NCBI Taxonomy: 34444
Lactarius (ncbi_taxid: 34444)
found 107 associated metabolites at genus taxonomy rank level.
Ancestor: Russulaceae
Child Taxonomies: Lactarius hora, Lactarius alni, Lactarius atrii, Lactarius rufus, Lactarius tawai, Lactarius acris, Lactarius nanus, Lactarius mirus, Lactarius deliciosus, Lactarius deterrimus, Lactarius turpis, Lactarius peckii, Lactarius fallax, Lactarius mairei, Lactarius utilis, Lactarius leonis, Lactarius caucae, Lactarius helvus, Lactarius taedae, Lactarius acutus, Lactarius fluens, Lactarius uvidus, Lactarius cremor, Lactarius fuscus, Lactarius ilicis, Lactarius exilis, Lactarius dirkii, Lactarius indigo, Lactarius vietus, Lactarius zugazae, Lactarius fumosus, Lactarius quietus, Lactarius alpinus, Lactarius vinosus, Lactarius vividus, Lactarius necator, Lactarius pilatii, Lactarius tabidus, Lactarius rubidus, Lactarius musteus, Lactarius croceus, Lactarius nitidus, Lactarius resimus, Lactarius horakii, Lactarius spurius, Lactarius bicolor, Lactarius evosmus, Lactarius pandani, Lactarius silviae, Lactarius crassus, Lactarius picinus, Lactarius thyinos, Lactarius rufulus, Lactarius echinus, Lactarius shoreae, Lactarius aquosus, Lactarius kesiyae, Lactarius politus, Lactarius haugiae, Lactarius mucidus, Lactarius affinis, Lactarius luridus, Lactarius aspideus, Lactarius kabansus, Lactarius tenellus, Lactarius zonarius, Lactarius oculatus, Lactarius hysginus, Lactarius scoticus, Lactarius gracilis, Lactarius hirtipes, Lactarius dewevrei, Lactarius fragilis, Lactarius limbatus, Lactarius cyanopus, Lactarius bisporus, Lactarius blennius, Lactarius liyuanus, Lactarius olivinus, Lactarius azonites, Lactarius insulsus, Lactarius herrerae, Lactarius pallidus, Lactarius montoyae, Lactarius mammosus, Lactarius alnicola, Lactarius montanus, Lactarius plumbeus, Lactarius flavidus, Lactarius cinereus, Lactarius ciliatus, Lactarius citrinus, Lactarius floridus, Lactarius akahatsu, Lactarius soehneri, Lactarius mitratus, Lactarius falcatus, Lactarius puniceus, Lactarius aestivus, Lactarius vulgaris, Lactarius ambiguus, Lactarius auriolla, Lactarius formosus, Lactarius sordidus, Lactarius speciosus, Lactarius subdulcis, Lactarius aquifluus, Lactarius hepaticus, Lactarius tesquorum, Lactarius rostratus, Lactarius lacunarum, Lactarius eucalypti, Lactarius perparvus, Lactarius lepidotus, Lactarius coniculus, Lactarius ruginosus, Lactarius serifluus, Lactarius trivialis, Lactarius areolatus, Lactarius umerensis, Lactarius lignyotus, Lactarius lilacinus, Lactarius friabilis, Lactarius porninsis, Lactarius pubescens, Lactarius sphagneti, Lactarius flexuosus, Lactarius sumstinei, Lactarius barrowsii, Lactarius illyricus, Lactarius drassinus, Lactarius paradoxus, Lactarius salmoneus, Lactarius decipiens, Lactarius mutabilis, Lactarius borzianus, Lactarius subindigo, Lactarius neglectus, Lactarius alutaceus, Lactarius betulinus, Lactarius porniniae, Lactarius splendens, Lactarius acerrimus, Lactarius purpureus, Lactarius lutescens, Lactarius hatsudake, Lactarius castaneus, Lactarius lignicola, Lactarius pomiolens, Lactarius resinosus, Lactarius spadiceus, Lactarius ustulatus, Lactarius mexicanus, Lactarius pyrogalus, Lactarius nigricans, Lactarius pyriodorus, Lactarius theiogalus, Lactarius hispidulus, Lactarius neotabidus, Lactarius keralensis, Lactarius psammicola, Lactarius pasohensis, Lactarius mitissimus, Lactarius abieticola, Lactarius saponaceus, Lactarius vitellinus, Lactarius lavandulus, Lactarius