NCBI Taxonomy: 99101

Seriphidium (ncbi_taxid: 99101)

found 483 associated metabolites at genus taxonomy rank level.

Ancestor: Artemisiinae

Child Taxonomies: Seriphidium sawanense, Seriphidium minchunense, unclassified Seriphidium

Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0423)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Umbelliferone

7-Hydroxy-2H-1-benzopyran-2-one

C9H6O3 (162.0317)


Umbelliferone is a hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. It has a role as a fluorescent probe, a plant metabolite and a food component. Umbelliferone is a natural product found in Ficus septica, Artemisia ordosica, and other organisms with data available. See also: Chamomile (part of). Occurs widely in plants including Angelica subspecies Phytoalexin of infected sweet potato. Umbelliferone is found in many foods, some of which are macadamia nut, silver linden, quince, and capers. Umbelliferone is found in anise. Umbelliferone occurs widely in plants including Angelica species Phytoalexin of infected sweet potat A hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. [Raw Data] CB220_Umbelliferone_pos_50eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_40eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_30eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_10eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_20eV_CB000077.txt [Raw Data] CB220_Umbelliferone_neg_40eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_10eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_30eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_20eV_000039.txt Umbelliferone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=93-35-6 (retrieved 2024-07-12) (CAS RN: 93-35-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.

   

Isofraxidin

7-Hydroxy-6,8-dimethoxy-2H-1-benzopyran-2-one

C11H10O5 (222.0528)


Isofraxidin, also known as 6,8-dimethoxy-7-hydroxycoumarin or 7-hydroxy-6,8-dimethoxy-2h-1-benzopyran-2-one, is a member of the class of compounds known as 7-hydroxycoumarins. 7-hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the C7 position the coumarin skeleton. Isofraxidin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isofraxidin can be found in muskmelon, tarragon, and watermelon, which makes isofraxidin a potential biomarker for the consumption of these food products. Isofraxidin is a chemical compound found in a variety of plants including Eleutherococcus senticosus . Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Camphor

Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (.+/-.)-

C10H16O (152.1201)


Camphor appears as a colorless or white colored crystalline powder with a strong mothball-like odor. About the same density as water. Emits flammable vapors above 150 °F. Used to make moth proofings, pharmaceuticals, and flavorings. Camphor is a cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. It has a role as a plant metabolite. It is a bornane monoterpenoid and a cyclic monoterpene ketone. Camphor is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. A cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.986 Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Scoparone

6,7-dimethoxychromen-2-one

C11H10O4 (206.0579)


Scoparone is a member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. It has a role as a plant metabolite, an anti-inflammatory agent, an antilipemic drug, an immunosuppressive agent, an antihypertensive agent and an anti-allergic agent. It is a member of coumarins and an aromatic ether. It is functionally related to an esculetin. Scoparone is a natural product found in Haplophyllum ramosissimum, Haplophyllum thesioides, and other organisms with data available. A member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Scoparone is found in anise. Scoparone is found in several citrus oil D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Found in several citrus oils Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.0477)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Narcissin

5,7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C28H32O16 (624.169)


Isorhamnetin-3-O-rutinoside is a disaccharide derivative, a glycosyloxyflavone, a monomethoxyflavone and a trihydroxyflavone. Narcissoside is a natural product found in Phoenix canariensis, Scolymus hispanicus, and other organisms with data available. See also: Ginkgo (part of); Calendula Officinalis Flower (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1]. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1].

   

Genkwanin

5-Hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one

C16H12O5 (284.0685)


Genkwanin, also known as 5,4-dihydroxy-7-methoxyflavone or 7-methylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, genkwanin is considered to be a flavonoid lipid molecule. Genkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Genkwanin is a bitter tasting compound and can be found in a number of food items such as winter savory, sweet basil, rosemary, and common sage, which makes genkwanin a potential biomarker for the consumption of these food products. Genkwanin is an O-methylated flavone, a type of flavonoid. It can be found in the seeds of Alnus glutinosa, and the leaves of the ferns Notholaena bryopoda and Asplenium normale . Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). [Raw Data] CBA25_Isovitexin_neg_20eV_1-7_01_1425.txt [Raw Data] CBA25_Isovitexin_neg_10eV_1-7_01_1369.txt [Raw Data] CBA25_Isovitexin_pos_30eV_1-7_01_1399.txt [Raw Data] CBA25_Isovitexin_neg_40eV_1-7_01_1427.txt [Raw Data] CBA25_Isovitexin_neg_30eV_1-7_01_1426.txt [Raw Data] CBA25_Isovitexin_neg_50eV_1-7_01_1428.txt [Raw Data] CBA25_Isovitexin_pos_20eV_1-7_01_1398.txt [Raw Data] CBA25_Isovitexin_pos_10eV_1-7_01_1358.txt [Raw Data] CBA25_Isovitexin_pos_40eV_1-7_01_1400.txt [Raw Data] CBA25_Isovitexin_pos_50eV_1-7_01_1401.txt Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.1534)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0685)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0423)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.0427)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Ergosterol

(1R,3aR,7S,9aR,9bS,11aR)-1-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1H,2H,3H,3aH,6H,7H,8H,9H,9aH,9bH,10H,11H,11aH-cyclopenta[a]phenanthren-7-ol

C28H44O (396.3392)


Ergosterol is a phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. It has a role as a fungal metabolite and a Saccharomyces cerevisiae metabolite. It is a 3beta-sterol, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL. Ergosterol is a natural product found in Gladiolus italicus, Ramaria formosa, and other organisms with data available. ergosterol is a metabolite found in or produced by Saccharomyces cerevisiae. A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2). See also: Reishi (part of). Ergosterol, also known as provitamin D2, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, ergosterol is considered to be a sterol lipid molecule. Ergosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Ergosterol is the biological precursor to vitamin D2. It is turned into viosterol by ultraviolet light, and is then converted into ergocalciferol, which is a form of vitamin D. Ergosterol is a component of fungal cell membranes, serving the same function that cholesterol serves in animal cells. Ergosterol is not found in mammalian cell membranes. A phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. Ergosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-87-4 (retrieved 2024-07-12) (CAS RN: 57-87-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.

   

beta-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


(-)-beta-elemene is the (-)-enantiomer of beta-elemene that has (1S,2S,4R)-configuration. It has a role as an antineoplastic agent. beta-Elemene is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. Beta-elemene is one of the isomers of elemene, a lipid soluble sesquiterpene and the active component isolated from the Chinese medicinal herb Rhizoma zedoariae with potential antineoplastic and chemopreventive activities. Although the exact mechanism of action through which beta-elemene exerts its effect has yet to be fully elucidated, this agent appears to induce apoptosis through different mechanisms of action and induces cell cycle arrest at different stages based on the tumor cell type involved. Beta-elemene may sensitize cancer cells to other chemotherapeutic agents. See also: Cannabis sativa subsp. indica top (part of). Beta-elemene, also known as B-elemen or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. Beta-elemene is a fresh, herbal, and waxy tasting compound and can be found in a number of food items such as lovage, anise, spearmint, and orange mint, which makes beta-elemene a potential biomarker for the consumption of these food products. Beta-elemene can be found primarily in saliva. beta-Elemene belongs to the class of organic compounds known as elemane sesquiterpenoids. These are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. beta-Elemene can be found in herbs, spices, and root vegetables, which makes beta-elemene a potential biomarker for the consumption of these food products. It is a constituent of sweet flag, juniper oils, and Mentha species. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

Cirsilineol

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-

C18H16O7 (344.0896)


Cirsilineol, also known as 4,5-dihydroxy-3,6,7-trimethoxy-flavone or anisomelin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsilineol is considered to be a flavonoid lipid molecule. Cirsilineol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsilineol can be found in a number of food items such as common thyme, tarragon, common sage, and hyssop, which makes cirsilineol a potential biomarker for the consumption of these food products. Cirsilineol is a bioactive flavone isolated from Artemisia and from Teucrium gnaphalodes . Cirsilineol is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsilineol is a natural product found in Thymus herba-barona, Salvia tomentosa, and other organisms with data available. See also: Tangerine peel (part of).

   

Chrysoeriol

3 inverted exclamation mark -Methoxy-4 inverted exclamation mark ,5,7-trihydroxyflavone

C16H12O6 (300.0634)


Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Santonin

InChI=1/C15H18O3/c1-8-10-4-6-15(3)7-5-11(16)9(2)12(15)13(10)18-14(8)17/h5,7-8,10,13H,4,6H2,1-3H3/t8-,10-,13-,15-/m0/s

C15H18O3 (246.1256)


Alpha-santonin is a santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. It has a role as a plant metabolite. It is a botanical anti-fungal agent and a santonin. Santonin is a natural product found in Artemisia spicigera, Artemisia diffusa, and other organisms with data available. Anthelmintic isolated from the dried unexpanded flower heads of Artemisia maritima and other species of Artemisia found principally in Russian and Chinese Turkestan and the Southern Ural region. (From Merck, 11th ed.) See also: ... View More ... A santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent ADP-ribose 1"-2" cyclic phosphate is a cyclic phosphate nucleotide that arises from tRNA processing. In eukaryotic cells, pre-tRNAs spliced by a pathway that produces a 3,5-phosphodiester, 2-phosphomonoester linkage contain a 2-phosphate group adjacent to the tRNA anticodon. This 2-phosphate is transferred to NAD to give adenosine diphosphate (ADP)-ribose 1", 2"-cyclic phosphate (Appr>p), which is subsequently metabolized to ADP-ribose 1-phosphate (Appr-1p). The latter reaction is catalyzed by a cyclic phosphodiesterase (CPDase). (PMID: 9148938). One molecule of ADP-ribose 1",2"-cyclic phosphate (Appr>p) is formed during each of the approximately 500 000 tRNA splicing events. [HMDB] Constituent of Physalis peruviana (Cape gooseberry). Withaperuvin F is found in fruits. Alkaloid found on the leaf surfaces of Brassica oleracea cv. botrytis (cauliflower) [DFC]. Cabbage identification factor 1 is found in brassicas. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2267 INTERNAL_ID 2267; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.918 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.917 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.915 [Raw Data] CB081_Santonin_pos_30eV_CB000033.txt [Raw Data] CB081_Santonin_pos_10eV_CB000033.txt [Raw Data] CB081_Santonin_pos_40eV_CB000033.txt [Raw Data] CB081_Santonin_pos_20eV_CB000033.txt [Raw Data] CB081_Santonin_pos_50eV_CB000033.txt Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1]. Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1].

   

6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one

C26H28O14 (564.1479)


5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]-8-(3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-4H-chromen-4-one is a member of flavonoids and a C-glycosyl compound. 5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one is a natural product found in Cymbidium kanran, Acanthus, and other organisms with data available. 6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin is found in herbs and spices. 6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin is a constituent of Passiflora incarnata (maypops). Constituent of Passiflora incarnata (maypops). Apigenin 6-C-glucoside 8-C-riboside is found in herbs and spices. Neoschaftoside is a flavone C-glycoside that is apigenin attached to a beta-D-glucopyranosyl and a beta-L-arabinopyranosyl residues at positions 6 and 8 respectively via C-glycosidic linkage. It has a role as a plant metabolite. It is a flavone C-glycoside and a dihydroxyflavone. It is functionally related to an apigenin. Neoschaftoside is a natural product found in Radula complanata, Artemisia judaica, and other organisms with data available. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1].

   

(2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents. 2-Bornanol is found in turmeric. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Fraxidin

InChI=1/C11H10O5/c1-14-7-5-6-3-4-8(12)16-10(6)9(13)11(7)15-2/h3-5,13H,1-2H

C11H10O5 (222.0528)


Fraxidin is a hydroxycoumarin. Fraxidin is a natural product found in Artemisia minor, Melilotus messanensis, and other organisms with data available. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2344 Fraxidin is a class of coumarin isolated from the roots of Jatropha podagrica, exhibits antibacterial activity against Bacillus subtilis with an inhibition zone of 12 mm at a concentration of 20 μg/disk[1][2]. Fraxidin is a class of coumarin isolated from the roots of Jatropha podagrica, exhibits antibacterial activity against Bacillus subtilis with an inhibition zone of 12 mm at a concentration of 20 μg/disk[1][2].

   

Nonacosane

Nonacosane; Celidoniol, deoxy- (7CI); n-Nonacosane

C29H60 (408.4695)


Nonacosane, also known as CH3-[CH2]27-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane is a straight-chain hydrocarbon with a molecular formula of C29H60. Nonacosane has been identified within several essential oils. Nonacosane has been detected, but not quantified, in several different foods, such as peachs, ginkgo nuts, cauliflowers, arabica coffee, and lambsquarters. This could make nonacosane a potential biomarker for the consumption of these foods. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito). It can also be prepared synthetically. It has 1,590,507,121 constitutional isomers. Nonacosane, also known as ch3-[ch2]27-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane can be found in a number of food items such as garden tomato (variety), papaya, brussel sprouts, and wild carrot, which makes nonacosane a potential biomarker for the consumption of these food products. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito) . Nonacosane is a straight-chain alkane comprising of 29 carbon atoms. It has a role as a plant metabolite and a volatile oil component. Nonacosane is a natural product found in Euphorbia larica, Quercus salicina, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane comprising of 29 carbon atoms. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

Cirsimaritin

5-Hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-4H-chromen-4-one

C17H14O6 (314.079)


Cirsimaritin, also known as 4,5-dihydroxy-6,7-dimethoxyflavone or scrophulein, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsimaritin is considered to be a flavonoid lipid molecule. Cirsimaritin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsimaritin can be found in a number of food items such as italian oregano, lemon verbena, winter savory, and rosemary, which makes cirsimaritin a potential biomarker for the consumption of these food products.

   

Thymol

Thymol, Pharmaceutical Secondary Standard; Certified Reference Material

C10H14O (150.1045)


Thymol is a phenol that is a natural monoterpene derivative of cymene. It has a role as a volatile oil component. It is a member of phenols and a monoterpenoid. It derives from a hydride of a p-cymene. A phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. (Dorland, 28th ed) Thymol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A phenol obtained from thyme oil or other volatile oils used as a stabilizer in pharmaceutical preparations, and as an antiseptic (antibacterial or antifungal) agent. See also: Paeonia lactiflora root (part of); Elymus repens root (part of); Eucalyptol; thymol (component of) ... View More ... Thymol is a phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. Thymol is a monoterpene phenol derivative of cymene, C10H13OH, isomeric with carvacrol, found in oil of thyme, and extracted as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. It is also called "hydroxy cymene". In a 1994 report released by five top cigarette companies, thymol is one of the 599 additives to cigarettes. Its use or purpose, however, is unknown, like most cigarette additives. Found in many essential oils. Especies found in the Labiatae. Rich sources are thyme oil, seed oil of Ptychotis ajowan and oils of horsemint (Monarda punctata) and Ocimum subspecies Flavouring ingredient C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A phenol that is a natural monoterpene derivative of cymene. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].

   

beta-Phellandrene

3-methylidene-6-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1252)


beta-Phellandrene is found in allspice. beta-Phellandrene is widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus species). beta-Phellandrene is a flavour ingredient.Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia Beta-phellandrene is one of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). It has a role as a plant metabolite. beta-Phellandrene is a natural product found in Xylopia aromatica, Dacrydium nausoriense, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). One of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). Widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus subspecies). Flavour ingredient β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].

   

Cuminaldehyde

4-(1-Methylethyl)benzaldehyde

C10H12O (148.0888)


Cuminaldehyde is the biologically active constituent of Cuminum cyminum seed oil. C. cyminum seed-derived materials have an inhibitory effect in vitro against rat lens aldose reductase and alpha-glucosidase. This inhibitory action cuminaldehyde suggest a potential utility as an antidiabetic therapeutic. (PMID:15796577). Cuminaldehyde is a volatile compound representative of cumin aroma present in trace amounts in the blood and milk of ewes fed with cumin seed. (PMID:8738023). The terpenoid cuminaldehyde, undergoes reduction biotransformation in mammals, but not oxidation. (PMID:2815827). Cuminaldehyde is a member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. It has a role as an insecticide, a volatile oil component and a plant metabolite. It derives from a hydride of a cumene. 4-Isopropylbenzaldehyde is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. See also: Paeonia lactiflora root (part of). A member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. Found in many essential oils, including eucalyptus, cumin and cassiaand is also present in grilled or roast beef and cognac. Flavouring agent Cuminaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-03-2 (retrieved 2024-07-11) (CAS RN: 122-03-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].

