NCBI Taxonomy: 205374

Artemisia rutifolia (ncbi_taxid: 205374)

found 115 associated metabolites at species taxonomy rank level.

Ancestor: Artemisia

Child Taxonomies: none taxonomy data.

Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0423)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Coumarin

2h-1-benzopyran-2-one;coumarin;2h-chromen-2-one;coumarin ;coumarin (2h-1-benzopyran-2-one) (chromen-2-one);2h-1-benzopyran-2-one coumarin 2h-chromen-2-one coumarin coumarin (2h-1-benzopyran-2-one) (chromen-2-one)

C9H6O2 (146.0368)


Coumarin appears as colorless crystals, flakes or colorless to white powder with a pleasant fragrant vanilla odor and a bitter aromatic burning taste. (NTP, 1992) Coumarin is a chromenone having the keto group located at the 2-position. It has a role as a fluorescent dye, a plant metabolite and a human metabolite. Coumarin is a natural product found in Eupatorium cannabinum, Eupatorium japonicum, and other organisms with data available. Coumarin is o hydroxycinnamic acid. Pleasant smelling compound found in many plants and released on wilting. Has anticoagulant activity by competing with Vitamin K. Coumarin is a chemical compound/poison found in many plants, notably in high concentration in the tonka bean, woodruff, and bison grass. It has a sweet scent, readily recognised as the scent of newly-mown hay. It has clinical value as the precursor for several anticoagulants, notably warfarin. --Wikipedia. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. The parent compound, coumarin, occurs naturally in many plants, natural spices, and foods such as tonka bean, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% to 6.4\\\\% in fine fragrances to <0.01\\\\% in detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and ... Coumarin belongs to the class of chemicals known as chromenones. Specifically it is a chromenone having the keto group located at the 2-position. A chromenone is a benzene molecule with two adjacent hydrogen atoms replaced by a lactone-like chain forming a second six-membered heterocycle that shares two carbons with the benzene ring. Coumarin is also described as a benzopyrone and is considered as a lactone. Coumarin is a colorless crystalline solid with a bitter taste and sweet odor resembling the scent of vanilla or the scent of newly-mowed or recently cut hay. It is a chemical poison found in many plants where it may serve as a chemical defense against predators. Coumarin occurs naturally in many plants and foods such as the tonka bean, woodruff, bison grass, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, to 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% To 6.4\\\\% In fine fragrances to <0.01\\\\% In detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. It has clinical value as the precursor for several anticoagulants, notably warfarin. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 Mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 Mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and other coumarin derivatives, coumarin has no anti-coagulant activity. However, at low doses (typically 7 to 10 mg/day), coumarin has been used as a venotonic to promote... C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent A chromenone having the keto group located at the 2-position. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB013_Coumarin_pos_20eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_30eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_10eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_50eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_40eV_CB000008.txt Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Diosmetin

5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one (Diosmetin)

C16H12O6 (300.0634)


Diosmetin is a monomethoxyflavone that is the 4-methyl ether derivative of luteolin. It is a natural product isolated from citrus fruits which exhibits a range of pharmacological activities. It has a role as an antioxidant, an antineoplastic agent, a plant metabolite, a tropomyosin-related kinase B receptor agonist, an apoptosis inducer, an angiogenesis inhibitor, a cardioprotective agent, a bone density conservation agent, an anti-inflammatory agent and a vasodilator agent. It is a monomethoxyflavone, a trihydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. It is a conjugate acid of a diosmetin-7-olate. Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic and anti-inflamatory activities. It also acts as a weak TrkB receptor agonist. Diosmetin is a natural product found in Vicia tenuifolia, Salvia tomentosa, and other organisms with data available. See also: Agathosma betulina leaf (part of). A monomethoxyflavone that is the 4-methyl ether derivative of luteolin. It is a natural product isolated from citrus fruits which exhibits a range of pharmacological activities. Isolated from peel of lemon (Citrus limon) and others. Diosmetin is found in many foods, some of which are spearmint, citrus, rosemary, and common thyme. Diosmetin is found in citrus. Diosmetin is isolated from peel of lemon (Citrus limon) and other Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell. Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell.