lapponicus, Lactarius citriolens, Lactarius stephensii, Lactarius spinosulus, Lactarius torminosus, Lactarius romagnesii, Lactarius obscuratus, Lactarius atlanticus, Lactarius pallescens, Lactarius pergamenus, Lactarius olympianus, Lactarius cyanescens, Lactarius rimosellus, Lactarius cf. indigo, Lactarius giennensis, Lactarius thakalorum, Lactarius alboroseus, Lactarius cremicolor, Lactarius fulvescens, Lactarius incarnatus, Lactarius inquinatus, Lactarius frustratus, Lactarius populicola, Lactarius echinellus, Lactarius parallelus, Lactarius cf. uvidus, Lactarius pectinatus, Lactarius luculentus, Lactarius polycystis, Lactarius hunanensis, Lactarius sulphosmus, Lactarius atrobadius, Lactarius tangerinus, Lactarius guyanensis, Lactarius atrofuscus, Lactarius humiphilus, Lactarius mycenoides, Lactarius glyciosmus, Lactarius kauffmanii, Lactarius yazooensis, Lactarius violascens, Lactarius fulvissimus, Lactarius spinosporus, Lactarius subvernalis, Lactarius incrustatus, Lactarius indoaquosus, Lactarius atroviridis, Lactarius sanguifluus, Lactarius angiocarpus, Lactarius chichuensis, Lactarius sikkimensis, Lactarius subzonarius, Lactarius intermedius, Lactarius quieticolor, Lactarius melanogalus, Lactarius cinnamomeus, Lactarius strigosipes, Lactarius camphoratus, Lactarius circellatus, Lactarius fuliginosus, Lactarius subvillosus, Lactarius payettensis, Lactarius aurantiacus, Lactarius substriatus, Lactarius pterosporus, Lactarius albocarneus, Lactarius aquizonatus, Lactarius britannicus, Lactarius chelidonium, Lactarius aspideoides, Lactarius hysginoides, Lactarius sarthalanus, Lactarius subflammeus, Lactarius subviscidus, Lactarius ferrugineus, Lactarius maculatipes, Lactarius zonarioides, Lactarius baliophaeus, Lactarius congolensis, Lactarius subgracilis, Lactarius squamulosus, Lactarius albidigalus, Lactarius cf. rufulus, Lactarius josserandii, Lactarius imperceptus, Lactarius pohangensis, Lactarius cf. crassus, Lactarius cf. rubidus, Lactarius subbrevipes, Lactarius cf. tabidus, Lactarius gloeocarpus, Lactarius furfuraceus, Lactarius subhirtipes, Lactarius tuomikoskii, Lactarius colorascens, environmental samples, Lactarius cascadensis, Lactarius kumaonensis, Lactarius lanceolatus, Lactarius cistophilus, Lactarius caespitosus, Lactarius benghalensis, Lactarius lignyotellus, Lactarius subpurpureus, Lactarius roseoligalus, Lactarius chrysorrheus, Lactarius rubrozonatus, Lactarius torminosulus, Lactarius laccarioides, Lactarius crenulatulus, Lactarius salmonicolor, Lactarius subsericatus, Lactarius miniatescens, Lactarius subruginosus, Lactarius controversus, Lactarius oomsisiensis, Lactarius cf. zonarius, Lactarius lachungensis, Lactarius dombangensis, Lactarius tottoriensis, Lactarius rubrocinctus, Lactarius rubriviridis, Lactarius dryadophilus, Lactarius tuberculatus, Lactarius liliputianus, Lactarius marasmioides, Lactarius qinlingensis, Lactarius flaviaquosus, Lactarius cf. alnicola, Lactarius subserifluus, Lactarius aff. kesiyae, Lactarius collybioides, Lactarius sinozonarius, Lactarius occidentalis, Lactarius cf. blennius, Lactarius atrobrunneus, Lactarius inconspicuus, Lactarius acatlanensis, Lactarius cf. aestivus, Lactarius subumbonatus, Lactarius rubrilacteus, Lactarius midlandensis, Lactarius megalopterus, Lactarius cordovaensis, Lactarius pseudouvidus, Lactarius yumthangensis, Lactarius aff. zonarius, Lactarius cf. salmoneus, Lactarius cf. areolatus, Lactarius chromospermus, Lactarius subatlanticus, Lactarius