   

Diisobutyl phthalate

1,2-Benzenedicarboxylic acid, 1,2-bis(2-methylpropyl) ester

C16H22O4 (278.1518)


Di-(2-methylpropyl)-phthalate, also known as dibp or isobutyl phthalate, is a member of the class of compounds known as benzoic acid esters. Benzoic acid esters are ester derivatives of benzoic acid. Di-(2-methylpropyl)-phthalate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Di-(2-methylpropyl)-phthalate can be found in kohlrabi, which makes di-(2-methylpropyl)-phthalate a potential biomarker for the consumption of this food product. Di-(2-methylpropyl)-phthalate can be found primarily in urine. Di-(2-methylpropyl)-phthalate is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phthalate esters are endocrine disruptors. Animal studies have shown that they disrupt reproductive development and can cause a number of malformations in affected young, such as reduced anogenital distance (AGD), cryptorchidism, hypospadias, and reduced fertility. The combination of effects associated with phthalates is called phthalate syndrome’ (A2883) (T3DB). DIBP is an odorless plasticizer and has excellent heat and light stability. It is the lowest cost plasticizer for cellulose nitrate. DIBP has lower density and freezing point than DBP (dibutyl phthalate, CAS No.: 84-74-2). It has similar properties as dibutyl phthalate and can be used as a substitute for it. CONFIDENCE standard compound; INTERNAL_ID 1189; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10016; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 1189; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10059; ORIGINAL_PRECURSOR_SCAN_NO 10056 CONFIDENCE standard compound; INTERNAL_ID 1189; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10032; ORIGINAL_PRECURSOR_SCAN_NO 10030 CONFIDENCE standard compound; INTERNAL_ID 1189; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10082; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 1189; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9953; ORIGINAL_PRECURSOR_SCAN_NO 9950 CONFIDENCE standard compound; INTERNAL_ID 1189; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9952; ORIGINAL_PRECURSOR_SCAN_NO 9950

   

Tricin

5,7-Dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-1-benzopyran-4-one

C17H14O7 (330.0739)


[Raw Data] CBA24_Tricin_neg_50eV_1-6_01_1424.txt [Raw Data] CBA24_Tricin_pos_50eV_1-6_01_1397.txt [Raw Data] CBA24_Tricin_neg_10eV_1-6_01_1368.txt [Raw Data] CBA24_Tricin_pos_40eV_1-6_01_1396.txt [Raw Data] CBA24_Tricin_pos_20eV_1-6_01_1394.txt [Raw Data] CBA24_Tricin_neg_30eV_1-6_01_1422.txt [Raw Data] CBA24_Tricin_neg_20eV_1-6_01_1421.txt [Raw Data] CBA24_Tricin_pos_10eV_1-6_01_1357.txt [Raw Data] CBA24_Tricin_pos_30eV_1-6_01_1488.txt [Raw Data] CBA24_Tricin_neg_40eV_1-6_01_1423.txt Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   

Eupatilin

2-(3,4-Dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one; 5,7-Dihydroxy-3,4,6-trimethoxyflavone; 2-(3,4-Dimethoxyphenyl)-5,7-dihydroxy-6-methoxychromen-4-one; 4H-1-Benzopyran-4-one, 2-(3,4-diMethoxyphenyl)-5,7-dihydroxy-6-Methoxy-

C18H16O7 (344.0896)


Eupatilin is a trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. It has a role as an anti-ulcer drug, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antineoplastic agent, an anti-inflammatory agent and a metabolite. It is a trimethoxyflavone and a dihydroxyflavone. Eupatilin is a natural product found in Eupatorium capillifolium, Chromolaena odorata, and other organisms with data available. A trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. Eupatilin is found in herbs and spices. Eupatilin is isolated from Tanacetum vulgare (tansy Isolated from Tanacetum vulgare (tansy). Eupatilin is found in herbs and spices. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.

   

Vicenin 2

5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C27H30O15 (594.1585)


Constituent of lemons (Citrus limon). Vicenin 2 is found in many foods, some of which are common salsify, fenugreek, sweet orange, and cucumber. Vicenin 2 is found in citrus. Vicenin 2 is a constituent of lemons (Citrus limon) Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1]. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1].

   

Artemisin

Artemisin

C15H18O4 (262.1205)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Vulgarin

9-hydroxy-3,5a,9-trimethyl-2H,3H,3aH,4H,5H,5aH,6H,9H,9aH,9bH-naphtho[1,2-b]furan-2,6-dione

C15H20O4 (264.1362)


Vulgarin is found in mugwort. Vulgarin is a constituent of Artemisia vulgaris (mugwort) Constituent of Artemisia vulgaris (mugwort). Vulgarin is found in mugwort.

   

Santin

2- (4-Methoxyphenyl) -5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0896)


A trimethoxyflavone that is flavone substituted by methoxy groups at positions 3, 6 and 4 and hydroxy groups at positions 5 and 7 respectively.

   

Apigenin 7,4'-dimethyl ether

5-hydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C17H14O5 (298.0841)


Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]

   

Xanthoxylin

Acetophenone, 2-hydroxy-4,6-dimethoxy- (8CI)

C10H12O4 (196.0736)


obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree). Xanthoxylin is found in many foods, some of which are herbs and spices, german camomile, fats and oils, and pomegranate. Xanthoxylin is found in fats and oils. Xanthoxylin is obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2]. Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2].

   

Camphene

3,3-Dimethyl-2-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1252)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .

   

(-)-trans-Carveol

(1S-trans)-2-Methyl-5-(1-methylvinyl)cyclohex-2-en-1-ol

C10H16O (152.1201)


Carveol is a natural terpenoid alcohol that is a constituent of spearmint oil. It has an odor and flavor that resemble those of spearmint and caraway. Consequently, it is used as a fragrance in cosmetics and as a flavor additive in the food industry. Constituent of Valencia orange essence oil. Flavouring ingredient Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.

   

Eucalyptol

(1s,4s)-1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane

C10H18O (154.1358)


Eucalyptol is an organic compound that is a colourless liquid. It is a cyclic ether and a monoterpene. Eucalyptol is a natural constituent of a number of aromatic plants and their essential oil fraction. Eucalyptol was given GRAS (Generally Recognized As Safe) status by the Flavor and Extract Manufacturers Association FEMA, 1965 and is approved by the Food and Drug Administration for food use. 1,8-Dihydroxy-10-carboxy-p-menthane, 2-hydroxy-cineole, and 3-hydroxy-cineole are the main metabolites of eucalyptol. Toxicological data available on eucalyptol are rather limited. Following accidental exposure, death was reported in two cases after ingestion of 3.5-5 mL of essential eucalyptus oil, but a number of recoveries have also been described for much higher amounts of oil. In a 1994 report released by five top cigarette companies, eucalyptol was listed as one of the 599 additives to cigarettes. It is usually added to improve the flavour (PMID:12048025). R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D010575 - Pesticides > D007302 - Insect Repellents D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D002491 - Central Nervous System Agents D000890 - Anti-Infective Agents D020011 - Protective Agents D016573 - Agrochemicals D012997 - Solvents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Terpinolene

1-methyl-4-(propan-2-ylidene)cyclohexene p-mentha-1,4(8)-diene

C10H16 (136.1252)


Terpinolene (TPO), also known as alpha-terpinolene or isoterpinene, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, terpinolene is considered to be an isoprenoid lipid molecule. Terpinolene is a very hydrophobic monoterpenoid, practically insoluble in water, and relatively neutral. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes in plants is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Terpinolene is one of the constituents of turpentine and an isomer of terpinene. It appears colourless to pale yellow liquid. Alpha-terpinolene has been identified as an abundant monoterpene in the essential oil of Cannabis sativa plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Although common in cannabis cultivars, terpinolene is typically found in relatively low amounts. On the other hand, the concentration of terpinolene can be has high as 30\\% of the essential oil. It is thought that terpinolene offers a mildly sedative effect and can reduce anxiety (PMID:28826544 ). In particular, terpinolene is a central nervous system depressant that has been shown to induce drowsiness (PMID:23339024 ). Terpinolene has been demonstrated to prevent LDL oxidation and is of potential interest in the treatment of atherogenesis and coronary artery disease (PMID:28826544 ). Terpinolene exhibits antifungal and larvicidal properties (PMID:28826544 ). Terpinolene is also an effective anti-microbial agent, particularly against E coli and Staphylococcus bacteria (PMID:16402540 ). Terpinolene is also employed as a fragrence ingredient in lotions, insect repellents (similar to other terpenes), perfumes, and soaps. Terpinolene is also a constituent of many other essential oils e. g. Citrus, Mentha, Juniperus, Myristica species. Parsnip oil (Pastinaca sativa) in particular, is a major source (40-70\\%). Terpinolene is a sweet, citrus, and fresh tasting compound. It produces a floral, woody or herbal aroma reminiscent of pine needles. In addition to being found in various plant essential oils, terpinolene is found in a few different foods and spices, such as allspice, apples, sage, rosemary, parsnips, nutmegs, and wild carrots and in a lower concentration in sweet bay, star anises, turmerics, apricots, cumins, evergreen blackberries, red bell peppers, and caraway. Constituent of many essential oils e.g. Citrus, Mentha, Juniperus, Myristica subspecies Parsnip oil (Pastinaca sativa) is a major source (40-70\\%). Flavouring ingredient. Terpinolene is found in many foods, some of which are coriander, ceylon cinnamon, pine nut, and caraway.

   

o-Cresol

2-Hydroxy-1-methylbenzene

C7H8O (108.0575)


o-Cresol is a minor urinary metabolite of toluene, O-cresol is a cresol that is phenol substituted by a methyl group at position 2. It is a minor urinary metabolite of toluene. It has a role as a human xenobiotic metabolite. It is widely used chemical with neurotoxicological properties (PMID:15687000). o-Cresol is used commercially as a disinfectant. Exposure may occur by inhalation, by cutaneous adsorption or by oral ingestion. o-Cresol denature and precipitate cellular proteins and thus may rapidly cause poisoning. o-Cresol is metabolized by conjugation and oxidation. Ingestion of o-Cresol cause intense burning of mouth and throat, followed by marked abdominal pain and distress. The minimum lethal dose of cresol by mouth is about 2 g (PMID 15040915). o-Cresol is a microbial metabolite that can be found in Pseudomonas. Besides, o-Cresol is one of the chemical compounds found in castoreum. This compound is gathered from the beavers castor glands and found in the white cedar consumed by the beavers. Together with many other compounds, o-cresol is traditionally extracted from coal tar, the volatile materials obtained in the production of coke from coal. A similar source material is petroleum residues. These residue contains a few percent by weight of phenol and isomeric cresols. In addition to the materials derived from these natural sources, about two thirds of the Western worlds supply is produced by methylation of phenol using methanol. Flavouring ingredient. 2-Methylphenol is found in many foods, some of which are yellow bell pepper, pepper (c. annuum), arabica coffee, and asparagus.

   

Artabsin

6-hydroxy-3,6,9-trimethyl-2H,3H,3aH,4H,5H,6H,8H,9bH-azuleno[4,5-b]furan-2-one

C15H20O3 (248.1412)


Constituent of Artemisia absinthium (wormwood). Artabsin is found in alcoholic beverages and herbs and spices. Artabsin is found in alcoholic beverages. Artabsin is a constituent of Artemisia absinthium (wormwood).

   

Artemorin

(3aS,7R,11aR)-7-hydroxy-10-methyl-3,6-dimethylidene-2H,3H,3aH,4H,5H,6H,7H,8H,9H,11aH-cyclodeca[b]furan-2-one

C15H20O3 (248.1412)


Artemorin is a member of the class of compounds known as terpene lactones. Terpene lactones are prenol lipids containing a lactone ring. Artemorin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Artemorin is a bitter tasting compound found in sweet bay, which makes artemorin a potential biomarker for the consumption of this food product.

   

Matricin

9-Hydroxy-3,6,9-trimethyl-2-oxo-2H,3H,3ah,4H,5H,9H,9ah,9BH-azuleno[4,5-b]furan-4-yl acetic acid

C17H22O5 (306.1467)


Constituent of Matricaria chamomilla (German chamomile). Matricin is found in many foods, some of which are german camomile, fats and oils, tea, and herbs and spices. Matricin is found in fats and oils. Matricin is a constituent of Matricaria chamomilla (German chamomile).

   

Chrysanthenone

(+)-Chrysanthenone

C10H14O (150.1045)


   

(-)-Pinocarvone

6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-one

C10H14O (150.1045)


Pinocarvone, also known as (1)-2(10)-pinen-3-one or pina-2(10)-ene-3-one, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, pinocarvone is considered to be an isoprenoid lipid molecule. Pinocarvone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Pinocarvone is a minty tasting compound found in hyssop, spearmint, and sweet bay, which makes pinocarvone a potential biomarker for the consumption of these food products. (-)-Pinocarvone is isolated from oil of Eucalyptus globulus (Tasmanian blue gum

   

Axillarin

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0689)


   

Patuletin

2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one, 9ci

C16H12O8 (332.0532)


Pigment from flowers of French marigold Tagetes patula. Patuletin is found in german camomile, herbs and spices, and spinach. Patuletin is found in german camomile. Patuletin is a pigment from flowers of French marigold Tagetes patul D004791 - Enzyme Inhibitors

   

2-Pinen-10-ol

{6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl}methanol

C10H16O (152.1201)


2-Pinen-10-ol is found in citrus. 2-Pinen-10-ol is a flavouring ingredient. 2-Pinen-10-ol is present in mandarin peel oil, raspberry, blackberry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper (Piper nigrum), myrtle leaf or berry, summer savoury (Satureja hortensis) and other foodstuffs (±)-Myrtenol is a flavouring ingredient. It is found in mandarin peel oil, raspberry, blackberry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper (Piper nigrum), myrtle leaf or berry, summer savoury (Satureja hortensis) and other foods.

   

Myrtenal

6,6-Dimethyl-bicyclo[3,1,1]hept-2-ene-2-carboxaldehyde

C10H14O (150.1045)


Occurs in orange, lemon, spearmint, pepper, thyme, juniper, calamus, ginger, myrtle, lemon balm, calabash, nutmeg, parsley seed and other plant oils. Myrtenal is found in many foods, some of which are peppermint, fruits, wild celery, and sweet bay. Myrtenal is found in cardamom. Myrtenal occurs in orange, lemon, spearmint, pepper, thyme, juniper, calamus, ginger, myrtle, lemon balm, calabash, nutmeg, parsley seed and other plant oils.

   

Pinocarveol

6,6-Dimethyl-3-hydroxy-2-methylenebicyclo(3.1.1)heptane

C10H16O (152.1201)


Flavouring ingredient. Pinocarveol is found in many foods, some of which are spearmint, wild celery, hyssop, and sweet bay. Pinocarveol is found in hyssop. Pinocarveol is a flavouring ingredien

   

alpha-Terpineol acetate

2-(4-methylcyclohex-3-en-1-yl)propan-2-yl acetate

C12H20O2 (196.1463)


alpha-Terpineol acetate, also known as a-terpineol acetic acid or p-menth-1-en-8-yl acetate, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. alpha-Terpineol acetate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. α-Terpinyl acetate is a monoterpene ester isolated from Laurus nobilis L. essential oil. α-Terpinyl acetate is a competitive P450 2B6 substrate which binding to the active site of P450 2B6 with a Kd value of 5.4?μM[1][2]. α-Terpinyl acetate is a monoterpene ester isolated from Laurus nobilis L. essential oil. α-Terpinyl acetate is a competitive P450 2B6 substrate which binding to the active site of P450 2B6 with a Kd value of 5.4?μM[1][2].

   

1,2,4-Trimethylbenzene

1,2,4-Trimethylbenzene (pseudocumene)

C9H12 (120.0939)


1,2,4-trimethylbenzene, also known as pseudocumene or psi-cumene, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. 1,2,4-trimethylbenzene is a plastic tasting compound found in black walnut and corn, which makes 1,2,4-trimethylbenzene a potential biomarker for the consumption of these food products. 1,2,4-trimethylbenzene can be found primarily in urine. 1,2,4-trimethylbenzene exists in all eukaryotes, ranging from yeast to humans. 1,2,4-trimethylbenzene is a non-carcinogenic (not listed by IARC) potentially toxic compound. 1,2,4-Trimethylbenzene is a colorless liquid with chemical formula C9H12. It is a flammable aromatic hydrocarbon with a strong odor. It occurs naturally in coal tar and petroleum (about 3\\%). It is nearly insoluble in water, but well-soluble in ethanol, diethyl ether, and benzene.

   

Capillarin

1H-2-Benzopyran-1-one, 3-(2-butynyl)-

C13H10O2 (198.0681)


   

alpha-Bulnesene

3,8-dimethyl-5-(prop-1-en-2-yl)-1,2,3,3a,4,5,6,7-octahydroazulene

C15H24 (204.1878)


Constituent of guaiac wood oil (Bulnesia sarmienti). alpha-Bulnesene is found in many foods, some of which are pepper (spice), cottonseed, sweet basil, and herbs and spices. alpha-Bulnesene is found in cottonseed. alpha-Bulnesene is a constituent of guaiac wood oil (Bulnesia sarmienti).

   

(-)-cis-Carveol

2-Methyl-5-(1-methylethenyl)-(1R-cis)-2-cyclohexen-1-ol

C10H16O (152.1201)


(-)-cis-Carveol is found in citrus. (-)-cis-Carveol is a constituent of Valencia orange oil (Citrus sinensis). (-)-cis-Carveol is a flavouring agent Constituent of Valencia orange oil (Citrus sinensis). Flavouring agent. (-)-cis-Carveol is found in citrus.

   

Hemimellitene

1,2,3-TRIMETHYLBENZENE

C9H12 (120.0939)


Hemimellitene, also known as hemellitol or 123-trimethylbenzene, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Hemimellitene can be found in black walnut and corn, which makes hemimellitene a potential biomarker for the consumption of these food products. Hemimellitene can be found primarily in feces and saliva. Hemimellitene exists in all eukaryotes, ranging from yeast to humans. Hemimellitene is an organic compound with the chemical formula C6H3(CH3)3. Classified as an aromatic hydrocarbon, it is a flammable colorless liquid. It is nearly insoluble in water but soluble in organic solvents. It occurs naturally in coal tar and petroleum. It is one of the three isomers of trimethylbenzene. It is used in jet fuel, mixed with other hydrocarbons, to prevent the formation of solid particles which might damage the engine . Hemimellitene belongs to the family of Toluenes. These are compounds containing a benzene ring which bears a methane group.