   

Camphor

Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (.+/-.)-

C10H16O (152.1201)


Camphor appears as a colorless or white colored crystalline powder with a strong mothball-like odor. About the same density as water. Emits flammable vapors above 150 °F. Used to make moth proofings, pharmaceuticals, and flavorings. Camphor is a cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. It has a role as a plant metabolite. It is a bornane monoterpenoid and a cyclic monoterpene ketone. Camphor is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. A cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.986 Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin, also known as quercetagetin 3,6,7,3-tetramethyl ether or 3,6,7,3-tetra-methylquercetagetin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, chrysosplenetin is considered to be a flavonoid lipid molecule. Chrysosplenetin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Chrysosplenetin can be found in german camomile, which makes chrysosplenetin a potential biomarker for the consumption of this food product. Chrysosplenetin is an O-methylated flavonol. It can be found in the root of Berneuxia thibetica and in Chamomilla recutita . Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Cirsilineol

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-

C18H16O7 (344.0896)


Cirsilineol, also known as 4,5-dihydroxy-3,6,7-trimethoxy-flavone or anisomelin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsilineol is considered to be a flavonoid lipid molecule. Cirsilineol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsilineol can be found in a number of food items such as common thyme, tarragon, common sage, and hyssop, which makes cirsilineol a potential biomarker for the consumption of these food products. Cirsilineol is a bioactive flavone isolated from Artemisia and from Teucrium gnaphalodes . Cirsilineol is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsilineol is a natural product found in Thymus herba-barona, Salvia tomentosa, and other organisms with data available. See also: Tangerine peel (part of).

   

Chrysoeriol

3 inverted exclamation mark -Methoxy-4 inverted exclamation mark ,5,7-trihydroxyflavone

C16H12O6 (300.0634)


Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Absinthin

(1R,2R,5S,8S,9S,12S,13R,14S,15S,16R,17S,20S,21S,24S)-12,17-dihydroxy-3,8,12,17,21,25-hexamethyl-6,23-dioxaheptacyclo[13.9.2.0(1,16).0(2,14).0(4,13).0(5,9).0(20,24)]hexacosa-3,25-diene-7,22-dione

C30H40O6 (496.2825)


Absinthin is a dimeric sesquiterpene lactone that is produced by the plant Artemisia absinthium (Wormwood). The bitter tasting constituent of Absinthe. It has a role as a plant metabolite and an anti-inflammatory agent. It is a sesquiterpene lactone, a triterpenoid and an organic heteroheptacyclic compound. Absinthin is a natural product found in Artemisia genipi, Artemisia annua, and other organisms with data available. Constituent of Artemisia absinthium (wormwood). Isoabsinthin is found in alcoholic beverages and herbs and spices. Isoabsinthin is found in alcoholic beverages. Isoabsinthin is a constituent of Artemisia absinthium (wormwood).

   

Santamarin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, 3A,4,5,5A,6,7,9A,9B-OCTAHYDRO-6-HYDROXY-5A,9-DIMETHYL-3-METHYLENE-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.1412)


Santamarin, also known as (+)-santamarine or balchanin, belongs to eudesmanolides, secoeudesmanolides, and derivatives class of compounds. Those are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton. Santamarin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Santamarin can be found in sweet bay, which makes santamarin a potential biomarker for the consumption of this food product. Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.

   

(2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents. 2-Bornanol is found in turmeric. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

4-Hydroxy-3-methoxybenzenemethanol

2-Pyridinecarboxylicacid, 6-amino-3-bromo-, methyl ester

C8H10O3 (154.063)


4-Hydroxy-3-methoxybenzenemethanol, also known as 4-hydroxy-3-methoxybenzyl alcohol or 3-methoxy-4-hydroxybenzyl alcohol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 4-Hydroxy-3-methoxybenzenemethanol is a drug. 4-Hydroxy-3-methoxybenzenemethanol is a sweet, anise, and balsam tasting compound. 4-hydroxy-3-methoxybenzenemethanol has been detected, but not quantified, in fruits and herbs and spices. This could make 4-hydroxy-3-methoxybenzenemethanol a potential biomarker for the consumption of these foods. Vanillyl alcohol is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols. Vanillyl alcohol has been used in trials studying the treatment of Smoking. Vanillyl alcohol is a natural product found in Artemisia rutifolia, Euglena gracilis, and other organisms with data available. Constituent of Capsicum subspecies; flavouring ingredient. 4-Hydroxy-3-methoxybenzenemethanol is found in herbs and spices and fruits. A monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].