flavigalactus, Lactarius phlebophyllus, Lactarius scrobiculatus, Lactarius hengduanensis, Lactarius rajmahalensis, Lactarius castanopsidis, Lactarius crassiusculus, Lactarius aff. olivinus, Lactarius shiwalikensis, Lactarius miniatosporus, Lactarius pseudomucidus, Lactarius atrovelutinus, Lactarius cucurbitoides, Lactarius flavoaspideus, Lactarius cf. sphagneti, Lactarius conglutinatus, Lactarius fulvihirtipes, Lactarius cinereoroseus, Lactarius indoviolaceus, Lactarius fuscozonarius, Lactarius subgiennensis, Lactarius saturnisporus, Lactarius southworthiae, Lactarius rubrobrunneus, Lactarius dicymbophilus, Lactarius aff. alnicola, Lactarius cf. lignyotus, Lactarius cf. deliciosus, Lactarius fumosibrunneus, Lactarius ferruginascens, Lactarius cyaneocinereus, Lactarius aff. vellereus, Lactarius xanthydrorheus, Lactarius aff. lignyotus, Lactarius glabrigracilis, Lactarius cyathuliformis, Lactarius omphaliiformis, Lactarius subbaliophaeus, Lactarius atromarginatus, Lactarius chiangmaiensis, Lactarius xanthogalactus, Lactarius aff. pyrogalus, Lactarius glutinopallens, Lactarius pulchrispermus, Lactarius pseudofragilis, Lactarius alpinihirtipes, Lactarius albidocinereus, Lactarius angustizonatus, Lactarius californiensis, Lactarius pallidizonatus, Lactarius reticulisporus, Lactarius guangdongensis, Lactarius fuscomaculatus, Lactarius olivaceofuscus, Lactarius austrozonarius, Lactarius flavopalustris, Lactarius cf. deterrimus, Lactarius fennoscandicus, Lactarius pallidozonarius, Lactarius novae-zelandiae, Lactarius rubroviolascens, Lactarius sublaccarioides, Lactarius semisanguifluus, Lactarius pseudohatsudake, Lactarius badiosanguineus, Lactarius subplinthogalus, Lactarius repraesentaneus, Lactarius pseudodelicatus, Lactarius aff. deliciosus, Lactarius fuscomarginatus, Lactarius aurantionitidus, Lactarius pseudoflexuosus, Lactarius aff. torminosus, Lactarius badiopallescens, Lactarius aurantiozonatus, Lactarius dilutisalmoneus, Lactarius viridinigrellus, Lactarius microbuccinatus, Lactarius cf. kalospermus, Lactarius austrorostratus, Lactarius rubrocorrugatus, Lactarius aff. deterrimus, Lactarius trichodermoides, Lactarius indochrysorrheus, Lactarius brunneoviolaceus, Lactarius olivaceoglutinus, Lactarius olivaceoumbrinus, Lactarius vinaceorufescens, Lactarius brunneohepaticus, Lactarius cf. pseudouvidus, Lactarius aff. tuomikoskii, Lactarius olivaceopallidus, Lactarius aff. chelidonium, Lactarius pseudodeliciosus, Lactarius aurantiosordidus, Lactarius argillaceifolius, Lactarius mediterraneensis, Lactarius asiae-orientalis, Lactarius albidoarmeniacus, Lactarius aurantiobrunneus, Lactarius aff. baliophaeus, Lactarius subomphaliformis, Lactarius orientaliquietus, Lactarius pseudodeceptivus, Lactarius austrotorminosus, Lactarius afroscrobiculatus, Lactarius pallidomarginatus, Lactarius salicis-herbaceae, Lactarius reticulatovenosus, Lactarius aurantiacopallens, Lactarius brachycystidiatus, Lactarius orientitorminosus, Lactarius pallido-ochraceus, Lactarius purpureocastaneus, Lactarius cf. scrobiculatus, Lactarius cheilocystidiatus, Lactarius alboscrobiculatus, Lactarius brunneocinnamomeus, Lactarius cf. rubidus KGP102, Lactarius sanguineovirescens, Lactarius cuspidoaurantiacus, Lactarius brunneoaurantiacus, Lactarius cf. omphaliiformis, Lactarius olivaceorimosellus, Lactarius cf. trivialis 2.1F, Lactarius cf. trivialis 2.1H, Lactarius cf. trivialis 1.1F, Lactarius cf. trivialis 2.5G, Lactarius cf. luteus JMP0040, Lactarius aurantiolamellatus, Lactarius