   

Pinene

(1R,5R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene

C10H16 (136.1252)


Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1252)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

(-)-camphene

(-)-camphene

C10H16 (136.1252)


A camphene (2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane) that has S configuration at position 1 and R configuration at position 4.

   

gamma-Muurolene

(+)-gamma-Muurolene

C15H24 (204.1878)


   

Schaftoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one

C26H28O14 (564.1479)


Apigenin 6-c-glucoside 8-c-riboside is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Apigenin 6-c-glucoside 8-c-riboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 6-c-glucoside 8-c-riboside can be found in herbs and spices, which makes apigenin 6-c-glucoside 8-c-riboside a potential biomarker for the consumption of this food product. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1].

   

Isofraxidin

7-hydroxy-6,8-dimethoxy-chromen-2-one;Isofraxidin

C11H10O5 (222.0528)


Isofraxidin is a hydroxycoumarin. Isofraxidin is a natural product found in Artemisia alba, Artemisia assoana, and other organisms with data available. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Genkwanin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Genkwanin is a monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. It has a role as a metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a genkwanin(1-). Genkwanin is a natural product found in Odontites viscosus, Eupatorium capillifolium, and other organisms with data available. A monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

7-O-Methylluteolin

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxychromen-4-one

C16H12O6 (300.0634)


Luteolin 7-methyl ether is a member of flavonoids and an ether. It is a conjugate acid of a luteolin-5-olate 7-methyl ether. 7-O-Methylluteolin is a natural product found in Verbascum lychnitis, Salvia hypoleuca, and other organisms with data available. Luteolin 7-methyl ether is found in common sage. Luteolin 7-methyl ether is isolated from Salvia officinalis (sage). Isolated from Salvia officinalis (sage). Luteolin 7-methyl ether is found in tea, herbs and spices, and common sage. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Luteolin 7-methyl ether. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=20243-59-8 (retrieved 2024-12-30) (CAS RN: 20243-59-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Spathulenol

1H-Cycloprop(e)azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, (1aR-(1aalpha,4aalpha,7beta,7abeta,7balpha))-

C15H24O (220.1827)


Spathulenol is a tricyclic sesquiterpenoid that is 4-methylidenedecahydro-1H-cyclopropa[e]azulene carrying three methyl substituents at positions 1, 1 and 7 as well as a hydroxy substituent at position 7. It has a role as a volatile oil component, a plant metabolite, an anaesthetic and a vasodilator agent. It is a sesquiterpenoid, a carbotricyclic compound, a tertiary alcohol and an olefinic compound. Spathulenol is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. See also: Chamomile (part of). A tricyclic sesquiterpenoid that is 4-methylidenedecahydro-1H-cyclopropa[e]azulene carrying three methyl substituents at positions 1, 1 and 7 as well as a hydroxy substituent at position 7. Spathulenol is found in alcoholic beverages. Spathulenol is a constituent of Salvia sclarea (clary sage).

   

Piperitone

2-Cyclohexen-1-one, 3-methyl-6-(1-methylethyl)-, (S)-

C10H16O (152.1201)


Piperitone is found in ceylan cinnamon. Piperitone is a flavouring ingredient.Piperitone is a natural monoterpene ketone which is a component of some essential oils. Both stereoisomers, the D-form and the L-form, are known. The D-form has a peppermint-like aroma and has been isolated from the oils of plants from the genera Cymbopogon, Andropogon, and Mentha. The L-form has been isolated from Sitka spruce. (Wikipedia Piperitone is a p-menthane monoterpenoid that is cyclohex-2-en-1-one substituted by a methyl group at position 3 and an isopropyl group at position 6. It has a role as a volatile oil component and a plant metabolite. It is a p-menthane monoterpenoid and a cyclic terpene ketone. Piperitone is a natural product found in Clinopodium dalmaticum, Eucalyptus fasciculosa, and other organisms with data available. A p-menthane monoterpenoid that is cyclohex-2-en-1-one substituted by a methyl group at position 3 and an isopropyl group at position 6. Flavouring ingredient Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1]. Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1].

   

Arachidyl alcohol

InChI=1/C20H42O/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21/h21H,2-20H2,1H

C20H42O (298.3235)


Arachidyl alcohol, also known as 1-eicosanol or eicosyl alcohol, belongs to the class of organic compounds known as long-chain fatty alcohols. These are fatty alcohols that have an aliphatic tail of 13 to 21 carbon atoms. Thus, arachidyl alcohol is considered to be a fatty alcohol lipid molecule. Arachidyl alcohol is a very hydrophobic molecule, practically insoluble in water and relatively neutral. Arachidyl alcohol, also 1-icosanol, is a waxy substance used as an emollient in cosmetics. It is a straight-chain fatty alcohol.; Arachidyl alcohol, also 1-icosanol, is a waxy substance used as an emollient in cosmetics. It is a straight-chain fatty alcohol.; ; from wikipedia. Eicosan-1-ol is found in flaxseed, black elderberry, and potato. Icosan-1-ol is a fatty alcohol consisting of a hydroxy function at C-1 of an unbranched saturated chain of 20 carbon atoms. It is a long-chain primary fatty alcohol and a fatty alcohol 20:0. 1-Eicosanol is a natural product found in Lonicera japonica, Artemisia baldshuanica, and other organisms with data available. A long-chain primary fatty alcohol that is icosane in which one of the terminal methyl hydrogens is replaced by a hydroxy group.

   

Naringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0685)


Naringenin is a trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. 5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one is a natural product found in Prunus mume, Helichrysum cephaloideum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists A trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Keioside

5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C28H32O16 (624.169)


Isorhamnetin 3-rutinoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Isorhamnetin 3-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isorhamnetin 3-rutinoside can be found in common bean, ginkgo nuts, sea-buckthornberry, and swede, which makes isorhamnetin 3-rutinoside a potential biomarker for the consumption of these food products. Isorhamnetin 3-robinobioside is found in pear. Isorhamnetin 3-robinobioside is isolated from Pyrus communis (pear). Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1]. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1].

   

Corymboside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one

C26H28O14 (564.1479)


Corymboside is found in cereals and cereal products. Corymboside is isolated from Triticum aestivum (wheat) (as acyl derivatives) Isolated from Triticum aestivum (wheat) (as acyl derivs.). Corymboside is found in wheat and cereals and cereal products.

   

Matricarin

3,6,9-Trimethyl-2,7-dioxo-2H,3H,3ah,4H,5H,7H,9ah,9BH-azuleno[4,5-b]furan-4-yl acetic acid

C17H20O5 (304.1311)


Constituent of Matricaria chamomilla (German chamomile). Matricarin is found in many foods, some of which are herbs and spices, tea, fats and oils, and german camomile. Matricarin is found in fats and oils. Matricarin is a constituent of Matricaria chamomilla (German chamomile)

   

gamma-Muurolene

(1R,4aR,8aS)-7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.1878)


gamma-Muurolene is found in carrot. gamma-Muurolene is a constituent of Pinus sylvestris (Scotch pine).

   

delta-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]

   

(S)-p-Menth-1-en-4-ol

(1S)-4-methyl-1-(propan-2-yl)cyclohex-3-en-1-ol

C10H18O (154.1358)


(S)-p-Menth-1-en-4-ol occurs in many essential oils, e.g. lavende Occurs in many essential oils, e.g. lavender Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].

   

Isobornyl propionate

exo-1,7,7-trimethylbicyclo(2.2.1)Heptan-2-yl propanoate

C13H22O2 (210.162)


Isobornyl propionate is a flavouring agent. Flavouring agent

   

Centaureidin

4H-1-Benzopyran-4-one,5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,6-dimethoxy-

C18H16O8 (360.0845)


   

Ketopelenolide a

3,6,10-trimethyl-2H,3H,3aH,4H,5H,8H,9H,10H,11H,11aH-cyclodeca[b]furan-2,9-dione

C15H22O3 (250.1569)


From Artemisia absinthium (wormwood). Ketopelenolide a is found in alcoholic beverages and herbs and spices. Ketopelenolide b is found in alcoholic beverages. Ketopelenolide b is from Artemisia absinthium (wormwood).

   

4-hydroxy-2-methylbut-2-enoic acid

4-hydroxy-2-methylbut-2-enoic acid

C5H8O3 (116.0473)


   

methyl 3-(4-hydroxyphenyl)prop-2-enoate

methyl 3-(4-hydroxyphenyl)prop-2-enoate

C10H10O3 (178.063)


   

Anabsinthin

(2R,5S,8S,9S,12S,13R,14S,15S,17R,19R,22S,23S,26S,27R)-12-hydroxy-3,8,12,17,19,23-hexamethyl-6,18,25-trioxaoctacyclo[13.11.1.0¹,¹⁷.0²,¹⁴.0⁴,¹³.0⁵,⁹.0¹⁹,²⁷.0²²,²⁶]heptacos-3-ene-7,24-dione

C30H40O6 (496.2825)


Isolated from Artemisia absinthium (wormwood). Anabsinthin is found in alcoholic beverages and herbs and spices. Anabsinthin is found in alcoholic beverages. Anabsinthin is isolated from Artemisia absinthium (wormwood).

   

(+)-Isoborneol

(1S,2S,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol

C10H18O (154.1358)


(+)-Isoborneol, also known as (S,S,S)-(+)-isoborneol, belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. (+)-Isoborneol is a flavouring agent. Flavouring agent Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

(-)-Isoborneol

(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol

C10H18O (154.1358)


(-)-Isoborneol, also known as (R,R,R)-(-)-isoborneol, belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. (-)-Isoborneol is a flavouring agent. Flavouring agent Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Carvone

2-Methyl-5-(1-methyl-1-ethenyl)-2-cyclohexen-1-one

C10H14O (150.1045)


Carvone is found in anise. Carvone is a flavouring ingredient Flavouring ingredient. Constituent of gingergrass oil

   

(-)-3-Thujone

(1R,4R,5S)-4-methyl-1-(propan-2-yl)bicyclo[3.1.0]hexan-3-one

C10H16O (152.1201)


Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone.

   

(-)-trans-Pinocarveol

(1R,3S,5R)-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-ol

C10H16O (152.1201)


(-)-trans-Pinocarveol is a constituent of oil of Eucalyptus globulus (Tasmanian blue gum)

   

trans-beta-Terpineol

(1s,4s)-1-methyl-4-(prop-1-en-2-yl)cyclohexan-1-ol

C10H18O (154.1358)


trans-beta-Terpineol is found in rosemary. Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (Wikipedia). Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. trans-beta-Terpineol is found in rosemary.

   

Thymol

[5-methyl-2-(propan-2-yl)phenyl]oxidanesulfonic acid

C10H14O (150.1045)


Thymol Sulfate is also known as Thymol sulfuric acid. Thymol Sulfate is considered to be practically insoluble (in water) and acidic. Thymol (also known as 2-isopropyl-5-methylphenol, IPMP), C10H14O, is a natural monoterpenoid phenol derivative of p-Cymene, isomeric with carvacrol, found in oil of thyme, and extracted from Thymus vulgaris (common thyme), ajwain,[4] and various other plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol is only slightly soluble in water at neutral pH, but it is extremely soluble in alcohols and other organic solvents. It is also soluble in strongly alkaline aqueous solutions due to deprotonation of the phenol. Its dissociation constant (pKa) is 10.59±0.10.[5] Thymol absorbs maximum UV radiation at 274 nm.[6] Ancient Egyptians used thyme for embalming.[9] The ancient Greeks used it in their baths and burned it as incense in their temples, believing it was a source of courage. The spread of thyme throughout Europe was thought to be due to the Romans, as they used it to purify their rooms and to "give an aromatic flavour to cheese and liqueurs".[10] In the European Middle Ages, the herb was placed beneath pillows to aid sleep and ward off nightmares.[11] In this period, women also often gave knights and warriors gifts that included thyme leaves, because it was believed to bring courage to the bearer. Thyme was also used as incense and placed on coffins during funerals, because it was supposed to ensure passage into the next life.[12] The bee balms Monarda fistulosa and Monarda didyma, North American wildflowers, are natural sources of thymol. The Blackfoot Native Americans recognized these plants' strong antiseptic action and used poultices of the plants for skin infections and minor wounds. A tisane made from them was also used to treat mouth and throat infections caused by dental caries and gingivitis.[13] Thymol was first isolated by German chemist Caspar Neumann in 1719.[14] In 1853, French chemist Alexandre Lallemand[15] (1816-1886) named thymol and determined its empirical formula.[16] Thymol was first synthesized by Swedish chemist Oskar Widman[17] (1852-1930) in 1882.[18]

   

7-Glucosyl-luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.0955)


   

alpha-Bisabolol

6-methyl-2-(4-methylcyclohex-3-en-1-yl)hept-5-en-2-ol

C15H26O (222.1984)


alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2]. alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2].

   

alpha-Caryophyllene

2,6,6,9-tetramethylcycloundeca-1,4,8-triene

C15H24 (204.1878)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

Artemisin

4-hydroxy-3,5a,9-trimethyl-2H,3H,3aH,4H,5H,5aH,8H,9bH-naphtho[1,2-b]furan-2,8-dione

C15H18O4 (262.1205)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

beta-Amyrin acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


Beta-amyrin acetate, also known as B-amyrin acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrin acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Beta-amyrin acetate can be found in burdock and guava, which makes beta-amyrin acetate a potential biomarker for the consumption of these food products. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Camphane

1,7,7-trimethylbicyclo[2.2.1]heptane

C10H18 (138.1408)


   

3,7-Dimethyl-2,6-octadienal

3,7-dimethylocta-2,6-dienal

C10H16O (152.1201)


   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


   

Quercetin-3-o-rutinose

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.1534)


   

Taurin

3,5a,9-trimethyl-2H,3H,3aH,4H,5H,5aH,6H,7H,8H,9bH-naphtho[1,2-b]furan-2,6-dione

C15H20O3 (248.1412)


   

gamma-Elemene

(1S,2S)-1-ethenyl-1-methyl-2-(prop-1-en-2-yl)-4-(propan-2-ylidene)cyclohexane

C15H24 (204.1878)


Gamma-Elemene, also known as g-elemene, belongs to the class of organic compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes that contain 15 carbon atoms and are comprised of three isoprene units. The biosynthesis of sesquiterpenes is known to occur mainly through the mevalonic acid pathway (MVA), in the cytosol. However, recent studies have found evidence of pathway crosstalk with the methyl-erythritol-phosphate (MEP) pathway in the cytosol. Farnesyl diphosphate (FPP) is a key intermediate in the biosynthesis of cyclic sesquiterpenes. FPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. More formally, gamma-elemene is a cyclohexane substituted at positions 1, 1, 2, and 4 by methyl, vinyl, isopropenyl and isopropylidene groups, respectively. There are four known elemene isomers including α-, β-, γ-, and δ-elemene. The elemenes contribute to the floral aromas of some plants and are used as pheromones by some insects. Gamma-elemene is found in many essential plant oils including wormwood leaf oil, peppermint oil, pepper tree leaf oil, parsley leaf oil, orange peel oil, lime oil, juniper berry oil, hinoki leaf oil, angelica root oil, and angelica seed oil. Gamma-elemene has been shown to exhibit good insecticidal activity against the crop pest Spodoptera litura (tobacco cutworm or cotton leafworm) and could be useful as an eco-friendly biopesticide (PMID:28634795). Gamma-elemene, also known as (+)-G-elemene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Gamma-elemene can be found in a number of food items such as sweet basil, mandarin orange (clementine, tangerine), sweet bay, and pot marjoram, which makes gamma-elemene a potential biomarker for the consumption of these food products.

   

Verlotorin

7-hydroperoxy-10-methyl-3,6-dimethylidene-2H,3H,3aH,4H,5H,6H,7H,8H,9H,11aH-cyclodeca[b]furan-2-one

C15H20O4 (264.1362)


Verlotorin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Verlotorin can be found in sweet bay, which makes verlotorin a potential biomarker for the consumption of this food product.

   

Proazulene

(3S,3aR,4S,9R,9aS,9bS)-9-hydroxy-3,6,9-trimethyl-2-oxo-2H,3H,3aH,4H,5H,9H,9aH,9bH-azuleno[4,5-b]furan-4-yl acetate

C17H22O5 (306.1467)


Proazulene, also known as matricine, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Thus, proazulene is considered to be an isoprenoid lipid molecule. Proazulene is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Proazulene can be found in anise, which makes proazulene a potential biomarker for the consumption of this food product. Chamazulene, a blue-violet derivative of azulene, found in a variety of plants including in chamomile (Matricaria chamomilla), wormwood (Artemisia absinthium) and yarrow (Achillea millefolium) is biosynthesized from matricin .

   

Bornyl acetate

(1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl acetate

C12H20O2 (196.1463)


Bornyl acetate, also known as bornyl acetic acid, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Bornyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Bornyl acetate is a camphor, cedar, and herbal tasting compound and can be found in a number of food items such as nutmeg, rosemary, spearmint, and sunflower, which makes bornyl acetate a potential biomarker for the consumption of these food products. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].

   

D-Camphor

1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one

C10H16O (152.1201)


(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Cedarwood oil terpenes

2,6,6,8-tetramethyltricyclo[5.3.1.0¹,⁵]undec-8-ene

C15H24 (204.1878)


It is used as a food additive . (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1].

   

Artemisia ketone

3,3,6-trimethylhepta-1,5-dien-4-one

C10H16O (152.1201)


Artemisia ketone is a member of the class of compounds known as enones. Enones are compounds containing the enone functional group, with the structure RC(=O)CR. Artemisia ketone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Artemisia ketone is a berry, green, and herbal tasting compound found in sunflower and tarragon, which makes artemisia ketone a potential biomarker for the consumption of these food products.

