NCBI Taxonomy: 145831

Stizolophus coronopifolius (ncbi_taxid: 145831)

found 68 associated metabolites at species taxonomy rank level.

Ancestor: Stizolophus

Child Taxonomies: none taxonomy data.

Chrysoeriol

3 inverted exclamation mark -Methoxy-4 inverted exclamation mark ,5,7-trihydroxyflavone

C16H12O6 (300.06338519999997)


Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Epi-alpha-amyrin

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ... Carissol is found in beverages. Carissol is a constituent of Carissa carandas (karanda). Constituent of Carissa carandas (karanda). Carissol is found in beverages and fruits.

   

dinatin

Scutellarein 6-methyl ether

C16H12O6 (300.06338519999997)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Axillarin

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0688644)


   

alpha-Amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.

   

Hispidulin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.06338519999997)


Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

nepetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-methoxy- (9CI)

C16H12O7 (316.05830019999996)


Eupafolin, also known as 6-methoxy 5 or 734-tetrahydroxyflavone, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, eupafolin is considered to be a flavonoid lipid molecule. Eupafolin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eupafolin can be found in common sage, lemon verbena, rosemary, and sesame, which makes eupafolin a potential biomarker for the consumption of these food products. 6-Methoxyluteolin is a natural product found in Eupatorium album, Eupatorium altissimum, and other organisms with data available. See also: Arnica montana Flower (has part). Nepetin (6-Methoxyluteolin) is a natural flavonoid isolated from Eupatorium ballotaefolium HBK with potent anti-inflammatory activities. Nepetin inhibits IL-6, IL-8 and MCP-1 secretion with IC50 values of 4.43 μM, 3.42 μM and 4.17 μM, respectively in ARPE-19 cells[1][2]. Nepetin (6-Methoxyluteolin) is a natural flavonoid isolated from Eupatorium ballotaefolium HBK with potent anti-inflammatory activities. Nepetin inhibits IL-6, IL-8 and MCP-1 secretion with IC50 values of 4.43 μM, 3.42 μM and 4.17 μM, respectively in ARPE-19 cells[1][2].

   

axillaroside

5,7,3,4-Tetrahydroxy-3,6-dimethoxyflavone 7-glucuronide

C23H24O13 (508.1216854)


   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Axillarin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-

C17H14O8 (346.0688644)


A dimethoxyflavone that is the 3,6-dimethyl ether derivative of quercetagetin. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one, also known as 3,4,5,7-tetrahydroxy-3,6-dimethoxyflavone or 3,6-dimethoxyquercetagetin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one can be found in german camomile, which makes 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one a potential biomarker for the consumption of this food product.

   

dinatin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.06338519999997)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Chrysoeriol

Chrysoeriol (Luteolin 3-methyl ether)

C16H12O6 (300.06338519999997)


Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Chryseriol

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-

C16H12O6 (300.06338519999997)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.094 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.096 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.093 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.091 Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Epi-a-amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


   

viminalol

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ...

   

(1s,2s,4r,7e,10s,11r)-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-3-methylbut-2-enoate

(1s,2s,4r,7e,10s,11r)-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-3-methylbut-2-enoate

C20H26O6 (362.17292960000003)


   

(1s,2r,4r,7e,10s,11r)-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

(1s,2r,4r,7e,10s,11r)-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

C20H26O7 (378.1678446)


   

4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl 4-hydroxy-3-methylbut-2-enoate

4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl 4-hydroxy-3-methylbut-2-enoate

C20H26O6 (362.17292960000003)


   

9-hydroxy-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl 4-hydroxy-3-methylbut-2-enoate

9-hydroxy-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl 4-hydroxy-3-methylbut-2-enoate

C20H26O7 (378.1678446)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-3,6-dimethoxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-3,6-dimethoxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C23H24O13 (508.1216854)


   

(1s,2s,4r,7e,9s,10r,11r)-9-hydroxy-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl 3-methylbut-2-enoate

(1s,2s,4r,7e,9s,10r,11r)-9-hydroxy-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl 3-methylbut-2-enoate

C20H26O6 (362.17292960000003)


   

(2s,4r,7e,10s,11r)-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

(2s,4r,7e,10s,11r)-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

C20H26O7 (378.1678446)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-3,6-dimethoxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-3,6-dimethoxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C23H24O13 (508.1216854)


   

4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl 4-hydroxy-2-(hydroxymethyl)but-2-enoate

4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl 4-hydroxy-2-(hydroxymethyl)but-2-enoate

C20H26O7 (378.1678446)


   

(1s,2s,4r,7e,10s,11r)-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

(1s,2s,4r,7e,10s,11r)-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

C20H26O7 (378.1678446)


   

(1s,2r,4r,7z,10s,11r)-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

(1s,2r,4r,7z,10s,11r)-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-2-(hydroxymethyl)but-2-enoate

C20H26O7 (378.1678446)


   

(1s,2s,4r,7e,9s,10r,11r)-9-hydroxy-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-3-methylbut-2-enoate

(1s,2s,4r,7e,9s,10r,11r)-9-hydroxy-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl (2e)-4-hydroxy-3-methylbut-2-enoate

C20H26O7 (378.1678446)


   

9-hydroxy-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl 3-methylbut-2-enoate

9-hydroxy-4,8-dimethyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-en-10-yl 3-methylbut-2-enoate

C20H26O6 (362.17292960000003)