cf. lacunarum UP561, Lactarius pseudoscrobiculatus, Lactarius aff. uvidus AR09558, Lactarius aff. uvidus AR09840, Lactarius salicis-reticulatae, Lactarius aff. medusae C841gn, Lactarius austroscrobiculatus, Lactarius cf. luculentus KGP76, Lactarius aff. subplinthogalus, Lactarius aff. multiceps G3264, Lactarius aff. gerardii LTH270, Lactarius aff. gerardii LTH246, Lactarius cf. pubescens M13_E9, Lactarius cf. brunneohepaticus, Lactarius aff. austrorostratus, Lactarius aff. brunneoviolaceus, Lactarius cf. gerardii GM 07-34, Lactarius cf. brunnescens C63gn, Lactarius cf. deliciosus DL-2015, Lactarius cf. obscuratus MH_2_10, Lactarius aff. gerardii KIINA126, Lactarius cf. indigo GO-2009-192, Lactarius cf. sanguifluus CB0813, Lactarius cf. gerardii K.Das4073, Lactarius cf. uvidus UBCOGTR0407s, Lactarius aff. subzonarius LTH324, Lactarius aff. subzonarius LTH145, Lactarius aff. gerardii H.T.Le101, Lactarius aff. gerardii H.T.Le246, Lactarius aff. gerardii H.T.Le270, Lactarius aff. gerardii H.T.Le302, Lactarius aff. gerardii H.T.Le317, Lactarius aff. gerardii H.T.Le343, Lactarius aff. gerardii H.T.Le394, Lactarius aff. gerardii H.T.Le400, Lactarius aff. gerardii H.T.Le431, Lactarius aff. gerardii K.Das4073, Lactarius aff. gerardii K.Das4062, Lactarius cf. sanguifluus AR09527, Lactarius cf. sanguifluus CB08304, Lactarius cf. sanguifluus CB08422, Lactarius aff. corrugis AV05252co, Lactarius aff. corrugis AV04185co, Lactarius aff. gymnocarpus C329gn, Lactarius cf. murinipes LIP F.1890, Lactarius aff. subplinthogalus 2A8, Lactarius aff. brasiliensis TH7677, Lactarius aff. wenquanensis LTH143, Lactarius cf. subserifluus JMP0041, Lactarius cf. brasiliensis AMV1874, Lactarius aff. sanguifluus UCBSB100, Lactarius aff. gerardii H.D.Zheng101, Lactarius aff. gerardii X.H.Wang1768, Lactarius aff. pulchrispermus C158gn, Lactarius cf. gerardii D.P.Lewis6983, Lactarius cf. sanguifluus HC-PNNT-046, Lactarius cf. sanguifluus HC-PNNT-122, Lactarius cf. sanguifluus HC-PNNT-274, Lactarius cf. fulvissimus Walleyn 1203, Lactarius aff. lignyotus WTU 00-223-16, Lactarius aff. gerardii D.Stubbe07-390, Lactarius aff. gerardii R.Watling24783, Lactarius aff. gerardii R.Watling24828, Lactarius aff. gerardii R.Watling26708, Lactarius cf. gerardii P.R.Leacock5338, Lactarius cf. gerardii P.R.Leacock5770, Lactarius aff. gerardii R.E.Halling8262, Lactarius aff. gerardii S.S.LeeFRIM1098, Lactarius cf. gerardii A.Verbeken05-373, Lactarius cf. gerardii A.Verbeken04-199, Lactarius cf. gerardii A.Verbeken04-216, Lactarius cf. gerardii A.Verbeken05-235, Lactarius cf. gerardii A.Verbeken05-236, Lactarius cf. gerardii A.Verbeken05-283, Lactarius cf. gerardii A.Verbeken05-309, Lactarius cf. gerardii A.Verbeken05-355, Lactarius cf. gerardii A.Verbeken05-375, Lactarius aff. lignyotus D.P. Lewis 7259, Lactarius cf. panuoides LIP RC/Guy10_024, Lactarius aff. pseudouvidus EL63-10 (GB), Lactarius cf. aurantiacus CLC1885 (MONT), Lactarius cf. aurantiacus CLC2743 (MONT), Lactarius aff. gerardii S.N.YahyaFRIM1357, Lactarius aff. pseudouvidus EL101-11 (GB), Lactarius aff. pseudouvidus TWO809 (MONT), Lactarius cf. aurantiacus JV15112F (TURA), Lactarius aff. gerardii E.NagasawaTMI15534, Lactarius aff. gerardii E.NagasawaTMI15558, Lactarius aff. pseudouvidus JV10468 (TURA), Lactarius aff. gerardii M.Christensen04-259, Lactarius aff. pseudouvidus JV28448F (TURA), Lactarius aff. chrysorrheus Verbeken 04-212, Lactarius aff. chrysorrheus Verbeken 05-359, Lactarius aff. acris LE A.E. Kovalenko 