   

Austricin

4-hydroxy-3,6,9-trimethyl-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205)


Austricin is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Austricin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Austricin can be found in german camomile and sweet bay, which makes austricin a potential biomarker for the consumption of these food products.

   

(E)-beta-farnesene

7,11-dimethyl-3-methylidenedodeca-1,6,10-triene

C15H24 (204.1878)


(e)-beta-farnesene, also known as 7,11-dimethyl-3-methylenedodeca-1,6,10-triene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units (e)-beta-farnesene can be found in a number of food items such as safflower, lemon thyme, cauliflower, and root vegetables, which makes (e)-beta-farnesene a potential biomarker for the consumption of these food products. (e)-β-farnesene, also known as 7,11-dimethyl-3-methylenedodeca-1,6,10-triene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units (e)-β-farnesene can be found in a number of food items such as safflower, lemon thyme, cauliflower, and root vegetables, which makes (e)-β-farnesene a potential biomarker for the consumption of these food products. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

Apigenin 7,4'-dimethyl ether

4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)-

C17H14O5 (298.0841)


Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. Apigenin 7,4-dimethyl ether is a dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. It has a role as a plant metabolite. It is a dimethoxyflavone and a monohydroxyflavone. It is functionally related to an apigenin. Apigenin 7,4-dimethyl ether is a natural product found in Teucrium polium, Calea jamaicensis, and other organisms with data available. A dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]

   

Hispidulin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Velutin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methyoxyphenyl)-7-methoxy-

C17H14O6 (314.079)


Velutin is a dimethoxyflavone that is luteolin in which the hydroxy groups at positions 7 and 3 are replaced by methoxy groups. It has a role as an anti-inflammatory agent, a plant metabolite, a melanin synthesis inhibitor, an antibacterial agent, an antioxidant and an anti-allergic agent. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a 4,5,7-trihydroxy-3-methoxyflavone. Velutin is a natural product found in Avicennia officinalis, Lantana montevidensis, and other organisms with data available. See also: Acai (part of). A dimethoxyflavone that is luteolin in which the hydroxy groups at positions 7 and 3 are replaced by methoxy groups. [Raw Data] CB095_Velutin_neg_50eV_000026.txt [Raw Data] CB095_Velutin_neg_40eV_000026.txt [Raw Data] CB095_Velutin_neg_30eV_000026.txt [Raw Data] CB095_Velutin_neg_20eV_000026.txt [Raw Data] CB095_Velutin_neg_10eV_000026.txt [Raw Data] CB095_Velutin_pos_50eV_CB000040.txt [Raw Data] CB095_Velutin_pos_40eV_CB000040.txt [Raw Data] CB095_Velutin_pos_30eV_CB000040.txt [Raw Data] CB095_Velutin_pos_20eV_CB000040.txt [Raw Data] CB095_Velutin_pos_10eV_CB000040.txt Velutin is an aglycone extracted from Flammulina velutipes, with inhibitory activity against melanin biosynthesis. Velutin reduces osteoclast differentiation and down-regulates HIF-1α through the NF-κB pathway[1][2]. Velutin is an aglycone extracted from Flammulina velutipes, with inhibitory activity against melanin biosynthesis. Velutin reduces osteoclast differentiation and down-regulates HIF-1α through the NF-κB pathway[1][2]. Velutin is an aglycone extracted from Flammulina velutipes, with inhibitory activity against melanin biosynthesis. Velutin reduces osteoclast differentiation and down-regulates HIF-1α through the NF-κB pathway[1][2].

   

5,7,3-rihydroxy-6,4,5-rimethoxyflavone

5,7-Dihydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-4H-chromen-4-one

C18H16O8 (360.0845)


5,7,3-Trihydroxy-6,4,5-trimethoxyflavone is a natural product found in Eupatorium capillifolium, Artemisia kurramensis, and other organisms with data available. 5,7,3'-Trihydroxy-6,4',5'-trimethoxyflavone is a methylated flavones from Artemisia frigida. 5,7,3'-Trihydroxy-6,4',5'-trimethoxyflavone is a methylated flavones from Artemisia frigida.

   

Xanthoxylin

2 inverted exclamation mark -Hydroxy-4 inverted exclamation mark ,6 inverted exclamation mark -dimethoxyacetophenone

C10H12O4 (196.0736)


obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree). Xanthoxylin is found in many foods, some of which are herbs and spices, german camomile, fats and oils, and pomegranate. Xanthoxylin is a carboxylic ester. It is functionally related to a phloroglucinol. Xanthoxylin is a natural product found in Euphorbia portulacoides, Pulicaria incisa, and other organisms with data available. Xanthoxylin is found in fats and oils. Xanthoxylin is obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2]. Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2].

   

Camphane

Bicyclo[2.2.1]heptane,1,7,7-trimethyl-

C10H18 (138.1408)


   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.3861)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

2,3-dioxooctyl acetate

7-Hydroxyperoxy-1-hydroxy-3,7-dimethyl-2E,5E-octadien-4-one

C10H16O4 (200.1049)


   

Myrtenyl acetate

{6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl}methyl acetate

C12H18O2 (194.1307)


   

Ascorbic acid

(5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one

C6H8O6 (176.0321)


Ascorbic acid is found naturally in citrus fruits and many vegetables and is an essential nutrient in human diets. It is necessary to maintain connective tissue and bone. The biologically active form of ascorbic acid is vitamin C. Vitamin C is a water soluble vitamin. Primates (including humans) and a few other species in all divisions of the animal kingdom, notably the guinea pig, have lost the ability to synthesize ascorbic acid and must obtain it in their food. Vitamin C functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant (PubChem). Ascorbic acid is an electron donor for enzymes involved in collagen hydroxylation, biosynthesis of carnitine and norepinephrine, tyrosine metabolism, and amidation of peptide hormones. Ascrobic acid (vitamin C) deficiency causes scurvy. The amount of vitamin C necessary to prevent scurvy may not be adequate to maintain optimal health. The ability of vitamin C to donate electrons also makes it a potent water-soluble antioxidant that readily scavenges free radicals such as molecular oxygen, superoxide, hydroxyl radical, and hypochlorous acid. In this setting, several mechanisms could account for a link between vitamin C and heart disease. One is the relation between LDL oxidation and vitamins C and E. Vitamin C in vitro can recycle vitamin E, which can donate electrons to prevent LDL oxidation in vitro. As the lipid-phase vitamin E is oxidized, it can be regenerated by aqueous vitamin C. Other possibilities are that vitamin C could decrease cholesterol by mechanisms not well characterized, or could improve vasodilatation and vascular reactivity, perhaps by decreasing the interactions of nitric oxide with oxidants (PMID: 10799361). Moreover, ascorbic acid is found to be associated with hyperoxalemia, which is an inborn error of metabolism. Ascorbic acid is also a microbial metabolite produced by Ketogulonicigenium (PMID: 15785002). Occurs widely in animals and plants. Good sources are citrus fruits and hip berries. Isolated from ox adrenal cortex, lemons and paprika. Production industrially on a large scale from glucose. Vitamin (antiscorbutic), antioxidant, nutrient, preservative consistency enhancer. It is used to reduce discoloration, mainly browning caused by polyphenol oxidase, in fruit and vegetable products. It is used to enhance colour formn. and to reduced the formn. of nitrosamines in meat products. It is used synergistically with Sulfur dioxide HVF10-P in wine and beer as a perservative. Assists formn. of the gluten network in bread making, thus enhancing bread volume. L-Ascorbic acid is found in many foods, some of which are cabbage, hyssop, ginseng, and pancake. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].

   

Transilitin

2- (3,4-Dihydroxyphenyl) -7,8-dihydroxy-3-methoxy-4H-1-benzopyran-4-one

C16H12O7 (316.0583)


   

Centaureidin

5,7-Dihydroxy-2- (3-hydroxy-4-methoxyphenyl) -3,6-dimethoxy-4H-1-benzopyran-4-one

C18H16O8 (360.0845)


A trihydroxyflavone that consists of quercetagetin in which the hydroxy groups at positions 3, 6 and 4 have been replaced by methoxy groups. It has been isolated from Eremophila mitchellii and Athroisma proteiforme.

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0685)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. A monomethoxyflavone that is the 4-methyl ether derivative of apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one, also known as 4-methoxy-5,7-dihydroxyflavone or acacetin, is a member of the class of compounds known as 4-o-methylated flavonoids. 4-o-methylated flavonoids are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be synthesized from apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, acacetin-7-O-beta-D-galactopyranoside, acacetin-8-C-neohesperidoside, and isoginkgetin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be found in ginkgo nuts, orange mint, and winter savory, which makes 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.223 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.225 Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

1,2,3-TRIMETHYLBENZENE

1,2,3-Trimethyl benzene

C9H12 (120.0939)


A trimethylbenzene carrying methyl groups at positions 1, 2 and 3. It has been found in Centaurium erythraea.

   

Jaceosidin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-

C17H14O7 (330.0739)


Jaceosidin, also known as 4,5,7-trihydroxy-3,6-dimethoxyflavone, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, jaceosidin is considered to be a flavonoid lipid molecule. Jaceosidin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Jaceosidin can be found in lemon verbena, which makes jaceosidin a potential biomarker for the consumption of this food product. Jaceosidin is a flavonoid isolated from Artemisia vestita, induces apoptosis in cancer cells, activates Bax and down-regulates Mcl-1 and c-FLIP expression[1]. Jaceosidin exhibits anti-cancer[2], anti-inflammatory activities, decreases leves of inflammatory markers, and suppresses COX-2 expression and NF-κB activation[3]. Jaceosidin is a flavonoid isolated from Artemisia vestita, induces apoptosis in cancer cells, activates Bax and down-regulates Mcl-1 and c-FLIP expression[1]. Jaceosidin exhibits anti-cancer[2], anti-inflammatory activities, decreases leves of inflammatory markers, and suppresses COX-2 expression and NF-κB activation[3].

   

Patuletin-3-rutinoside

3- [ (6-O-alpha-L-Rhamnopyranosyl-beta-D-glucopyranosyl) oxy ] -3,4,5,7-tetrahydroxy-6-methoxyflavone

C28H32O17 (640.1639)


   

Axillarin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-

C17H14O8 (346.0689)


A dimethoxyflavone that is the 3,6-dimethyl ether derivative of quercetagetin. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one, also known as 3,4,5,7-tetrahydroxy-3,6-dimethoxyflavone or 3,6-dimethoxyquercetagetin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one can be found in german camomile, which makes 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one a potential biomarker for the consumption of this food product.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.0477)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Eupatilin

2- (3,4-Dimethoxyphenyl) -5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0896)


Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.

   

Genkwanin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Patuletin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one

C16H12O8 (332.0532)


A trimethoxyflavone that is quercetagetin methylated at position 6. D004791 - Enzyme Inhibitors

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.0427)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Tricin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-HYDROXY-3,5-DIMETHOXYPHENYL)-

C17H14O7 (330.0739)


3,5-di-O-methyltricetin is the 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. It has a role as an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is a trihydroxyflavone, a dimethoxyflavone and a member of 3-methoxyflavones. It is functionally related to a tricetin. It is a conjugate acid of a 3,5-di-O-methyltricetin(1-). Tricin is a natural product found in Carex fraseriana, Smilax bracteata, and other organisms with data available. See also: Arnica montana Flower (part of); Elymus repens root (part of). The 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. Isolated from Triticum dicoccum (emmer). Tricin 5-diglucoside is found in wheat and cereals and cereal products. From leaves of Oryza sativa (rice). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one, also known as 3,5-O-dimethyltricetin or 5,7,4-trihydroxy-3,5-dimethoxy-flavone, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be synthesized from tricetin. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, tricin 7-O-glucoside, 4-O-beta-glucosyl-7-O-(6-O-sinapoylglucosyl)tricin, and tricin 7-O-(6-O-malonyl)-beta-D-glucopyranoside. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be found in barley, common wheat, oat, and rice, which makes 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   

TRIBUTYL CITRATE

TRIBUTYL CITRATE

C18H32O7 (360.2148)


   

Thujone

Bicyclo[3.1.0]hexan-3-one,4-methyl-1-(1-methylethyl)-

C10H16O (152.1201)


α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

3,3,6-Trimethylhepta-1,5-dien-4-ol

3,3,6-Trimethylhepta-1,5-dien-4-ol

C10H18O (154.1358)


   

Spathulenol

Spathulenol

C15H24O (220.1827)


Constituent of Salvia sclarea (clary sage). Spathulenol is found in many foods, some of which are tarragon, spearmint, common sage, and tea.

   

Ledol

(1aR,4R,4aS,7R,7aS,7bS)-1,1,4,7-tetramethyl-2,3,4a,5,6,7,7a,7b-octahydro-1aH-cyclopropa[e]azulen-4-ol

C15H26O (222.1984)


Ledol is a sesquiterpenoid. Ledol is a natural product found in Waitzia acuminata, Aloysia gratissima, and other organisms with data available. Constituent of Valeriana officinalis (valerian), Piper subspecies and others. Ledol is found in many foods, some of which are fats and oils, common sage, tea, and allspice. Ledol ((+)-Ledol) is an antifungal agent that can be isolated from the essential oil fractions of Rhododendron tomentosum. Ledol is also the expectorant and antitussive agent, which is simultaneously responsible for adverse reactions such as dizziness, nausea and vomiting[1]. Ledol ((+)-Ledol) is an antifungal agent that can be isolated from the essential oil fractions of Rhododendron tomentosum. Ledol is also the expectorant and antitussive agent, which is simultaneously responsible for adverse reactions such as dizziness, nausea and vomiting[1].

   

Tetratriacontane

Tetratriacontane

C34H70 (478.5477)


A long-chain alkane consisting of an unbranched chain of 34 carbon atoms.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.1534)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Quercetin 3-methyl ether

Quercetin 3-methyl ether

C16H12O7 (316.0583)


   

Arborescin

Arborescin

C15H20O3 (248.1412)


An organic heterotetracyclic compound and guaianolide sesquiterpene lactone that is arglabin in which the exocyclic double bond has been reduced to a single bond. It is found in Artemesia adamsii.

   

Camphenilone

Camphenilone

C9H14O (138.1045)


   

myrtenal

BICYCLO(3.1.1)HEPT-2-ENE-2-CARBOXALDEHYDE, 6,6-DIMETHYL-, (1R,5S)-REL-

C10H14O (150.1045)


(-)-Myrtenal is a natural product found in Cyperus articulatus, Forsythia viridissima, and other organisms with data available. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2]. (?)-Myrtenal ((1R)-(?)-Myrtenal) is an orally active terpene with antitumour activity. (?)-Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats[1][2].

   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Isoschaftoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-6-[(2S,3R,4S,5S)-3,4,5-trihydroxy-2-tetrahydropyranyl]-4-chromenone

C26H28O14 (564.1479)


Corymboside, also known as 6-arabinopyranosyl-8-galactopyranosylapigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Corymboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Corymboside can be found in a number of food items such as red bell pepper, carob, common wheat, and orange bell pepper, which makes corymboside a potential biomarker for the consumption of these food products. [Raw Data] CBA22_Isoschaftoside_neg_50eV_1-4_01_1416.txt [Raw Data] CBA22_Isoschaftoside_neg_40eV_1-4_01_1415.txt [Raw Data] CBA22_Isoschaftoside_neg_30eV_1-4_01_1414.txt [Raw Data] CBA22_Isoschaftoside_neg_20eV_1-4_01_1413.txt [Raw Data] CBA22_Isoschaftoside_neg_10eV_1-4_01_1366.txt [Raw Data] CBA22_Isoschaftoside_pos_50eV_1-4_01_1389.txt [Raw Data] CBA22_Isoschaftoside_pos_40eV_1-4_01_1388.txt [Raw Data] CBA22_Isoschaftoside_pos_30eV_1-4_01_1387.txt [Raw Data] CBA22_Isoschaftoside_pos_20eV_1-4_01_1386.txt [Raw Data] CBA22_Isoschaftoside_pos_10eV_1-4_01_1355.txt Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, can inhibit growth of germinated S. hermonthica radicles[1][2]. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, can inhibit growth of germinated S. hermonthica radicles[1][2].

   

Scopoletin

Scopoletin

C10H8O4 (192.0423)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Ergosterol

(3S,9S,10R,13R,14R,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H44O (396.3392)


Indicator of fungal contamination, especies in cereals. Occurs in yeast and fungi. The main fungal steroidand is also found in small amts. in higher plant prods., e.g. palm oil [DFC]. D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.

   

Caffeic Acid

3,4-dihydroxy cinnamic acid

C9H8O4 (180.0423)


A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Scoparone

6,7-dimethoxycoumarin

C11H10O4 (206.0579)


Annotation level-1 D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Isofraxidin

Isofraxidin

C11H10O5 (222.0528)


Annotation level-1 Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Chrysoeriol

Chrysoeriol (Luteolin 3-methyl ether)

C16H12O6 (300.0634)


Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Verbenone

Bicyclo[3.1.1]hept-3-en-2-one, 4,6,6-trimethyl-, (1R-cis)-

C10H14O (150.1045)


R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants 4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one is a carbobicyclic compound that is bicyclo[3.1.1]heptane which is substituted by an oxo group at position 2 and by methyl groups at positions 4, 6 and 6, and which contains a double bond between positions 3 and 4. It is a carbobicyclic compound, a cyclic ketone and an enone. Verbenone is a natural product found in Eucalyptus fasciculosa, Eucalyptus intertexta, and other organisms with data available. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.872 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.873 Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2]. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2].

