sodium saccharin. DL-alanine plays a key role in the glucose-alanine cycle between tissues and liver[1][2][3][4][5][6].
DL-Asparagine
DL-Asparagine is a racemic melange of the Aparagine L and D-enantiomers. DL-Asparagine has been used in growth-media for bacteria-growth[1]. DL-Asparagine is a racemic melange of the Aparagine L and D-enantiomers. DL-Asparagine has been used in growth-media for bacteria-growth[1].
DL-Proline
Proline, also known as dl-proline or hpro, belongs to proline and derivatives class of compounds. Those are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Proline is soluble (in water) and a moderately acidic compound (based on its pKa). Proline can be found in a number of food items such as yellow zucchini, swiss chard, spinach, and cucumber, which makes proline a potential biomarker for the consumption of these food products. Proline (abbreviated as Pro or P; encoded by the codons CCU, CCC, CCA, and CCG) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated NH2+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain pyrrolidine, classifying it as a nonpolar (at physiological pH), aliphatic amino acid. It is non-essential in humans, meaning the body can synthesize it from the non-essential amino acid L-glutamate . CONFIDENCE standard compound; ML_ID 53 (R)-pyrrolidine-2-carboxylic acid is an endogenous metabolite. (R)-pyrrolidine-2-carboxylic acid is an endogenous metabolite.
D-methionine
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes An optically active form of methionine having D-configuration. C26170 - Protective Agent > C275 - Antioxidant C78284 - Agent Affecting Integumentary System Methionine (MRX-1024; D-Methionine) is an effective chemoprotective agent which can also inhibit the neuronal activity through GABAA receptor activation.
L-Threonine
An optically active form of threonine having L-configuration. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; AYFVYJQAPQTCCC_STSL_0105_Threonine_8000fmol_180506_S2_LC02_MS02_275; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 10 DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].
Leucine
A branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isobutyl group. Leucine (symbol Leu or L)[3] is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG. Leucine is named after the Greek word for "white": λευκός (leukós, "white"), after its common appearance as a white powder, a property it shares with many other amino acids.[4] Like valine and isoleucine, leucine is a branched-chain amino acid. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other.[5] It is the most important ketogenic amino acid in humans.[6] Leucine and β-hydroxy β-methylbutyric acid, a minor leucine metabolite, exhibit pharmacological activity in humans and have been demonstrated to promote protein biosynthesis via the phosphorylation of the mechanistic target of rapamycin (mTOR).[7][8] L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
Lysine
A diamino acid that is caproic (hexanoic) acid bearing two amino substituents at positions 2 and 6. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XB - Amino acids L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2]. L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2].
Lysine
B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XB - Amino acids L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2]. L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2].
Leucine
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
GLUTAMINE
A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives COVID info from COVID-19 Disease Map, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].
Proline
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins.
Arginine
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2]. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2].
HISTIDINE
L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport.
Phenylalanine
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
Fungisterol
An ergostanoid that is 5alpha-ergost-7-ene substituted by a beta-hydroxy group at position 3. It has been isolated from the mycelia of Cordyceps sinensis.
Cholesterol
A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
Phenylalanine
An aromatic amino acid that is alanine in which one of the methyl hydrogens is substituted by a phenyl group. Annotation level-2 Acquisition and generation of the data is financially supported by the Max-Planck-Society COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS IPB_RECORD: 2701; CONFIDENCE confident structure L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
Arginine
An alpha-amino acid that is glycine in which the alpha-is substituted by a 3-guanidinopropyl group. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.047 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.045 Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2]. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2].
Proline
An alpha-amino acid that is pyrrolidine bearing a carboxy substituent at position 2. Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins.
Campesterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
Ergosterol
Indicator of fungal contamination, especies in cereals. Occurs in yeast and fungi. The main fungal steroidand is also found in small amts. in higher plant prods., e.g. palm oil [DFC]. D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.