16493, Lactifluus aff. ochrogalactus AV-KD-KVP09-120, Lactarius aff. lignyotus EIU A.S. Methven 9211, Lactarius aff. lignyotus EIU A.S. Methven 9866, Lactarius cf. castaneibadius LIP CL/MART06.019, Lactarius cf. atro-olivaceus D.E.Desjardin3630, Lactarius aff. brunneoviolaceus CLC2133 (MONT), Lactarius aff. lignyotus EIU A.S. Methven 11828, Lactarius cf. gerardii A.E.Franco-Molano27-6-89, Lactarius aff. pseudouvidus E Soyland 73867 (O), Lactarius cf. corrugis Annemieke Verbeken 04-209, Lactarius cf. corrugis Annemieke Verbeken 05-290, Lactarius cf. corrugis Annemieke Verbeken 05-291, Lactarius cf. corrugis Annemieke Verbeken 05-337, Lactarius cf. corrugis Annemieke Verbeken 05-392, Lactarius cf. corrugis Jorinde Nuytinck 2004-015, Lactarius aff. gerardii D.Stubbe/R.Walleyn07-373, unclassified Lactarius (in: basidiomycete fungi), Lactarius aff. salicis-reticulatae EB0039 (MONT), Lactarius aff. salicis-reticulatae EB0036 (MONT), Lactarius aff. lignyotus GENT A. Voitk 21-08-2008, Lactarius aff. salicis-reticulatae CLC1710 (MONT), Lactarius aff. salicis-reticulatae CLC1741 (MONT), Lactarius aff. salicis-reticulatae CLC1689 (MONT), Lactarius aff. lignyotus GENT J. Nuytinck 2007-001, Lactarius aff. gerardii A.Verbeken/R.Walleyn04-088, Lactarius aff. brunneoviolaceus P Larsen 361395 (O), Lactarius aff. pseudouvidus U Peintner 20040156 (IB), Lactarius aff. pseudouvidus U Peintner 20070035 (IB), Lactarius cf. gerardii var. fagicola J.Nuytinck07-029, Lactarius cf. gerardii var. fagicola D.E.Desjardin3564, Lactarius cf. gerardii var. subrubescens R.E.Halling6918, Lactarius cf. gerardii var. subrubescens D.E.Desjardin5275
Adenosine
Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].
linolenate(18:3)
alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
Niacinamide
Nicotinamide is a white powder. (NTP, 1992) Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available. Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels. Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ... Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].
Tyrosol
Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
Palmitic acid
Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Ergosterol
Ergosterol is a phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. It has a role as a fungal metabolite and a Saccharomyces cerevisiae metabolite. It is a 3beta-sterol, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL. Ergosterol is a natural product found in Gladiolus italicus, Ramaria formosa, and other organisms with data available. ergosterol is a metabolite found in or produced by Saccharomyces cerevisiae. A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2). See also: Reishi (part of). Ergosterol, also known as provitamin D2, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, ergosterol is considered to be a sterol lipid molecule. Ergosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Ergosterol is the biological precursor to vitamin D2. It is turned into viosterol by ultraviolet light, and is then converted into ergocalciferol, which is a form of vitamin D. Ergosterol is a component of fungal cell membranes, serving the same function that cholesterol serves in animal cells. Ergosterol is not found in mammalian cell membranes. A phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. Ergosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-87-4 (retrieved 2024-07-12) (CAS RN: 57-87-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.