   

(+)-Camphor

(+)-Camphor;(+)-bornan-2-one;(+)-camphor;(1R)-(+)-camphor;(R)-(+)-camphor;(R)-camphor

C10H16O (152.1201)


Camphor, also known as (+)-camphor or (+)-bornan-2-one, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, camphor is primarily located in the membrane (predicted from logP). Camphor is a waxy, flammable, white or transparent solid with a strong aroma. It is a terpenoid with the chemical formula C10H16O. It is found in many plants, such as in the wood of the camphor laurel (Cinnamomum camphora), a large evergreen tree found in Asia (particularly in Sumatra and Borneo islands, Indonesia) and also of the unrelated Kapur tree, a tall timber tree from the same region. It also occurs in some other related trees in the laurel family, notably Ocotea usambarensis and in the oil in rosemary leaves (Rosmarinus officinalis). The mint family contains 10 to 20\\\\\\\\% camphor, while camphorweed (Heterotheca) only contains some 5\\\\\\\\%. Camphor can also be synthetically produced from oil of turpentine. It is used for its scent, as an ingredient in cooking (mainly in India), as an embalming fluid, for medicinal purposes, and in religious ceremonies. A major source of camphor in Asia is camphor basil (the parent of African blue basil) (Wikipedia). (R)-camphor is the (R)- enantiomer of camphor. It is an enantiomer of a (S)-camphor. Camphor is a bicyclic monoterpene ketone found widely in plants, especially Cinnamomum camphora. It is used topically as a skin antipruritic and as an anti-infective agent. When ingested, camphor has a rapid onset of toxic effects, and camphorated oil is the product most often responsible for its toxicity. The FDA ruled that camphorated oil could not be marketed in the United States and that no product could contain a concentration higher than 11\\\\\\\\%. It appears in the list of drug products withdrawn or removed from the market for safety or effectiveness. However, camphor can be found in several nonprescription medications at lower concentrations. D-Camphor is a natural product found in Chromolaena odorata, Curcuma amada, and other organisms with data available. See also: Coriander Oil (part of). C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C - Cardiovascular system > C01 - Cardiac therapy The (R)- enantiomer of camphor. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Tricin

5,7-Dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-1-benzopyran-4-one

C17H14O7 (330.0739)


[Raw Data] CBA24_Tricin_neg_50eV_1-6_01_1424.txt [Raw Data] CBA24_Tricin_pos_50eV_1-6_01_1397.txt [Raw Data] CBA24_Tricin_neg_10eV_1-6_01_1368.txt [Raw Data] CBA24_Tricin_pos_40eV_1-6_01_1396.txt [Raw Data] CBA24_Tricin_pos_20eV_1-6_01_1394.txt [Raw Data] CBA24_Tricin_neg_30eV_1-6_01_1422.txt [Raw Data] CBA24_Tricin_neg_20eV_1-6_01_1421.txt [Raw Data] CBA24_Tricin_pos_10eV_1-6_01_1357.txt [Raw Data] CBA24_Tricin_pos_30eV_1-6_01_1488.txt [Raw Data] CBA24_Tricin_neg_40eV_1-6_01_1423.txt Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   

ACHILLIN

(3R,3aS,9aS,9bS)-3,6,9-trimethyl-3,3a,4,5,9a,9b-hexahydroazuleno[4,5-b]furan-2,7-dione

C15H18O3 (246.1256)


A sesquiterpene lactone that is (3R,3aS,9aS,9bS)-3,3a,4,5,9a,9b-hexahydroazuleno[4,5-b]furan-2,7-dione carrying three additional methyl substituents at positions 3, 6 and 9. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.984

   

Artecanin

Isochrysartemin B

C15H18O5 (278.1154)


   

Ridentin

Pulverulide

C15H20O4 (264.1362)


   

piceol

InChI=1\C8H8O2\c1-6(9)7-2-4-8(10)5-3-7\h2-5,10H,1H

C8H8O2 (136.0524)


INTERNAL_ID 214; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3087; ORIGINAL_PRECURSOR_SCAN_NO 3084 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3098; ORIGINAL_PRECURSOR_SCAN_NO 3095 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3092; ORIGINAL_PRECURSOR_SCAN_NO 3090 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3095; ORIGINAL_PRECURSOR_SCAN_NO 3093 INTERNAL_ID 214; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3092; ORIGINAL_PRECURSOR_SCAN_NO 3090 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3160; ORIGINAL_PRECURSOR_SCAN_NO 3158 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1]. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1].

   

Germacrene D

(1E,6E,8S)-1-methyl-8-(1-methylethyl)-5-methylidenecyclodeca-1,6-diene

C15H24 (204.1878)


Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.