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). A C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. Isovitexin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isovitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isovitexin can be found in a number of food items such as common salsify, winged bean, flaxseed, and common buckwheat, which makes isovitexin a potential biomarker for the consumption of these food products. Isovitexin (or homovitexin, saponaretin) is a flavone. the apigenin-6-C-glucoside. It can be found in the passion flower, Cannabis, and the açaí palm . Constituent of Cucumis sativus (cucumber). Isovitexin 2-(6-p-coumaroylglucoside) 4-glucoside is found in cucumber and fruits. Constituent of young green barley leaves (Hordeum vulgare variety nudum). Isovitexin 7-(6-sinapoylglucoside) is found in barley and cereals and cereal products. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

Sabinene

Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)-

C10H16 (136.1252)


Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. A thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. 4(10)-thujene, also known as sabinen or 1-isopropyl-4-methylenebicyclo[3.1.0]hexane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. 4(10)-thujene is a citrus, pepper, and pine tasting compound and can be found in a number of food items such as sweet orange, green bell pepper, pot marjoram, and parsley, which makes 4(10)-thujene a potential biomarker for the consumption of these food products. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].

   

Umbelliferone

7-hydroxycoumarine

C9H6O3 (162.0317)


Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.

   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

NCGC00180115-02!5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C26H28O14 (564.1479)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

NCGC00169650-03!5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C26H28O14 (564.1479)


   
   

Fraxidin

InChI=1/C11H10O5/c1-14-7-5-6-3-4-8(12)16-10(6)9(13)11(7)15-2/h3-5,13H,1-2H

C11H10O5 (222.0528)


Fraxidin is a hydroxycoumarin. Fraxidin is a natural product found in Artemisia minor, Melilotus messanensis, and other organisms with data available. Fraxidin, also known as 8-hydroxy-6,7-dimethoxy-2h-1-benzopyran-2-one, is a member of the class of compounds known as hydroxycoumarins. Hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the coumarin skeleton. Fraxidin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Fraxidin can be found in durian and watermelon, which makes fraxidin a potential biomarker for the consumption of these food products. Fraxidin is a class of coumarin isolated from the roots of Jatropha podagrica, exhibits antibacterial activity against Bacillus subtilis with an inhibition zone of 12 mm at a concentration of 20 μg/disk[1][2]. Fraxidin is a class of coumarin isolated from the roots of Jatropha podagrica, exhibits antibacterial activity against Bacillus subtilis with an inhibition zone of 12 mm at a concentration of 20 μg/disk[1][2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Thymol

InChI=1\C10H14O\c1-7(2)9-5-4-8(3)6-10(9)11\h4-7,11H,1-3H

C10H14O (150.1045)


Thymol, also known as 1-hydroxy-5-methyl-2-isopropylbenzene or 2-isopropyl-5-methylphenol, is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. Thus, thymol is considered to be an isoprenoid lipid molecule. Thymol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Thymol can be synthesized from p-cymene. Thymol can also be synthesized into thymol sulfate and thymol sulfate(1-). Thymol is a camphor, herbal, and medicinal tasting compound and can be found in a number of food items such as anise, common oregano, caraway, and highbush blueberry, which makes thymol a potential biomarker for the consumption of these food products. Thymol can be found primarily in saliva and urine, as well as in human liver and skeletal muscle tissues. Thymol exists in all eukaryotes, ranging from yeast to humans. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].

   

o-cresol

o-cresol

C7H8O (108.0575)


A cresol that is phenol substituted by a methyl group at position 2. It is a minor urinary metabolite of toluene.

   

5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C26H28O14 (564.1479)


   

Cirsimaritin

Cirsimaritin

C17H14O6 (314.079)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C26H28O14 (564.1479)


   

Xanthoxylin

Xanthoxylin

C10H12O4 (196.0736)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


Annotation level-1

   

Vicenin 2

Vicenin 2

C27H30O15 (594.1585)


Annotation level-1

   

Vulgarin

Vulgarin

C15H20O4 (264.1362)


Origin: Plant; SubCategory_DNP: Sesquiterpenoids

   

5,7-dihydroxy-3,6-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

5,7-dihydroxy-3,6-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

C18H16O7 (344.0896)


   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

1-OCTEN-3-OL

(3R)-oct-1-en-3-ol

C8H16O (128.1201)


Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

Tricyclene

1,7,7-trimethyl-tricyclo[2.2.1.0{2,6}]heptane

C10H16 (136.1252)


   

allo-aromadendrene

allo-aromadendrene

C15H24 (204.1878)


   

Asahina

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0685)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

D-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

Piperitone

3-methyl-6-(1-methylethyl)-2-cyclohexen-1-one

C10H16O (152.1201)


Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1]. Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1].

   

borneol

1,7,7-Trimethyl-(1R,2S,4R)-rel-bicyclo[2.2.1]heptan-2-ol

C10H18O (154.1358)


Flavouring agent. (±)-Borneol is found in many foods, some of which are pot marjoram, pepper (spice), saffron, and german camomile. Constituent of Curcuma aromatica and other plants. (+)-Borneol is found in nutmeg, herbs and spices, and ginger. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Beta-Elemene

1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

S-Origanol

(1S)-4-methyl-1-(propan-2-yl)cyclohex-3-en-1-ol

C10H18O (154.1358)


   

β-Phellandrene

3-methylidene-6-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1252)


β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].

   

Anabsinthin

11-hydroxy-3,8,11,17,19,23-hexamethyl-6,18,25-trioxaoctacyclo[13.11.1.0^{1,17}.0^{2,14}.0^{4,13}.0^{5,9}.0^{19,27}.0^{22,26}]heptacos-3-ene-7,24-dione

C30H40O6 (496.2825)


   

D-Guaiene

3,8-dimethyl-5-(prop-1-en-2-yl)-1,2,3,3a,4,5,6,7-octahydroazulene

C15H24 (204.1878)


   

Isointermedeol

1,4a-dimethyl-7-(prop-1-en-2-yl)-decahydronaphthalen-1-ol

C15H26O (222.1984)


   

Keioside

5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C28H32O16 (624.169)


   

Neral

InChI=1\C10H16O\c1-9(2)5-4-6-10(3)7-8-11\h5,7-8H,4,6H2,1-3H3\b10-7

C10H16O (152.1201)


An enal that is 3,7-dimethyloctanal with unsaturation at positions C-2 and C-6. It has been isolated form the essential oils of plant species like lemon.

   

Pinocarvone

Pinocarvone

C10H14O (150.1045)


A bridged compound resulting from rearrangement of carvone.

   

D-piperitone

(6S)-3-methyl-6-(propan-2-yl)cyclohex-2-en-1-one

C10H16O (152.1201)


   

(+)-Borneol

(+)-Borneol

C10H18O (154.1358)


   
   

Lucenin-2

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6,8-bis[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C27H30O16 (610.1534)


   

2-aminoethanesulfonic acid

2-aminoethanesulfonic acid

C2H7NO3S (125.0147)


   

(-)-myrtenol

(-)-myrtenol

C10H16O (152.1201)


   

(+)-trans-Pinocarveol

(1R,3S,5R)-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-ol

C10H16O (152.1201)


(-)-trans-pinocarveol, also known as (-)-trans-2(10)-pinen-3-ol or (1s,3r,5s)-(-)-2(10)-pinen-3-ol, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other (-)-trans-pinocarveol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). (-)-trans-pinocarveol can be found in a number of food items such as cumin, sweet bay, pepper (spice), and common sage, which makes (-)-trans-pinocarveol a potential biomarker for the consumption of these food products.

   

3,3-Dimethylbicyclo[2.2.1]heptan-2-one

3,3-Dimethylbicyclo[2.2.1]heptan-2-one

C9H14O (138.1045)


   

Isosecotanapartholide

Isosecotanapartholide

C15H18O5 (278.1154)


A sesquiterpene lactone isolated from Artemisia rutifolia and Artemisia iwayomogi and has been shown to inhibit nitric oxide synthase.

   

4,7,7-Trimethylbicyclo[3.2.0]hept-3-en-6-one

4,7,7-Trimethylbicyclo[3.2.0]hept-3-en-6-one

C10H14O (150.1045)


   

(-)-Myrtenyl acetate

(-)-Myrtenyl acetate

C12H18O2 (194.1307)


   

(+)-Bornyl acetate

Bornyl acetate, (-)-

C12H20O2 (196.1463)


(-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].

   

Bornyl acetate

(1R,2S,4R)-(+)-Bornyl acetate

C12H20O2 (196.1463)


Same as: D09740 (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].

   

Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.1878)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

Nonacosane

EINECS 211-126-2

C29H60 (408.4695)


Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

linoleic

9,12-Octadecadienoic acid, (9E,12E)-

C18H32O2 (280.2402)


Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].

   

vitamin C

2-o-(beta-d-glucopyranosyl)-ascorbic acid_qt

C6H8O6 (176.0321)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].

   

Jasmone

2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-, (Z)- (8CI)

C11H16O (164.1201)


Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].

   

D-CAMPHOR

(±)-Camphor

C10H16O (152.1201)


(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative.

   

α-Copaene

alpha-copaene

C15H24 (204.1878)


   

Verlotorin

Verlotorin

C15H20O4 (264.1362)


A germacranolide isolated from Laurus nobilis L.

   

Ketopelenolide A

Ketopelenolide A

C15H22O3 (250.1569)


   

Ambrosane

Ambrosane

C15H28 (208.2191)


   

Cirsilineol

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-

C18H16O7 (344.0896)


Cirsilineol is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsilineol is a natural product found in Thymus herba-barona, Salvia tomentosa, and other organisms with data available. See also: Tangerine peel (part of). A trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively.

   

Borneol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. A bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

TERPINOLENE

TERPINOLENE

C10H16 (136.1252)


A p-menthadiene with double bonds at positions 1 and 4(8).

   
   

Artemorin

Artemorin

C15H20O3 (248.1412)


A germacranolide isolated from Laurus nobilis L..

   

DIISOBUTYL PHTHALATE

DIISOBUTYL PHTHALATE

C16H22O4 (278.1518)


   

Hemimellitene

1,2,3-TRIMETHYLBENZENE

C9H12 (120.0939)


   

Pinocarveol

Bicyclo[3.1.1]heptan-3-ol,6,6-dimethyl-2-methylene-

C10H16O (152.1201)


A pinane monoterpenoid that is a bicyclo[3.1.1]heptane substituted by two methyl groups at position 6, a methylidene group at position 2 and a hydroxy group at position 3.

   

2-(4-methylphenyl)propan-2-ol

2-(4-methylphenyl)propan-2-ol

C10H14O (150.1045)


   

cedrene

Cedarwood oil terpenes fraction

C15H24 (204.1878)


(-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1].

   

3,7-Dimethyl-2,6-octadienal

3,7-Dimethyl-2,6-octadienal

C10H16O (152.1201)


   

delta-Cadinene

delta-Cadinene

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

1,8-Cineole

1,8-Cineole

C10H18O (154.1358)


   

Oct-1-en-3-ol

Oct-1-en-3-ol

C8H16O (128.1201)


An alkenyl alcohol with a structure based on a C8 unbranched chain with the hydroxy group at C-2 and unsaturation at C-1-C-2. It is a major volatile compound present in many mushrooms and fungi.

   

(1s,3s,4r)-1,3-dimethyl-3-(4-methylpent-3-en-1-yl)-2-oxabicyclo[2.2.2]oct-5-ene

(1s,3s,4r)-1,3-dimethyl-3-(4-methylpent-3-en-1-yl)-2-oxabicyclo[2.2.2]oct-5-ene

C15H24O (220.1827)


   

(3r,3as,9r,10s,11ar)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,10h,11h,11ah-cyclodeca[b]furan-2-one

(3r,3as,9r,10s,11ar)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,10h,11h,11ah-cyclodeca[b]furan-2-one

C15H24O3 (252.1725)


   

(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.1878)


   

(1s,2s,5s,6s,9s,10s)-5,9,10-trimethyl-3-oxatetracyclo[7.4.0.0¹,¹⁰.0²,⁶]tridec-12-ene-4,11-dione

(1s,2s,5s,6s,9s,10s)-5,9,10-trimethyl-3-oxatetracyclo[7.4.0.0¹,¹⁰.0²,⁶]tridec-12-ene-4,11-dione

C15H18O3 (246.1256)


   

2-(8-hydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl)prop-2-enoic acid

2-(8-hydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl)prop-2-enoic acid

C15H24O3 (252.1725)


   

4,6-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

4,6-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(2s)-2-[(2s,5r)-5-ethenyl-5-methyloxolan-2-yl]propanoic acid

(2s)-2-[(2s,5r)-5-ethenyl-5-methyloxolan-2-yl]propanoic acid

C10H16O3 (184.1099)


   

4,7-dihydroxy-3,6,10-trimethyl-3h,3ah,4h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

4,7-dihydroxy-3,6,10-trimethyl-3h,3ah,4h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

(3r,3as,5ar,6r,9r,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

(3r,3as,5ar,6r,9r,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H24O4 (268.1675)


   

3,10-dimethyl-6-methylidene-2,7-dioxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

3,10-dimethyl-6-methylidene-2,7-dioxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

C17H22O5 (306.1467)


   

(3r,3as,4r,7r,11as)-4,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3r,3as,4r,7r,11as)-4,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

(3s,5s,5ar,6r,9as,9bs)-5,6-dihydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

(3s,5s,5ar,6r,9as,9bs)-5,6-dihydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(3s,3ar,4s,9as,9br)-4-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3s,3ar,4s,9as,9br)-4-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205)


   

(3r,3as,4r,9ar,9bs)-4-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3r,3as,4r,9ar,9bs)-4-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205)


   

6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(2r,4e)-2-[(2r,5r)-5-ethenyl-5-methyloxolan-2-yl]-6-hydroxy-6-methylhept-4-en-3-one

(2r,4e)-2-[(2r,5r)-5-ethenyl-5-methyloxolan-2-yl]-6-hydroxy-6-methylhept-4-en-3-one

C15H24O3 (252.1725)


   

(3s,3as,7r,11as)-7-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3as,7r,11as)-7-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

(3s,5s,11as)-5-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

(3s,5s,11as)-5-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

C15H20O4 (264.1362)


   

(3s,3ar,5ar,6r,8s,9bs)-6,8-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

(3s,3ar,5ar,6r,8s,9bs)-6,8-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

7-hydroxy-10-methyl-3,6-dimethylidene-2-oxo-3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

7-hydroxy-10-methyl-3,6-dimethylidene-2-oxo-3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

C17H22O5 (306.1467)


   

2-[(3s,4s,5r)-3-(hydroxymethyl)-5-(prop-1-en-2-yl)-1,2-dioxolan-4-yl]propan-2-yl acetate

2-[(3s,4s,5r)-3-(hydroxymethyl)-5-(prop-1-en-2-yl)-1,2-dioxolan-4-yl]propan-2-yl acetate

C12H20O5 (244.1311)


   

6-ethenyl-5-hydroxy-3,6-dimethyl-7-(prop-1-en-2-yl)-hexahydro-1-benzofuran-2-one

6-ethenyl-5-hydroxy-3,6-dimethyl-7-(prop-1-en-2-yl)-hexahydro-1-benzofuran-2-one

C15H22O3 (250.1569)


   

(3r,3as,5ar,9r,9as,9bs)-9-hydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

(3r,3as,5ar,9r,9as,9bs)-9-hydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H24O3 (252.1725)


   

3-methyl-5-{1,3,3-trimethyl-7-oxabicyclo[2.2.1]heptan-2-yl}pent-1-en-3-ol

3-methyl-5-{1,3,3-trimethyl-7-oxabicyclo[2.2.1]heptan-2-yl}pent-1-en-3-ol

C15H26O2 (238.1933)


   

(1s,3r,5s)-3-hydroxy-7,7-dimethyl-2-methylidenebicyclo[3.1.1]heptan-6-one

(1s,3r,5s)-3-hydroxy-7,7-dimethyl-2-methylidenebicyclo[3.1.1]heptan-6-one

C10H14O2 (166.0994)


   

7-hydroperoxy-1-hydroxy-3,7-dimethylocta-2,5-dien-4-one

7-hydroperoxy-1-hydroxy-3,7-dimethylocta-2,5-dien-4-one

C10H16O4 (200.1049)


   

7-hydroperoxy-3,10-dimethyl-6-methylidene-2-oxo-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

7-hydroperoxy-3,10-dimethyl-6-methylidene-2-oxo-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

C17H24O6 (324.1573)


   

6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(1r,2s,6s,9r,10r,11r,12r,14s)-9,10,11-trihydroxy-9,14-dimethyl-5-methylidene-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-4-one

(1r,2s,6s,9r,10r,11r,12r,14s)-9,10,11-trihydroxy-9,14-dimethyl-5-methylidene-3,13-dioxatetracyclo[8.4.0.0²,⁶.0¹²,¹⁴]tetradecan-4-one

C15H20O6 (296.126)


   

(5s,5as,8r,9bs)-5,8-dihydroxy-3,5a,9-trimethyl-4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

(5s,5as,8r,9bs)-5,8-dihydroxy-3,5a,9-trimethyl-4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H20O4 (264.1362)


   

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.1827)


   

3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

C17H24O4 (292.1675)


   

3,5a,9-trimethyl-3h,3ah,9bh-naphtho[1,2-b]furan-2,8-dione

3,5a,9-trimethyl-3h,3ah,9bh-naphtho[1,2-b]furan-2,8-dione

C15H16O3 (244.1099)