Furanodiene
Furanodiene is a germacrane sesquiterpenoid. Furanodiene is a natural product found in Curcuma amada, Lactarius chrysorrheus, and other organisms with data available. Furanodiene is a constituent of Curcuma zedoaria (zedoary) Constituent of Curcuma zedoaria (zedoary)
Indole-3-carboxaldehyde
Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods. Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles. Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available. A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. Found in barley and tomato seedlings and cotton Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].
Stearic acid
Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.
Oleic acid
Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Lactaroviolin
Lactaroviolin is found in mushrooms. Lactaroviolin is a constituent of mushroom Lactarius deliciosus Constituent of mushroom Lactarius deliciosus. Lactaroviolin is found in mushrooms.
Delta(6)-protoilludene
A tricyclic sesquiterpene that is 2,4,4a,5,6,7,7a,7b-octahydro-1H-cyclobuta[e]indene bearing four methyl substituents at positions 3, 6, 6 and 7b.
Ergosterol peroxide
Ergosterol peroxide is found in fruits. Ergosterol peroxide is obtained from leaves of Ananas comosus (pineapple obtained from leaves of Ananas comosus (pineapple). Ergosterol peroxide is found in pineapple and fruits.
Blennin D
Blennin D is found in mushrooms. Blennin D is a constituent of Lactarius blennius (slimy milk cap) Constituent of Lactarius blennius (slimy milk cap). Blennin D is found in mushrooms.
8-Hydroxy-4(6)-lactarene-5,14-diol
8-Hydroxy-4(6)-lactarene-5,14-diol is a constituent of Lactarius piperatus Constituent of Lactarius piperatus
Lactaronecatorin A
Lactaronecatorin A is found in mushrooms. Lactaronecatorin A is a constituent of Lactarius blennius (slimy milk cap). Constituent of Lactarius blennius (slimy milk cap). Lactaronecatorin A is found in mushrooms.
Lactarazulene
Lactarazulene is found in mushrooms. Lactarazulene is a constituent of Lactarius deliciosus. Constituent of Lactarius deliciosus. Lactarazulene is found in mushrooms.
Lactapiperanol C
Lactapiperanol A is found in mushrooms. Lactapiperanol A is a constituent of Lactarius piperatus. Constituent of Lactarius piperatus. Lactapiperanol C is found in mushrooms.
Anofinic acid
Anofinic acid is found in mushrooms. Anofinic acid is a metabolite of Lactarius deliciosus. Metabolite of Lactarius deliciosus. Anofinic acid is found in mushrooms.
(2S,3'S)-alpha-Amino-2-carboxy-5-oxo-1-pyrrolidinebutanoic acid
(2S,3S)-alpha-Amino-2-carboxy-5-oxo-1-pyrrolidinebutanoic acid is found in mushrooms. (2S,3S)-alpha-Amino-2-carboxy-5-oxo-1-pyrrolidinebutanoic acid is a amino acid from the basidiomycete Lactarius piperatus. Amino acid from the basidiomycete Lactarius piperatus. (2S,3S)-alpha-Amino-2-carboxy-5-oxo-1-pyrrolidinebutanoic acid is found in mushrooms.
Flavidulol C
Flavidulol C is found in mushrooms. Flavidulol C is isolated from the edible, but bitter tasting Japanese kihatsudake mushroom (Lactarius flavidulus). Isolated from the edible, but bitter tasting Japanese kihatsudake mushroom (Lactarius flavidulus). Flavidulol C is found in mushrooms.
11,12-Dihydrolactaroviolin
11,12-Dihydrolactaroviolin is found in mushrooms. 11,12-Dihydrolactaroviolin is isolated from the mushroom Lactarius deterrimu Isolated from the mushroom Lactarius deterrimus. 11,12-Dihydrolactaroviolin is found in mushrooms.
Hydroxymethyl indol-3-yl ketone
Hydroxymethyl indol-3-yl ketone is found in mushrooms. Hydroxymethyl indol-3-yl ketone is an alkaloid from liquid cultures of the fungus Lactarius deliciosus. Alkaloid from liquid cultures of the fungus Lactarius deliciosus. Hydroxymethyl indol-3-yl ketone is found in mushrooms.