Histidine
An alpha-amino acid that is propanoic acid bearing an amino substituent at position 2 and a 1H-imidazol-4-yl group at position 3. The L-enantiomer of the amino acid histidine. Histidine (symbol His or H)[2] is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the deprotonated –COO− form under biological conditions), and an imidazole side chain (which is partially protonated), classifying it as a positively charged amino acid at physiological pH. Initially thought essential only for infants, it has now been shown in longer-term studies to be essential for adults also.[3] It is encoded by the codons CAU and CAC. Histidine was first isolated by Albrecht Kossel and Sven Gustaf Hedin in 1896.[4] The name stems from its discovery in tissue, from ἱστός histós "tissue".[2] It is also a precursor to histamine, a vital inflammatory agent in immune responses. The acyl radical is histidyl. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.046 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.045 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.043 L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport.
Aspartic Acid
An alpha-amino acid that consists of succinic acid bearing a single alpha-amino substituent COVID info from COVID-19 Disease Map, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.050 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly.
DL-Leucine
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055
L-Isoleucine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; AGPKZVBTJJNPAG-WHFBIAKZSA-N_STSL_0101_Isoleucine_8000fmol_180425_S2_LC02_MS02_58; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 8 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid. L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.
L-Lysine
An L-alpha-amino acid; the L-isomer of lysine. L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2]. L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2].
Pyridoxine
A hydroxymethylpyridine with hydroxymethyl groups at positions 4 and 5, a hydroxy group at position 3 and a methyl group at position 2. The 4-methanol form of vitamin B6, it is converted intoto pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters, sphingolipids and aminolevulinic acid. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.
L-Cystathionine
A modified amino acid generated by enzymic means from L-homocysteine and L-serine. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].
L-Phenylalanine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; COLNVLDHVKWLRT_STSL_0103_Phenylalanine_2000fmol_180506_S2_LC02_MS02_290; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
Alanine
An alpha-amino acid that consists of propionic acid bearing an amino substituent at position 2. Alanine (symbol Ala or A),[4] or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side chain. Consequently it is classified as a nonpolar, aliphatic α-amino acid. Under biological conditions, it exists in its zwitterionic form with its amine group protonated (as −NH + 3 ) and its carboxyl group deprotonated (as −CO − 2 ). It is non-essential to humans as it can be synthesized metabolically and does not need to be present in the diet. It is encoded by all codons starting with GC (GCU, GCC, GCA, and GCG). The L-isomer of alanine (left-handed) is the one that is incorporated into proteins. L-alanine is second only to L-leucine in rate of occurrence, accounting for 7.8\\\\\% of the primary structure in a sample of 1,150 proteins.[5] The right-handed form, D-alanine, occurs in peptides in some bacterial cell walls[6]: 131 (in peptidoglycan) and in some peptide antibiotics, and occurs in the tissues of many crustaceans and molluscs as an osmolyte. D-Alanine is a weak GlyR (inhibitory glycine receptor) and PMBA agonist, with an EC50 of 9 mM for GlyR. D-Alanine is a weak GlyR (inhibitory glycine receptor) and PMBA agonist, with an EC50 of 9 mM for GlyR. L-Alanine is a non-essential amino acid, involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and central nervous system. L-Alanine is a non-essential amino acid, involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and central nervous system.
Zymosterol
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Fecosterol
A 3beta-sterol having a 5alpha-ergostane skeleton with a methylidene group at C-24 and double bonds at the C-8 and C-24(28) positions.
5α-Ergosta-7,22-dien-3β-ol
A 3beta-sterol consisting of an ergostane skeleton with double bonds at 7- and 22-positions.
D-Leucine
The D-enantiomer of leucine. D-Leucine is a more potent anti-seizure agent than L-leucine. D-leucine potently terminates seizures even after the onset of seizure activity. D-leucine, but not L-leucine, reduces long-term potentiation but had no effect on basal synaptic transmission in vitro[1]. D-Leucine is a more potent anti-seizure agent than L-leucine. D-leucine potently terminates seizures even after the onset of seizure activity. D-leucine, but not L-leucine, reduces long-term potentiation but had no effect on basal synaptic transmission in vitro[1].