   

(3s,3ar,4s,5ar,6r,9bs)-4,6-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

(3s,3ar,4s,5ar,6r,9bs)-4,6-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(1r,2s,4r)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl propanoate

(1r,2s,4r)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl propanoate

C13H22O2 (210.162)


   

(3s,3as,5ar,6s,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6s,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(2e)-5-[(1s,3s,4r)-1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl]-2-methylpent-2-en-1-yl butanoate

(2e)-5-[(1s,3s,4r)-1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl]-2-methylpent-2-en-1-yl butanoate

C19H30O3 (306.2195)


   

(4e)-2-(5-ethenyl-5-methyloxolan-2-yl)-6-hydroxy-6-methylhept-4-en-3-one

(4e)-2-(5-ethenyl-5-methyloxolan-2-yl)-6-hydroxy-6-methylhept-4-en-3-one

C15H24O3 (252.1725)


   

5,10-dimethyl-3-oxatetracyclo[7.4.0.0¹,¹⁰.0²,⁶]tridec-12-ene-4,11-dione

5,10-dimethyl-3-oxatetracyclo[7.4.0.0¹,¹⁰.0²,⁶]tridec-12-ene-4,11-dione

C14H16O3 (232.1099)


   

(4s)-3,3,6-trimethylhepta-1,5-dien-4-ol

(4s)-3,3,6-trimethylhepta-1,5-dien-4-ol

C10H18O (154.1358)


   

(3r,3as,9s,11as)-9-hydroxy-6-(hydroxymethyl)-3,10-dimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3r,3as,9s,11as)-9-hydroxy-6-(hydroxymethyl)-3,10-dimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

4,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

4,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

(4s,5s)-5-[(1s,2s)-2-hydroxy-2-methyl-5-oxocyclopent-3-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

(4s,5s)-5-[(1s,2s)-2-hydroxy-2-methyl-5-oxocyclopent-3-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

C15H18O5 (278.1154)


   

(3r,3ar,9ar,9br)-3,6,9-trimethyl-3h,3ah,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3r,3ar,9ar,9br)-3,6,9-trimethyl-3h,3ah,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H16O3 (244.1099)


   

(3s,3ar,4s,11ar)-4-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

(3s,3ar,4s,11ar)-4-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

C15H20O4 (264.1362)


   

(1s,5z,7s,8s)-8-isopropyl-5-methylbicyclo[5.3.1]undec-5-en-2-one

(1s,5z,7s,8s)-8-isopropyl-5-methylbicyclo[5.3.1]undec-5-en-2-one

C15H24O (220.1827)


   

(1as,7s,7as,7br)-1,1,4,7-tetramethyl-1ah,2h,3h,5h,6h,7h,7ah,7bh-cyclopropa[e]azulene

(1as,7s,7as,7br)-1,1,4,7-tetramethyl-1ah,2h,3h,5h,6h,7h,7ah,7bh-cyclopropa[e]azulene

C15H24 (204.1878)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-methoxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-methoxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C22H22O13 (494.106)


   

(3s,3as,5ar,6s,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9bh-naphtho[1,2-b]furan-2,8-dione

(3s,3as,5ar,6s,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9bh-naphtho[1,2-b]furan-2,8-dione

C15H20O4 (264.1362)


   

6,9a-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9bh-naphtho[1,2-b]furan-2-one

6,9a-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9bh-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(3s,3as,7r,9s,11as)-7-hydroxy-3,10-dimethyl-6-methylidene-2-oxo-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

(3s,3as,7r,9s,11as)-7-hydroxy-3,10-dimethyl-6-methylidene-2-oxo-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

C17H24O5 (308.1624)


   

(3s,3as,5ar,9bs)-3,5a,9-trimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,6-dione

(3s,3as,5ar,9bs)-3,5a,9-trimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,6-dione

C15H18O3 (246.1256)


   

(3r,3as,5ar,6r,9s,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

(3r,3as,5ar,6r,9s,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H24O4 (268.1675)


   

3,10-dimethyl-2,4-dioxo-3h,3ah,5h,8h,9h,11ah-cyclodeca[b]furan-6-carbaldehyde

3,10-dimethyl-2,4-dioxo-3h,3ah,5h,8h,9h,11ah-cyclodeca[b]furan-6-carbaldehyde

C15H18O4 (262.1205)


   

(3s,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(1r,3s,5r)-3-hydroxy-7,7-dimethyl-2-methylidenebicyclo[3.1.1]heptan-6-one

(1r,3s,5r)-3-hydroxy-7,7-dimethyl-2-methylidenebicyclo[3.1.1]heptan-6-one

C10H14O2 (166.0994)


   

3,5a,9-trimethyl-2,8-dioxo-3h,3ah,4h,5h,6h,7h,9bh-naphtho[1,2-b]furan-6-yl acetate

3,5a,9-trimethyl-2,8-dioxo-3h,3ah,4h,5h,6h,7h,9bh-naphtho[1,2-b]furan-6-yl acetate

C17H22O5 (306.1467)


   

(3r)-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-ol

(3r)-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-ol

C10H16O (152.1201)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-methoxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-methoxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C22H22O13 (494.106)


   

(3s,3as,11as)-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

(3s,3as,11as)-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

C15H20O3 (248.1412)


   

(3s,3ar,4s,5ar,6r,9bs)-6-hydroxy-3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-4-yl acetate

(3s,3ar,4s,5ar,6r,9bs)-6-hydroxy-3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-4-yl acetate

C17H24O5 (308.1624)


   

(1r,2s,5s,6r,7s,9r,13r)-7-hydroxy-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradecane-4,10-dione

(1r,2s,5s,6r,7s,9r,13r)-7-hydroxy-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradecane-4,10-dione

C15H20O5 (280.1311)


   

(3s,3as,5ar,6s,9as,9bs)-3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-6-yl acetate

(3s,3as,5ar,6s,9as,9bs)-3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-6-yl acetate

C17H24O4 (292.1675)


   

(3s,3as,5ar,9s,9as,9bs)-9-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-naphtho[1,2-b]furan-2,6-dione

(3s,3as,5ar,9s,9as,9bs)-9-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-naphtho[1,2-b]furan-2,6-dione

C15H20O4 (264.1362)


   

(3ar,7ar)-2-(prop-2-en-1-yl)-3a,4,5,6,7,7a-hexahydroinden-1-one

(3ar,7ar)-2-(prop-2-en-1-yl)-3a,4,5,6,7,7a-hexahydroinden-1-one

C12H16O (176.1201)


   

(3s,3ar,4s,7r,11as)-4,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3ar,4s,7r,11as)-4,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

(2e,5e)-7-hydroxy-3,7-dimethyl-4-oxoocta-2,5-dien-1-yl acetate

(2e,5e)-7-hydroxy-3,7-dimethyl-4-oxoocta-2,5-dien-1-yl acetate

C12H18O4 (226.1205)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-methoxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-methoxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

C28H32O17 (640.1639)


   

(1r,2s,5r,6s,9r,11s)-5,9,14-trimethyl-3,12,13-trioxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-14-ene-4,10-dione

(1r,2s,5r,6s,9r,11s)-5,9,14-trimethyl-3,12,13-trioxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-14-ene-4,10-dione

C15H18O5 (278.1154)


   

(3s)-3-ethenyl-2,5-dimethylhex-4-en-2-ol

(3s)-3-ethenyl-2,5-dimethylhex-4-en-2-ol

C10H18O (154.1358)


   

(2s)-6-methyl-2-[(1r)-4-methylidenecyclohex-2-en-1-yl]hept-5-en-2-ol

(2s)-6-methyl-2-[(1r)-4-methylidenecyclohex-2-en-1-yl]hept-5-en-2-ol

C15H24O (220.1827)


   

(3s,3ar,4s,5ar,9bs)-3,5a,9-trimethyl-2,6-dioxo-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-4-yl acetate

(3s,3ar,4s,5ar,9bs)-3,5a,9-trimethyl-2,6-dioxo-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-4-yl acetate

C17H22O5 (306.1467)


   

(3r,3ar,5r,7s,11ar)-7-hydroxy-3,10-dimethyl-6-methylidene-2-oxo-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

(3r,3ar,5r,7s,11ar)-7-hydroxy-3,10-dimethyl-6-methylidene-2-oxo-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

C17H24O5 (308.1624)


   

(3s,3as,5ar,6r,9as,9bs)-3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-6-yl acetate

(3s,3as,5ar,6r,9as,9bs)-3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-6-yl acetate

C17H24O4 (292.1675)


   

(3r,3ar,4s,5ar,9bs)-4-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,6-dione

(3r,3ar,4s,5ar,9bs)-4-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,6-dione

C15H18O4 (262.1205)


   

(3s,7r,11as)-7-hydroxy-3,10-dimethyl-6-methylidene-2-oxo-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

(3s,7r,11as)-7-hydroxy-3,10-dimethyl-6-methylidene-2-oxo-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

C17H24O5 (308.1624)


   

1,2,3-tributyl prop-1-ene-1,2,3-tricarboxylate

1,2,3-tributyl prop-1-ene-1,2,3-tricarboxylate

C18H30O6 (342.2042)


   

methyl (2z)-3-(4-hydroxyphenyl)prop-2-enoate

methyl (2z)-3-(4-hydroxyphenyl)prop-2-enoate

C10H10O3 (178.063)


   

(4r,4ar,7r)-4-hydroxy-1,4a-dimethyl-7-(prop-1-en-2-yl)-3,4,5,6,7,8-hexahydronaphthalen-2-one

(4r,4ar,7r)-4-hydroxy-1,4a-dimethyl-7-(prop-1-en-2-yl)-3,4,5,6,7,8-hexahydronaphthalen-2-one

C15H22O2 (234.162)


   

(2s)-2-[(2s,5r)-5-ethenyl-5-methyloxolan-2-yl]-5-hydroxy-6-methylhept-6-en-3-one

(2s)-2-[(2s,5r)-5-ethenyl-5-methyloxolan-2-yl]-5-hydroxy-6-methylhept-6-en-3-one

C15H24O3 (252.1725)


   

(3s,3ar,4s,5ar,6r,9as,9br)-4,6-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

(3s,3ar,4s,5ar,6r,9as,9br)-4,6-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(1r,2s,5s,6r,7s,9r,13r)-7-hydroxy-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradec-11-ene-4,10-dione

(1r,2s,5s,6r,7s,9r,13r)-7-hydroxy-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradec-11-ene-4,10-dione

C15H18O5 (278.1154)


   

3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-6-yl acetate

3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-6-yl acetate

C17H24O4 (292.1675)


   

3',4-dihydroxy-3,5',10,10'-tetramethyl-3a,4,5,8,9,11a-hexahydro-3h-7',14'-dioxaspiro[cyclodeca[b]furan-6,15'-tricyclo[11.4.0.0⁴,⁸]heptadecane]-1'(13'),9'-diene-2,6',7-trione

3',4-dihydroxy-3,5',10,10'-tetramethyl-3a,4,5,8,9,11a-hexahydro-3h-7',14'-dioxaspiro[cyclodeca[b]furan-6,15'-tricyclo[11.4.0.0⁴,⁸]heptadecane]-1'(13'),9'-diene-2,6',7-trione

C30H40O8 (528.2723)


   

(1s,3s,4s,6r,9e,11s,14s)-4,9,14-trimethyl-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradec-9-en-3-yl acetate

(1s,3s,4s,6r,9e,11s,14s)-4,9,14-trimethyl-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradec-9-en-3-yl acetate

C17H24O5 (308.1624)


   

(2e)-4-hydroxy-2-methylbut-2-enoic acid

(2e)-4-hydroxy-2-methylbut-2-enoic acid

C5H8O3 (116.0473)


   

(1r,2s,5s,6s,9r,11s)-5,9,14-trimethyl-3,12,13-trioxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-14-ene-4,10-dione

(1r,2s,5s,6s,9r,11s)-5,9,14-trimethyl-3,12,13-trioxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-14-ene-4,10-dione

C15H18O5 (278.1154)


   

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.1878)


   

5,11-dihydroxy-3-methyl-6,10-dimethylidene-octahydrocyclodeca[b]furan-2,7-dione

5,11-dihydroxy-3-methyl-6,10-dimethylidene-octahydrocyclodeca[b]furan-2,7-dione

C15H20O5 (280.1311)


   

2-[1-methyl-2-(prop-1-en-2-yl)cyclobutyl]ethyl acetate

2-[1-methyl-2-(prop-1-en-2-yl)cyclobutyl]ethyl acetate

C12H20O2 (196.1463)


   

(3as,11ar)-10-methyl-3,6-dimethylidene-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

(3as,11ar)-10-methyl-3,6-dimethylidene-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

C15H18O3 (246.1256)


   

(3s,4r,11as)-4,5,11-trihydroxy-3-methyl-6,10-dimethylidene-octahydrocyclodeca[b]furan-2,7-dione

(3s,4r,11as)-4,5,11-trihydroxy-3-methyl-6,10-dimethylidene-octahydrocyclodeca[b]furan-2,7-dione

C15H20O6 (296.126)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

C26H28O14 (564.1479)


   

(3s,4s,7r,11ar)-4,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,4s,7r,11ar)-4,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

10-hydroxy-5,9,14-trimethyl-3,13-dioxatetracyclo[7.5.0.0²,⁶.0¹²,¹⁴]tetradecan-4-one

10-hydroxy-5,9,14-trimethyl-3,13-dioxatetracyclo[7.5.0.0²,⁶.0¹²,¹⁴]tetradecan-4-one

C15H22O4 (266.1518)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-({[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-({[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O16 (610.1534)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2r,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2r,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

C21H20O10 (432.1056)


   

2,7,7-trimethylbicyclo[3.1.1]hept-2-en-6-ol

2,7,7-trimethylbicyclo[3.1.1]hept-2-en-6-ol

C10H16O (152.1201)


   

5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxychromen-4-one

5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxychromen-4-one

C18H16O7 (344.0896)


   

cis-(-)-p-menth-1-en-3-ol

cis-(-)-p-menth-1-en-3-ol

C10H18O (154.1358)


   

7-(3-hydroxyprop-1-en-2-yl)-1,4a-dimethyl-3,4,5,6,7,8-hexahydronaphthalen-2-one

7-(3-hydroxyprop-1-en-2-yl)-1,4a-dimethyl-3,4,5,6,7,8-hexahydronaphthalen-2-one

C15H22O2 (234.162)


   

3,7,11-trimethyldodeca-2,6,10-trien-1-yl 3-methylbutanoate

3,7,11-trimethyldodeca-2,6,10-trien-1-yl 3-methylbutanoate

C20H34O2 (306.2559)


   

9a-hydroxy-3,5a-dimethyl-9-methylidene-2-oxo-octahydronaphtho[1,2-b]furan-6-yl acetate

9a-hydroxy-3,5a-dimethyl-9-methylidene-2-oxo-octahydronaphtho[1,2-b]furan-6-yl acetate

C17H24O5 (308.1624)


   

1,5-dimethyl-9-(prop-1-en-2-yl)-8,12-dioxatricyclo[7.2.1.0²,⁷]dodec-5-ene

1,5-dimethyl-9-(prop-1-en-2-yl)-8,12-dioxatricyclo[7.2.1.0²,⁷]dodec-5-ene

C15H22O2 (234.162)


   

6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H24O4 (268.1675)


   

1-ethyl-5,5-dimethylcyclopenta-1,3-diene

1-ethyl-5,5-dimethylcyclopenta-1,3-diene

C9H14 (122.1095)


   

(3s,3as,6s,9r,9bs)-6,9-dihydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,8h,9bh-azuleno[4,5-b]furan-2,7-dione

(3s,3as,6s,9r,9bs)-6,9-dihydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,8h,9bh-azuleno[4,5-b]furan-2,7-dione

C15H20O5 (280.1311)


   

(3s,3as,5ar,6r,8s,9bs)-6-hydroxy-3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-8-yl acetate

(3s,3as,5ar,6r,8s,9bs)-6-hydroxy-3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-8-yl acetate

C17H24O5 (308.1624)


   

(4ar,7s)-1,4a-dimethyl-7-(prop-1-en-2-yl)-3,4,5,6,7,8-hexahydronaphthalen-2-one

(4ar,7s)-1,4a-dimethyl-7-(prop-1-en-2-yl)-3,4,5,6,7,8-hexahydronaphthalen-2-one

C15H22O (218.1671)


   

β-santonin

β-santonin

C15H18O3 (246.1256)


   

(3r)-3-[(2s,5r)-5-ethenyl-5-methyloxolan-2-yl]butanoic acid

(3r)-3-[(2s,5r)-5-ethenyl-5-methyloxolan-2-yl]butanoic acid

C11H18O3 (198.1256)


   

(3s,3as,5ar,6r,9r,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6r,9r,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H24O4 (268.1675)


   

(3s,3ar,4s,6s,6ar,9ar,9br)-4,6-dihydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3s,3ar,4s,6s,6ar,9ar,9br)-4,6-dihydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H20O5 (280.1311)


   

(3s,3as,11ar)-3,10-dimethyl-2,4-dioxo-3h,3ah,5h,8h,9h,11ah-cyclodeca[b]furan-6-carbaldehyde

(3s,3as,11ar)-3,10-dimethyl-2,4-dioxo-3h,3ah,5h,8h,9h,11ah-cyclodeca[b]furan-6-carbaldehyde

C15H18O4 (262.1205)


   