Necatorine
Necatorine is found in mushrooms. Necatorine is an alkaloid from the mushroom Lactarius necator.
Hydroxycaryophyllene
Hydroxycaryophyllene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Hydroxycaryophyllene is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Hydroxycaryophyllene can be found in fig, which makes hydroxycaryophyllene a potential biomarker for the consumption of this food product.
Oleate
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Cerevisterol
An ergostanoid that is (22E)-ergosta-7,22-diene substituted by hydroxy groups at positions 3, 5 and 6 (the 3beta,5alpha,6beta stereoisomer). It has been isolated from the fungus, Xylaria species. Cerevisterol is a steroid isolated from the fruiting bodies of Agaricus blazei[1]. Cerevisterol is a steroid isolated from the fruiting bodies of Agaricus blazei[1].
2,2,8-trimethyl-1,2,3,3a,8,8a-hexahydroazulene-5,6-dicarbaldehyde
Palmitic Acid
COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2H-1-Benzopyran-6-carboxaldehyde, 3,4-dihydro-2,2-dimethyl-4-oxo-
Adenosine
COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C - Cardiovascular system > C01 - Cardiac therapy Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C10H13N5O4; Bottle Name:Adenosine; PRIME Parent Name:Adenosine; PRIME in-house No.:0040 R0018, Purines MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OIRDTQYFTABQOQ_STSL_0143_Adenosine_0500fmol_180430_S2_LC02_MS02_33; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.113 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.109 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.097 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.096 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2621; CONFIDENCE confident structure Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].
Ergosterol
Indicator of fungal contamination, especies in cereals. Occurs in yeast and fungi. The main fungal steroidand is also found in small amts. in higher plant prods., e.g. palm oil [DFC]. D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.
Indole-3-carboxaldehyde
Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].
stearic acid
Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.
Oleic acid
An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
α-Linolenic acid
α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
FA 18:3
CONFIDENCE standard compound; INTERNAL_ID 143 COVID info from WikiPathways D - Dermatologicals Same as: D07213 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
Octadecanoic acid
A C18 straight-chain saturated fatty acid component of many animal and vegetable lipids. As well as in the diet, it is used in hardening soaps, softening plastics and in making cosmetics, candles and plastics.
8-Hydroxy-4(6)-lactarene-5,14-diol
1-(3-amino-3-carboxypropyl)-5-oxopyrrolidine-2-carboxylic acid
Furtrethonium
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor
Red oil
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Pelmin
COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A - Alimentary tract and metabolism > A11 - Vitamins C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].
Furanodiene
AI3-52407
Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].
Tyrosol
Tyrosol, also known as 4-hydroxyphenylethanol or 4-(2-hydroxyethyl)phenol, is a member of the class of compounds known as tyrosols. Tyrosols are organic aromatic compounds containing a phenethyl alcohol moiety that carries a hydroxyl group at the 4-position of the benzene group. Tyrosol is soluble (in water) and a very weakly acidic compound (based on its pKa). Tyrosol can be synthesized from 2-phenylethanol. Tyrosol is also a parent compound for other transformation products, including but not limited to, hydroxytyrosol, crosatoside B, and oleocanthal. Tyrosol is a mild, sweet, and floral tasting compound and can be found in a number of food items such as breadnut tree seed, sparkleberry, loquat, and savoy cabbage, which makes tyrosol a potential biomarker for the consumption of these food products. Tyrosol can be found primarily in feces and urine, as well as in human prostate tissue. Tyrosol exists in all eukaryotes, ranging from yeast to humans. Tyrosol present in wine is also shown to be cardioprotective. Samson et al. has shown that tyrosol-treated animals showed significant increase in the phosphorylation of Akt, eNOS and FOXO3a. In addition, tyrosol also induced the expression of longevity protein SIRT1 in the heart after myocardial infarction in a rat MI model. Hence tyrosols SIRT1, Akt and eNOS activating power adds another dimension to the wine research, because it adds a great link to the French paradox. In conclusion these findings suggest that tyrosol induces myocardial protection against ischemia related stress by inducing survival and longevity proteins that may be considered as anti-aging therapy for the heart . D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].