7-Dehydrodesmosterol
A 3beta-sterol having the structure of desmosterol with an extra double bond at C-7--C-8.
3-(indol-3-yl)Pyruvic acid
A 2-oxo monocarboxylic acid that is pyruvic acid substituted by a 1H-indol-3-yl group at position 3. It has been found in Lycopersicon esculentum
(1r,3ar,5as,7s,9as,11ar)-1-[(2r,5s)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol
(1r,3ar,5ar,7s,9as,11ar)-3a,6,6,9a,11a-pentamethyl-1-[(2r,3e)-6-methylhept-3-en-2-yl]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol
2-[(2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(3r)-5,8-dihydroxy-3-propyl-3,4-dihydro-2-benzopyran-1-one
2-amino-4-[(1-{[1-carboxy-3-({1-[(1-carboxy-3-{[1-(carboxymethyl-c-hydroxycarbonimidoyl)-2-sulfanylethyl]-c-hydroxycarbonimidoyl}propyl)-c-hydroxycarbonimidoyl]-2-sulfanylethyl}-c-hydroxycarbonimidoyl)propyl]-c-hydroxycarbonimidoyl}-2-sulfanylethyl)-c-hydroxycarbonimidoyl]butanoic acid
2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
1-(5,6-dimethylhept-5-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol
(2s,3s,4s,5s,6r)-3-{[(2r,3s,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,4,5-triol
(1r,2s,3s,4r,4as,8as)-3,4a,8,8-tetramethyl-4-[(1e,3s,4s)-3,4,5-trihydroxy-3-methylpent-1-en-1-yl]-hexahydro-1h-naphthalene-1,2,3-triol
(1r,7s,9as,11ar)-1-(5,6-dimethylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
4-(4,5-dihydroxy-3-methylpent-2-en-1-yl)-3,4a,8,8-tetramethyl-hexahydro-1h-naphthalene-1,2,3-triol
(1r,2s,3s,4r,4as,8as)-3,4a,8,8-tetramethyl-4-[(1e,3r,4s)-3,4,5-trihydroxy-3-methylpent-1-en-1-yl]-hexahydro-1h-naphthalene-1,2,3-triol
2-amino-4-({1-[(1-carboxy-3-{[1-({1-carboxy-3-[(1-carboxy-2-sulfanylethyl)-c-hydroxycarbonimidoyl]propyl}-c-hydroxycarbonimidoyl)-2-sulfanylethyl]-c-hydroxycarbonimidoyl}propyl)-c-hydroxycarbonimidoyl]-2-sulfanylethyl}-c-hydroxycarbonimidoyl)butanoic acid
(2e,4s,5s,6e,8e)-10-[(2r,3s,6s,8s,9r)-9-butyl-8-[(1e,3e)-4-carboxy-3-methylbuta-1,3-dien-1-yl]-9-{[(2e)-3-carboxyprop-2-enoyl]oxy}-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid
(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(2s)-2-{[(2r)-2-{[(4s)-4-amino-4-carboxy-1-hydroxybutylidene]amino}-1-hydroxy-3-sulfanylpropylidene]amino}-4-{[(1r)-1-carboxy-2-sulfanylethyl]-c-hydroxycarbonimidoyl}butanoic acid
C16H26N4O9S2 (482.11411460000005)
o-phosphoethanolamine; bis(nonane)
C20H48NO4P (397.33207780000004)
2-(hydroxymethyl)-6-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}oxane-3,4,5-triol
C12H22O11 (342.11620619999997)
(1s,4r,7r,8ar)-8a-methyl-6-oxo-7-(3-oxoprop-1-en-2-yl)-4-{[(2e,4e)-4,6,8-trimethyldeca-2,4-dienoyl]oxy}-1,2,3,4,7,8-hexahydronaphthalene-1-carboxylic acid
1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1r,2s,3s,4r,4as,8as)-3,4a,8,8-tetramethyl-4-[(1e,3s,4r)-3,4,5-trihydroxy-3-methylpent-1-en-1-yl]-hexahydro-1h-naphthalene-1,2,3-triol