(9s,12s,16r,17s,19s,23s,26s)-12,16-dihydroxy-3,8,12,17,19,23-hexamethyl-6,18,25-trioxaoctacyclo[13.11.1.0¹,¹⁷.0²,¹⁴.0⁴,¹³.0⁵,⁹.0¹⁹,²⁷.0²²,²⁶]heptacos-3-ene-7,24-dione

(9s,12s,16r,17s,19s,23s,26s)-12,16-dihydroxy-3,8,12,17,19,23-hexamethyl-6,18,25-trioxaoctacyclo[13.11.1.0¹,¹⁷.0²,¹⁴.0⁴,¹³.0⁵,⁹.0¹⁹,²⁷.0²²,²⁶]heptacos-3-ene-7,24-dione

C30H40O7 (512.2774)


   

(3s,3as,5ar,6s,8r,9bs)-6,8-dihydroxy-3,5a,9-trimethyl-3h,3ah,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6s,8r,9bs)-6,8-dihydroxy-3,5a,9-trimethyl-3h,3ah,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H20O4 (264.1362)


   

(2s,5r)-5-isopropyl-2-methylbicyclo[3.1.0]hexan-2-ol

(2s,5r)-5-isopropyl-2-methylbicyclo[3.1.0]hexan-2-ol

C10H18O (154.1358)


   

(1s,2r,5s,9s,10s,11s,12r,13r)-2,11,12-trihydroxy-2,11-dimethyl-6-methylidene-8,14-dioxatetracyclo[8.4.0.0¹,¹³.0⁵,⁹]tetradecan-7-one

(1s,2r,5s,9s,10s,11s,12r,13r)-2,11,12-trihydroxy-2,11-dimethyl-6-methylidene-8,14-dioxatetracyclo[8.4.0.0¹,¹³.0⁵,⁹]tetradecan-7-one

C15H20O6 (296.126)


   

5-{1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl}-2-methylpent-2-en-1-yl propanoate

5-{1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl}-2-methylpent-2-en-1-yl propanoate

C18H28O3 (292.2038)


   

(3s,3ar,4s,11ar)-4-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3ar,4s,11ar)-4-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

(3s,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6r,9as,9bs)-6-hydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H44O (396.3392)


   

2-methoxy-5-[1-(3,4,5-trimethoxyphenyl)ethyl]phenol

2-methoxy-5-[1-(3,4,5-trimethoxyphenyl)ethyl]phenol

C18H22O5 (318.1467)


   

(3s,3as,9r,11as)-9-hydroxy-6-(hydroxymethyl)-3,10-dimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3as,9r,11as)-9-hydroxy-6-(hydroxymethyl)-3,10-dimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

(3r,3as,4s,9r,11as)-4,9-dihydroxy-3,6-dimethyl-10-methylidene-3h,3ah,4h,7h,8h,9h,11h,11ah-cyclodeca[b]furan-2-one

(3r,3as,4s,9r,11as)-4,9-dihydroxy-3,6-dimethyl-10-methylidene-3h,3ah,4h,7h,8h,9h,11h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

(3r,3as,7r,11as)-7-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3r,3as,7r,11as)-7-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl 3-methylbutanoate

(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl 3-methylbutanoate

C20H34O2 (306.2559)


   

(3r,3as,9s,11as)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3r,3as,9s,11as)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

4,9,14-trimethyl-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradec-9-en-3-yl acetate

4,9,14-trimethyl-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradec-9-en-3-yl acetate

C17H24O5 (308.1624)


   

(3s,3ar,4s,7r,11as)-7-hydroperoxy-4-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3ar,4s,7r,11as)-7-hydroperoxy-4-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O5 (282.1467)


   

(1r,2s,5s,6s,9r,13r)-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradec-11-ene-4,10-dione

(1r,2s,5s,6s,9r,13r)-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradec-11-ene-4,10-dione

C15H18O4 (262.1205)


   

(3s,3as,5s,11as)-5-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3as,5s,11as)-5-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

4,6-dihydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

4,6-dihydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H20O5 (280.1311)


   

(3s,3's,3ar,4s,4'r,5's,6s,8'r,9'e,11ar)-3',4-dihydroxy-3,5',10,10'-tetramethyl-3a,4,5,8,9,11a-hexahydro-3h-7',14'-dioxaspiro[cyclodeca[b]furan-6,15'-tricyclo[11.4.0.0⁴,⁸]heptadecane]-1'(13'),9'-diene-2,6',7-trione

(3s,3's,3ar,4s,4'r,5's,6s,8'r,9'e,11ar)-3',4-dihydroxy-3,5',10,10'-tetramethyl-3a,4,5,8,9,11a-hexahydro-3h-7',14'-dioxaspiro[cyclodeca[b]furan-6,15'-tricyclo[11.4.0.0⁴,⁸]heptadecane]-1'(13'),9'-diene-2,6',7-trione

C30H40O8 (528.2723)


   

6,8-dihydroxy-3,5a,9-trimethyl-3h,3ah,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

6,8-dihydroxy-3,5a,9-trimethyl-3h,3ah,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H20O4 (264.1362)


   

7-hydroxy-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradecane-4,10-dione

7-hydroxy-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradecane-4,10-dione

C15H20O5 (280.1311)


   

(3as,7r,9s,11ar)-7-hydroxy-10-methyl-3,6-dimethylidene-2-oxo-3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

(3as,7r,9s,11ar)-7-hydroxy-10-methyl-3,6-dimethylidene-2-oxo-3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

C17H22O5 (306.1467)


   

(3s,3as,5s,11r,11as)-5,11-dihydroxy-3-methyl-6,10-dimethylidene-octahydrocyclodeca[b]furan-2,7-dione

(3s,3as,5s,11r,11as)-5,11-dihydroxy-3-methyl-6,10-dimethylidene-octahydrocyclodeca[b]furan-2,7-dione

C15H20O5 (280.1311)


   

(1s,3r,8r,11r,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

(1s,3r,8r,11r,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

C30H48O (424.3705)


   

12,17-dihydroxy-5,10,14,15,19,24-hexamethyl-8,21-dioxanonacyclo[12.12.0.0¹,⁶.0²,¹⁵.0²,²³.0⁴,²⁴.0⁵,²⁵.0⁷,¹¹.0¹⁸,²²]hexacosane-3,9,20,26-tetrone

12,17-dihydroxy-5,10,14,15,19,24-hexamethyl-8,21-dioxanonacyclo[12.12.0.0¹,⁶.0²,¹⁵.0²,²³.0⁴,²⁴.0⁵,²⁵.0⁷,¹¹.0¹⁸,²²]hexacosane-3,9,20,26-tetrone

C30H36O8 (524.241)


   

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

C17H22O4 (290.1518)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.0955)


   

(3r,3ar,5r,11ar)-3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

(3r,3ar,5r,11ar)-3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

C17H24O4 (292.1675)


   

6,8-dihydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

6,8-dihydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(2s,3s,4r,6s)-6-{[(2r,3s,4r,5r,6s)-6-{[(4r,5s,6s,7r,9r,10s,11e,13e,16r)-4,10-dihydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy}-4-(dimethylamino)-5-hydroxy-2-methyloxan-3-yl]oxy}-4-hydroxy-2,4-dimethyloxan-3-yl 3-methylbutanoate

(2s,3s,4r,6s)-6-{[(2r,3s,4r,5r,6s)-6-{[(4r,5s,6s,7r,9r,10s,11e,13e,16r)-4,10-dihydroxy-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy}-4-(dimethylamino)-5-hydroxy-2-methyloxan-3-yl]oxy}-4-hydroxy-2,4-dimethyloxan-3-yl 3-methylbutanoate

C40H67NO14 (785.4561)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.0955)


   

[(2s)-2,3,8-trimethyl-1-oxo-6,7-dihydro-2h-azulen-5-yl]acetic acid

[(2s)-2,3,8-trimethyl-1-oxo-6,7-dihydro-2h-azulen-5-yl]acetic acid

C15H18O3 (246.1256)


   

(4as,7r)-7-(3-hydroxyprop-1-en-2-yl)-1,4a-dimethyl-3,4,5,6,7,8-hexahydronaphthalen-2-one

(4as,7r)-7-(3-hydroxyprop-1-en-2-yl)-1,4a-dimethyl-3,4,5,6,7,8-hexahydronaphthalen-2-one

C15H22O2 (234.162)


   

(3s,3ar,4s,9ar,9bs)-3,6,9-trimethyl-2,7-dioxo-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-4-yl acetate

(3s,3ar,4s,9ar,9bs)-3,6,9-trimethyl-2,7-dioxo-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-4-yl acetate

C17H20O5 (304.1311)


   

4,13-dihydroxy-5,9-dimethyl-11,14,15-trioxatetracyclo[11.2.1.0¹,⁵.0⁸,¹²]hexadecan-10-one

4,13-dihydroxy-5,9-dimethyl-11,14,15-trioxatetracyclo[11.2.1.0¹,⁵.0⁸,¹²]hexadecan-10-one

C15H22O6 (298.1416)


   

(3s,3as,5ar,6r,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6r,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(3s,3as,5as,6r,9ar,9bs)-6,9a-dihydroxy-3,5a-dimethyl-9-methylidene-octahydronaphtho[1,2-b]furan-2-one

(3s,3as,5as,6r,9ar,9bs)-6,9a-dihydroxy-3,5a-dimethyl-9-methylidene-octahydronaphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(3s,11as)-3,10-dimethyl-6-methylidene-2,7-dioxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

(3s,11as)-3,10-dimethyl-6-methylidene-2,7-dioxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

C17H22O5 (306.1467)


   

8-hydroxy-1,6,10-trimethyl-4,14-dioxatetracyclo[9.2.1.0²,¹⁰.0³,⁷]tetradecan-5-one

8-hydroxy-1,6,10-trimethyl-4,14-dioxatetracyclo[9.2.1.0²,¹⁰.0³,⁷]tetradecan-5-one

C15H22O4 (266.1518)


   

5,9,13-trimethyl-15-(6-methylhepta-1,5-dien-2-yl)-3-oxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-12-ene-4,10-dione

5,9,13-trimethyl-15-(6-methylhepta-1,5-dien-2-yl)-3-oxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-12-ene-4,10-dione

C25H34O3 (382.2508)


   

9-hydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

9-hydroxy-3,5a,9-trimethyl-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H24O3 (252.1725)


   

(3s,3as,5s,6s,7s,7as)-6-ethenyl-5-hydroxy-3,6-dimethyl-7-(prop-1-en-2-yl)-hexahydro-1-benzofuran-2-one

(3s,3as,5s,6s,7s,7as)-6-ethenyl-5-hydroxy-3,6-dimethyl-7-(prop-1-en-2-yl)-hexahydro-1-benzofuran-2-one

C15H22O3 (250.1569)


   

7-hydroxy-3,7-dimethyl-4-oxoocta-2,5-dien-1-yl acetate

7-hydroxy-3,7-dimethyl-4-oxoocta-2,5-dien-1-yl acetate

C12H18O4 (226.1205)


   

(3r,3as,11as)-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3r,3as,11as)-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O2 (234.162)


   

(4ar)-1,4a-dimethyl-7-(prop-1-en-2-yl)-3,4,5,6,7,8-hexahydronaphthalen-2-one

(4ar)-1,4a-dimethyl-7-(prop-1-en-2-yl)-3,4,5,6,7,8-hexahydronaphthalen-2-one

C15H22O (218.1671)


   

2-[(1s,2s)-1-methyl-2-(prop-1-en-2-yl)cyclobutyl]ethyl acetate

2-[(1s,2s)-1-methyl-2-(prop-1-en-2-yl)cyclobutyl]ethyl acetate

C12H20O2 (196.1463)


   

(3s,3ar,4s,5ar,9br)-4-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

(3s,3ar,4s,5ar,9br)-4-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

C15H20O4 (264.1362)


   

(1r,4r,5s,12s,13s)-4,13-dihydroxy-5,9-dimethyl-11,14,15-trioxatetracyclo[11.2.1.0¹,⁵.0⁸,¹²]hexadecan-10-one

(1r,4r,5s,12s,13s)-4,13-dihydroxy-5,9-dimethyl-11,14,15-trioxatetracyclo[11.2.1.0¹,⁵.0⁸,¹²]hexadecan-10-one

C15H22O6 (298.1416)


   

(1r)-2,2,4-trimethyl-5-oxocyclohex-3-ene-1-carboxylic acid

(1r)-2,2,4-trimethyl-5-oxocyclohex-3-ene-1-carboxylic acid

C10H14O3 (182.0943)


   

(3as,5ar,9bs)-5a,9-dimethyl-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

(3as,5ar,9bs)-5a,9-dimethyl-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

C14H18O3 (234.1256)


   

5-{1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl}-2-methylpent-2-en-1-yl acetate

5-{1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl}-2-methylpent-2-en-1-yl acetate

C17H26O3 (278.1882)


   

(3s,3as,5as,6r,9ar,9bs)-9a-hydroxy-3,5a-dimethyl-9-methylidene-2-oxo-octahydronaphtho[1,2-b]furan-6-yl acetate

(3s,3as,5as,6r,9ar,9bs)-9a-hydroxy-3,5a-dimethyl-9-methylidene-2-oxo-octahydronaphtho[1,2-b]furan-6-yl acetate

C17H24O5 (308.1624)


   

(1r,2s,5s,6s,9r,11s,15s)-5,9,13-trimethyl-15-(6-methylhepta-1,5-dien-2-yl)-3-oxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-12-ene-4,10-dione

(1r,2s,5s,6s,9r,11s,15s)-5,9,13-trimethyl-15-(6-methylhepta-1,5-dien-2-yl)-3-oxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-12-ene-4,10-dione

C25H34O3 (382.2508)


   

(4s,5s)-5-[(1s,2r)-2-hydroxy-2-methyl-5-oxocyclopent-3-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

(4s,5s)-5-[(1s,2r)-2-hydroxy-2-methyl-5-oxocyclopent-3-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

C15H18O5 (278.1154)


   

4-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

4-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

C15H20O4 (264.1362)


   

(3s,3ar,4s,7r,11ar)-7-hydroperoxy-4-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3ar,4s,7r,11ar)-7-hydroperoxy-4-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O5 (282.1467)


   

(2e)-5-[(1s,3s,4r)-1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl]-2-methylpent-2-en-1-yl propanoate

(2e)-5-[(1s,3s,4r)-1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl]-2-methylpent-2-en-1-yl propanoate

C18H28O3 (292.2038)


   

(3s,3ar,4s,5ar,9bs)-4-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

(3s,3ar,4s,5ar,9bs)-4-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

C15H20O4 (264.1362)


   

(3s,5as,8r,9s,9as,9bs)-8,9-dihydroxy-3,5a,9-trimethyl-3h,5h,6h,7h,8h,9ah,9bh-naphtho[1,2-b]furan-2-one

(3s,5as,8r,9s,9as,9bs)-8,9-dihydroxy-3,5a,9-trimethyl-3h,5h,6h,7h,8h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

3-(3-hydroxy-3-methylpent-4-en-1-yl)-2,2,4-trimethylcyclohex-3-en-1-one

3-(3-hydroxy-3-methylpent-4-en-1-yl)-2,2,4-trimethylcyclohex-3-en-1-one

C15H24O2 (236.1776)


   

8,9-dihydroxy-3,5a,9-trimethyl-3h,5h,6h,7h,8h,9ah,9bh-naphtho[1,2-b]furan-2-one

8,9-dihydroxy-3,5a,9-trimethyl-3h,5h,6h,7h,8h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(3s,3as,5as,6s,9ar,9br)-6,9a-dihydroxy-3,5a-dimethyl-9-methylidene-octahydronaphtho[1,2-b]furan-2-one

(3s,3as,5as,6s,9ar,9br)-6,9a-dihydroxy-3,5a-dimethyl-9-methylidene-octahydronaphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

C15H20O3 (248.1412)


   

(3s,3as,5ar,6s,9r,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,9ah,9bh-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6s,9r,9as,9bs)-6,9-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(3s,3ar)-3,6-dimethyl-3,3a,4,5-tetrahydro-2h-indene-1-carbaldehyde

(3s,3ar)-3,6-dimethyl-3,3a,4,5-tetrahydro-2h-indene-1-carbaldehyde

C12H16O (176.1201)


   

(5z)-2,6-dimethylocta-2,5,7-trien-4-one

(5z)-2,6-dimethylocta-2,5,7-trien-4-one

C10H14O (150.1045)


   

4a-methyl-8-methylidene-2-(prop-1-en-2-yl)-octahydronaphthalene-1,5-diol

4a-methyl-8-methylidene-2-(prop-1-en-2-yl)-octahydronaphthalene-1,5-diol

C15H24O2 (236.1776)


   

(3r,3as,5ar,9bs)-3,5a,9-trimethyl-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

(3r,3as,5ar,9bs)-3,5a,9-trimethyl-3h,3ah,4h,5h,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

C15H20O3 (248.1412)


   

4-ethenyl-5-methylhexa-2,5-dien-2-ol

4-ethenyl-5-methylhexa-2,5-dien-2-ol

C9H14O (138.1045)


   

(2e,5e)-1,7-dihydroxy-3,7-dimethylocta-2,5-dien-4-one

(2e,5e)-1,7-dihydroxy-3,7-dimethylocta-2,5-dien-4-one

C10H16O3 (184.1099)


   

(3s,3as,5s,7r,11as)-5,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3as,5s,7r,11as)-5,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

(2e,4s)-4-ethenyl-5-methylhexa-2,5-dien-2-ol

(2e,4s)-4-ethenyl-5-methylhexa-2,5-dien-2-ol

C9H14O (138.1045)


   

(3s,3as,5as,9br)-3,5a,9-trimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,8-dione

(3s,3as,5as,9br)-3,5a,9-trimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,8-dione

C15H18O3 (246.1256)


   

6,8-dihydroxy-3,5a-dimethyl-9-methylidene-3h,3ah,6h,7h,8h,9ah,9bh-naphtho[1,2-b]furan-2-one

6,8-dihydroxy-3,5a-dimethyl-9-methylidene-3h,3ah,6h,7h,8h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H20O4 (264.1362)


   

3,7-dimethylocta-3,6-dienoic acid

3,7-dimethylocta-3,6-dienoic acid

C10H16O2 (168.115)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-3-methoxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-3-methoxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C22H22O12 (478.1111)


   

(3s,3ar,4s,7s,11ar)-4,7-dihydroxy-3,6,10-trimethyl-3h,3ah,4h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3ar,4s,7s,11ar)-4,7-dihydroxy-3,6,10-trimethyl-3h,3ah,4h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

(2e)-5-[(1s,3s,4r)-1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl]-2-methylpent-2-en-1-yl 2-methylpropanoate

(2e)-5-[(1s,3s,4r)-1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl]-2-methylpent-2-en-1-yl 2-methylpropanoate

C19H30O3 (306.2195)


   

4,6-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

4,6-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(3s,5as,6r,9ar,9bs)-9a-hydroxy-3,5a-dimethyl-9-methylidene-2-oxo-octahydronaphtho[1,2-b]furan-6-yl acetate

(3s,5as,6r,9ar,9bs)-9a-hydroxy-3,5a-dimethyl-9-methylidene-2-oxo-octahydronaphtho[1,2-b]furan-6-yl acetate

C17H24O5 (308.1624)


   

(2e,5e)-7-hydroperoxy-1-hydroxy-3,7-dimethylocta-2,5-dien-4-one

(2e,5e)-7-hydroperoxy-1-hydroxy-3,7-dimethylocta-2,5-dien-4-one

C10H16O4 (200.1049)


   

7-hydroxy-3,10-dimethyl-6-methylidene-2-oxo-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

7-hydroxy-3,10-dimethyl-6-methylidene-2-oxo-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

C17H24O5 (308.1624)


   

4-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

4-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

1-(4-hydroxy-2,6-dimethoxyphenyl)ethanone

1-(4-hydroxy-2,6-dimethoxyphenyl)ethanone

C10H12O4 (196.0736)


   

(1r,7r,8as)-7-isopropyl-1,8a-dimethyl-2,3,5,6,7,8-hexahydro-1h-naphthalene

(1r,7r,8as)-7-isopropyl-1,8a-dimethyl-2,3,5,6,7,8-hexahydro-1h-naphthalene

C15H26 (206.2034)


   

(3s,3as,5ar,9bs)-3,5a,9-trimethyl-3h,3ah,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

(3s,3as,5ar,9bs)-3,5a,9-trimethyl-3h,3ah,7h,8h,9bh-naphtho[1,2-b]furan-2,6-dione

C15H18O3 (246.1256)


   

(3s,3as,5s,5ar,6r,9bs)-5,6-dihydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

(3s,3as,5s,5ar,6r,9bs)-5,6-dihydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

5-(3-hydroxy-2-methyl-5-oxocyclopent-1-en-1-yl)-3-methylidene-4-(3-oxobutyl)oxolan-2-one

5-(3-hydroxy-2-methyl-5-oxocyclopent-1-en-1-yl)-3-methylidene-4-(3-oxobutyl)oxolan-2-one

C15H18O5 (278.1154)


   

4-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

4-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

C15H20O4 (264.1362)


   

(1r,2s,5s,6s,9s,10r)-5,9,10-trimethyl-3-oxatetracyclo[7.4.0.0¹,¹⁰.0²,⁶]tridec-12-ene-4,11-dione

(1r,2s,5s,6s,9s,10r)-5,9,10-trimethyl-3-oxatetracyclo[7.4.0.0¹,¹⁰.0²,⁶]tridec-12-ene-4,11-dione

C15H18O3 (246.1256)


   

(1r,3ar,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3ar,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H44O (396.3392)


   

(3s,3as,5s,11as)-3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

(3s,3as,5s,11as)-3,6,10-trimethyl-2-oxo-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-5-yl acetate

C17H24O4 (292.1675)


   

3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O2 (234.162)


   

(1s,2s,4ar,5r,8as)-4a-methyl-8-methylidene-2-(prop-1-en-2-yl)-octahydronaphthalene-1,5-diol

(1s,2s,4ar,5r,8as)-4a-methyl-8-methylidene-2-(prop-1-en-2-yl)-octahydronaphthalene-1,5-diol

C15H24O2 (236.1776)


   

(2e)-5-[(1s,3s,4r)-1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl]-2-methylpent-2-en-1-yl acetate

(2e)-5-[(1s,3s,4r)-1,3-dimethyl-2-oxabicyclo[2.2.2]oct-5-en-3-yl]-2-methylpent-2-en-1-yl acetate

C17H26O3 (278.1882)


   

4-ethenyl-5-methyl-2-methylidenehex-5-ene-1,3-diol

4-ethenyl-5-methyl-2-methylidenehex-5-ene-1,3-diol

C10H16O2 (168.115)


   

(1s,2s)-1,2-diethyl-4-(propan-2-ylidene)cyclohexane

(1s,2s)-1,2-diethyl-4-(propan-2-ylidene)cyclohexane

C13H24 (180.1878)


   

(9'z)-3',4-dihydroxy-3,5',10,10'-tetramethyl-3a,4,5,8,9,11a-hexahydro-3h-7',14'-dioxaspiro[cyclodeca[b]furan-6,15'-tricyclo[11.4.0.0⁴,⁸]heptadecane]-1'(13'),9'-diene-2,6',7-trione

(9'z)-3',4-dihydroxy-3,5',10,10'-tetramethyl-3a,4,5,8,9,11a-hexahydro-3h-7',14'-dioxaspiro[cyclodeca[b]furan-6,15'-tricyclo[11.4.0.0⁴,⁸]heptadecane]-1'(13'),9'-diene-2,6',7-trione

C30H40O8 (528.2723)


   

2,2,4-trimethyl-6-oxabicyclo[3.2.1]oct-3-en-7-one

2,2,4-trimethyl-6-oxabicyclo[3.2.1]oct-3-en-7-one

C10H14O2 (166.0994)


   

6,9,9a-trihydroxy-3,5a,9-trimethyl-octahydronaphtho[1,2-b]furan-2-one

6,9,9a-trihydroxy-3,5a,9-trimethyl-octahydronaphtho[1,2-b]furan-2-one

C15H24O5 (284.1624)


   

3,5a-dimethyl-9-methylidene-3h,3ah,4h,5h,9ah,9bh-naphtho[1,2-b]furan-2,8-dione

3,5a-dimethyl-9-methylidene-3h,3ah,4h,5h,9ah,9bh-naphtho[1,2-b]furan-2,8-dione

C15H18O3 (246.1256)


   

(3r,3ar,5r,11ar)-5-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

(3r,3ar,5r,11ar)-5-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

C15H20O4 (264.1362)


   

(3s,3ar,4s,5ar,6r,9ar,9br)-4,6-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

(3s,3ar,4s,5ar,6r,9ar,9br)-4,6-dihydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

2-[(2r,4as,6s)-6-hydroxy-4a,8-dimethyl-7-oxo-1,2,3,4,5,6-hexahydronaphthalen-2-yl]prop-2-enal

2-[(2r,4as,6s)-6-hydroxy-4a,8-dimethyl-7-oxo-1,2,3,4,5,6-hexahydronaphthalen-2-yl]prop-2-enal

C15H20O3 (248.1412)


   

(1s,2s,5s,6s,9r,10s,12r,14s)-10-hydroxy-5,9,14-trimethyl-3,13-dioxatetracyclo[7.5.0.0²,⁶.0¹²,¹⁴]tetradecan-4-one

(1s,2s,5s,6s,9r,10s,12r,14s)-10-hydroxy-5,9,14-trimethyl-3,13-dioxatetracyclo[7.5.0.0²,⁶.0¹²,¹⁴]tetradecan-4-one

C15H22O4 (266.1518)


   

(3s,3as,5s,11ar)-5-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3as,5s,11ar)-5-hydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

9-(hydroxymethyl)-3,5a-dimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,6-dione

9-(hydroxymethyl)-3,5a-dimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,6-dione

C15H18O4 (262.1205)


   

9-(3-hydroxyprop-1-en-2-yl)-2,6-dimethylidenecyclodecane-1,5-diol

9-(3-hydroxyprop-1-en-2-yl)-2,6-dimethylidenecyclodecane-1,5-diol

C15H24O3 (252.1725)


   

(3s,5as,6r,9ar,9bs)-6,9a-dihydroxy-3,5a-dimethyl-9-methylidene-octahydronaphtho[1,2-b]furan-2-one

(3s,5as,6r,9ar,9bs)-6,9a-dihydroxy-3,5a-dimethyl-9-methylidene-octahydronaphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

4-ethenyl-2,5-dimethylhex-5-ene-2,3-diol

4-ethenyl-2,5-dimethylhex-5-ene-2,3-diol

C10H18O2 (170.1307)


   

2-ethylidene-6-methylhepta-3,5-dienal

2-ethylidene-6-methylhepta-3,5-dienal

C10H14O (150.1045)


   

(3s,11as)-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

(3s,11as)-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2,7-dione

C15H20O3 (248.1412)


   

5-[(1s,3ar,4s,6ar)-4-(3,4,5-trimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(1s,3ar,4s,6ar)-4-(3,4,5-trimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C22H24O7 (400.1522)


   

(3r,3ar,4s,7r,11ar)-4,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3r,3ar,4s,7r,11ar)-4,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

(2,3,8-trimethyl-1-oxo-6,7-dihydro-2h-azulen-5-yl)acetic acid

(2,3,8-trimethyl-1-oxo-6,7-dihydro-2h-azulen-5-yl)acetic acid

C15H18O3 (246.1256)


   

2-({[(2s)-2-ethylhexyl]oxy}carbonyl)benzoic acid

2-({[(2s)-2-ethylhexyl]oxy}carbonyl)benzoic acid

C16H22O4 (278.1518)


   

(3s,3as,5s,11as)-5-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3as,5s,11as)-5-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

5,9,10-trimethyl-3-oxatetracyclo[7.4.0.0¹,¹⁰.0²,⁶]tridec-12-ene-4,11-dione

5,9,10-trimethyl-3-oxatetracyclo[7.4.0.0¹,¹⁰.0²,⁶]tridec-12-ene-4,11-dione

C15H18O3 (246.1256)


   

(3s,3as,5ar,6s,8r,9as,9bs)-6,8-dihydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6s,8r,9as,9bs)-6,8-dihydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(3s,3ar,4r,9ar,9bs)-4-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3s,3ar,4r,9ar,9bs)-4-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205)


   

grandlure

grandlure

C10H18O (154.1358)


   

5,9,14-trimethyl-3,12,13-trioxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-14-ene-4,10-dione

5,9,14-trimethyl-3,12,13-trioxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-14-ene-4,10-dione

C15H18O5 (278.1154)


   

(1r,5r,9r)-9-(3-hydroxyprop-1-en-2-yl)-2,6-dimethylidenecyclodecane-1,5-diol

(1r,5r,9r)-9-(3-hydroxyprop-1-en-2-yl)-2,6-dimethylidenecyclodecane-1,5-diol

C15H24O3 (252.1725)


   

2-[(2r,4as)-4a,8-dimethyl-7-oxo-1,2,3,4,5,6-hexahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2r,4as)-4a,8-dimethyl-7-oxo-1,2,3,4,5,6-hexahydronaphthalen-2-yl]prop-2-enoic acid

C15H20O3 (248.1412)


   

(1r,2r,4r,5s,6s,7s,10s,11r,12s,14s,15s,17s,18r,19s,22s,23s,24s,25s)-12,17-dihydroxy-5,10,14,15,19,24-hexamethyl-8,21-dioxanonacyclo[12.12.0.0¹,⁶.0²,¹⁵.0²,²³.0⁴,²⁴.0⁵,²⁵.0⁷,¹¹.0¹⁸,²²]hexacosane-3,9,20,26-tetrone

(1r,2r,4r,5s,6s,7s,10s,11r,12s,14s,15s,17s,18r,19s,22s,23s,24s,25s)-12,17-dihydroxy-5,10,14,15,19,24-hexamethyl-8,21-dioxanonacyclo[12.12.0.0¹,⁶.0²,¹⁵.0²,²³.0⁴,²⁴.0⁵,²⁵.0⁷,¹¹.0¹⁸,²²]hexacosane-3,9,20,26-tetrone

C30H36O8 (524.241)


   

(2r)-6-methyl-2-(4-methylcyclohex-3-en-1-yl)hept-5-en-2-ol

(2r)-6-methyl-2-(4-methylcyclohex-3-en-1-yl)hept-5-en-2-ol

C15H26O (222.1984)


   

(3s,3as,5as,6s,9ar,9bs)-6,9a-dihydroxy-3,5a-dimethyl-9-methylidene-octahydronaphtho[1,2-b]furan-2-one

(3s,3as,5as,6s,9ar,9bs)-6,9a-dihydroxy-3,5a-dimethyl-9-methylidene-octahydronaphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

(1r,2r,5s,6s,9r,13r)-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradecane-4,10-dione

(1r,2r,5s,6s,9r,13r)-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradecane-4,10-dione

C15H20O4 (264.1362)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

(3r,6r,7r,7as)-6-ethenyl-3,6-dimethyl-7-(prop-1-en-2-yl)-hexahydro-1-benzofuran-2-one

(3r,6r,7r,7as)-6-ethenyl-3,6-dimethyl-7-(prop-1-en-2-yl)-hexahydro-1-benzofuran-2-one

C15H22O2 (234.162)


   

(+)-β-pinene

(+)-β-pinene

C10H16 (136.1252)


   

(3r,3as,5ar,6s,9bs)-3,5a,9-trimethyl-2,8-dioxo-3h,3ah,4h,5h,6h,7h,9bh-naphtho[1,2-b]furan-6-yl acetate

(3r,3as,5ar,6s,9bs)-3,5a,9-trimethyl-2,8-dioxo-3h,3ah,4h,5h,6h,7h,9bh-naphtho[1,2-b]furan-6-yl acetate

C17H22O5 (306.1467)


   

(z)-γ-bisabolene

(z)-γ-bisabolene

C15H24 (204.1878)


   

4,6-dihydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

4,6-dihydroxy-3,5a-dimethyl-9-methylidene-octahydro-3h-naphtho[1,2-b]furan-2-one

C15H22O4 (266.1518)


   

5,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

5,7-dihydroxy-3,10-dimethyl-6-methylidene-3h,3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O4 (266.1518)


   

6-methyl-2-(4-methylidenecyclohex-2-en-1-yl)hept-5-en-2-ol

6-methyl-2-(4-methylidenecyclohex-2-en-1-yl)hept-5-en-2-ol

C15H24O (220.1827)


   

(1r,2s,5s,6r,7s,9r,11s)-7-hydroxy-5,9,14-trimethyl-3,12,13-trioxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-14-ene-4,10-dione

(1r,2s,5s,6r,7s,9r,11s)-7-hydroxy-5,9,14-trimethyl-3,12,13-trioxatetracyclo[9.2.2.0¹,⁹.0²,⁶]pentadec-14-ene-4,10-dione

C15H18O6 (294.1103)


   

(1r,4r,5s)-thujan-3-one

(1r,4r,5s)-thujan-3-one

C10H16O (152.1201)


   

(3s,3ar,4s,5ar,9bs)-4-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,6-dione

(3s,3ar,4s,5ar,9bs)-4-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,6-dione

C15H18O4 (262.1205)


   

(1s,3s,4s,6r,9z,11s,14s)-4,9,14-trimethyl-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradec-9-en-3-yl acetate

(1s,3s,4s,6r,9z,11s,14s)-4,9,14-trimethyl-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradec-9-en-3-yl acetate

C17H24O5 (308.1624)


   

(3r,3as,5ar,9bs)-3,5a,9-trimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,6-dione

(3r,3as,5ar,9bs)-3,5a,9-trimethyl-3h,3ah,4h,5h,9bh-naphtho[1,2-b]furan-2,6-dione

C15H18O3 (246.1256)


   

2-[1-methyl-2-(prop-1-en-2-yl)cyclobutyl]ethyl 3-methylbutanoate

2-[1-methyl-2-(prop-1-en-2-yl)cyclobutyl]ethyl 3-methylbutanoate

C15H26O2 (238.1933)


   

7-hydroxy-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradec-11-ene-4,10-dione

7-hydroxy-5,9,13-trimethyl-3,14-dioxatetracyclo[7.5.0.0¹,¹³.0²,⁶]tetradec-11-ene-4,10-dione

C15H18O5 (278.1154)


   

(2e)-4-ethenyl-2,5-dimethylhexa-2,5-dien-1-ol

(2e)-4-ethenyl-2,5-dimethylhexa-2,5-dien-1-ol

C10H16O (152.1201)


   

(1s,5r)-2,2,4-trimethyl-6-oxabicyclo[3.2.1]oct-3-en-7-one

(1s,5r)-2,2,4-trimethyl-6-oxabicyclo[3.2.1]oct-3-en-7-one

C10H14O2 (166.0994)