(1r,3ar,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-6-methylhepta-3,5-dien-2-yl]-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(2s)-2-{[(2r)-2-{[(4s)-4-{[(2r)-2-{[(4s)-4-amino-4-carboxy-1-hydroxybutylidene]amino}-1-hydroxy-3-sulfanylpropylidene]amino}-4-carboxy-1-hydroxybutylidene]amino}-1-hydroxy-3-sulfanylpropylidene]amino}-4-{[(1r)-1-carboxy-2-sulfanylethyl]-c-hydroxycarbonimidoyl}butanoic acid
4,5-dihydroxy-3a,6,6,9a-tetramethyl-octahydronaphtho[2,1-b]furan-2-one
1-(5,6-dimethylhepta-3,5-dien-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-8-ol
2,3,3,7-tetramethyl-6-[(1e,3e)-3-methyl-4-(1h-pyrrol-2-yl)buta-1,3-dien-1-yl]-2h-furo[3,2-c]pyran-4-one
C20H23NO3 (325.16778480000005)
9a,11a-dimethyl-1-(6-methylhepta-3,5-dien-2-yl)-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1r,2s,3s,4r,4as,8as)-3,4a,8,8-tetramethyl-4-[(1e,3r,4r)-3,4,5-trihydroxy-3-methylpent-1-en-1-yl]-hexahydro-1h-naphthalene-1,2,3-triol
(2s,5s)-4,5-dihydroxy-5-(1h-indol-3-yl)-1h,2h,6h-azepino[4,5-b]indole-2-carboxylic acid
(2s)-2-{[(2r)-2-{[(4s)-4-amino-4-carboxy-1-hydroxybutylidene]amino}-1-hydroxy-3-sulfanylpropylidene]amino}-4-{[(1r)-1-(carboxymethyl-c-hydroxycarbonimidoyl)-2-sulfanylethyl]-c-hydroxycarbonimidoyl}butanoic acid
C18H29N5O10S2 (539.1355774000001)
3a,6,6,9a,11a-pentamethyl-1-(6-methylhept-3-en-2-yl)-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol
(2s,3r)-3,7-dihydroxy-2,6,8-trimethyl-2,3-dihydro-1-benzopyran-4-one
9a,11a-dimethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1r,3ar,5as,7s,9as,11ar)-1-[(2r)-5,6-dimethylhept-5-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol
2-amino-4-({1-[(1-carboxy-3-{[1-(carboxymethyl-c-hydroxycarbonimidoyl)-2-sulfanylethyl]-c-hydroxycarbonimidoyl}propyl)-c-hydroxycarbonimidoyl]-2-sulfanylethyl}-c-hydroxycarbonimidoyl)butanoic acid
C18H29N5O10S2 (539.1355774000001)
2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-(hydroxymethyl)-6-[(3,4,5-trihydroxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)methoxy]oxane-3,4,5-triol
3,4a,8,8-tetramethyl-4-(3,4,5-trihydroxy-3-methylpent-1-en-1-yl)-hexahydro-1h-naphthalene-1,2,3-triol
(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-{[(2r,3s,4s,5r,6r)-3,4,5-trihydroxy-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]methoxy}oxane-3,4,5-triol
(1r,2s,3s,4r,4as,8as)-4-[(2z,4s)-4,5-dihydroxy-3-methylpent-2-en-1-yl]-3,4a,8,8-tetramethyl-hexahydro-1h-naphthalene-1,2,3-triol
2-[(5r)-1-(hydroxymethyl)-5-methyl-5,6-dihydronaphthalen-2-yl]propane-1,2-diol
2-amino-4-{[1-({1-carboxy-3-[(1-carboxy-2-sulfanylethyl)-c-hydroxycarbonimidoyl]propyl}-c-hydroxycarbonimidoyl)-2-sulfanylethyl]-c-hydroxycarbonimidoyl}butanoic acid
C16H26N4O9S2 (482.11411460000005)