   

(+)-3-Thujone

[1S-(1alpha,4beta,5alpha)]-4-Methyl-1-(1-methylethyl)bicyclo[3.1.0]hexan-3-one

C10H16O (152.1201)


Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (+)-3-Thujone is found in many foods, some of which are peppermint, common sage, winter savory, and ginger. (+)-3-Thujone is found in common sage. Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia

   

Artecanin

(1R,2R,5S,9S,10S,11S,13R,14S)-2-hydroxy-2,11-dimethyl-6-methylidene-8,12,15-trioxapentacyclo[8.5.0.0¹,¹⁴.0⁵,⁹.0¹¹,¹³]pentadecan-7-one

C15H18O5 (278.1154)


Artecanin belongs to guaianolides and derivatives class of compounds. Those are diterpene lactones with a structure characterized by the presence of a gamma-lactone fused to a guaiane, forming 3,6,9-trimethyl-azuleno[4,5-b]furan-2-one or a derivative. Artecanin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Artecanin can be found in sweet bay, which makes artecanin a potential biomarker for the consumption of this food product.

   

Methylprednisolone

6a_Methylprednisolone

C22H30O5 (374.2093)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AA - Corticosteroids, combinations for treatment of acne D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AA - Corticosteroids, weak (group i) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D005765 - Gastrointestinal Agents > D000932 - Antiemetics D000893 - Anti-Inflammatory Agents D020011 - Protective Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8731; ORIGINAL_PRECURSOR_SCAN_NO 8728 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8721; ORIGINAL_PRECURSOR_SCAN_NO 8719 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8747; ORIGINAL_PRECURSOR_SCAN_NO 8745 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8759; ORIGINAL_PRECURSOR_SCAN_NO 8757 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8784; ORIGINAL_PRECURSOR_SCAN_NO 8783 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8757; ORIGINAL_PRECURSOR_SCAN_NO 8755 CONFIDENCE standard compound; INTERNAL_ID 2810 CONFIDENCE standard compound; INTERNAL_ID 1076 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2621

   

Artemetin

4H-1-Benzopyran-4-one, 2-(3,4-dimethoxyphenyl)-5-hydroxy-3,6,7-trimethoxy-

C20H20O8 (388.1158)


Artemetin is found in common verbena. Artemetin is a constituent of Artemisia species, Kuhnia eupatorioides (preferred genus name Brickellia), Achillea species, Brickellia species and others in the Compositae [CCD] Constituent of Artemisia subspecies, Kuhnia eupatorioides (preferred genus name Brickellia), Achillea subspecies, Brickellia subspecies and others in the Compositae [CCD]. Artemetin is found in common verbena. Artemetin is a member of flavonoids and an ether. Artemetin is a natural product found in Achillea santolina, Psiadia viscosa, and other organisms with data available. Artemitin is a flavonol found in Laggera pterodonta (DC.) Benth., with antioxidative, anti-inflammatory, and antiviral activity[1]. Artemitin is a flavonol found in Laggera pterodonta (DC.) Benth., with antioxidative, anti-inflammatory, and antiviral activity[1].

   

Matricarin

3,6,9-Trimethyl-2,7-dioxo-2H,3H,3ah,4H,5H,7H,9ah,9BH-azuleno[4,5-b]furan-4-yl acetic acid

C17H20O5 (304.1311)


Constituent of Matricaria chamomilla (German chamomile). Matricarin is found in many foods, some of which are herbs and spices, tea, fats and oils, and german camomile. Matricarin is found in fats and oils. Matricarin is a constituent of Matricaria chamomilla (German chamomile)

   

alpha-Curcumene

1-methyl-4-(6-methylhept-5-en-2-yl)benzene

C15H22 (202.1721)


alpha-Curcumene belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units

   

Verbenol

bicyclo(3.1.1)Hept-3-en-2-ol, 4,6,6-trimethyl- (9ci)

C10H16O (152.1201)


Flavouring ingredient. Verbenol is found in many foods, some of which are hyssop, rosemary, spearmint, and wild celery. Verbenol is found in hyssop. Verbenol is a flavouring ingredien

   

Artabsinolide A

6,9-dihydroxy-3,6,9-trimethyl-2H,3H,3aH,4H,5H,6H,7H,8H,9H,9bH-azuleno[4,5-b]furan-2,7-dione

C15H20O5 (280.1311)


Constituent of Artemisia absinthium (wormwood). Artabsinolide A is found in alcoholic beverages and herbs and spices. Artabsinolide B is found in alcoholic beverages. Artabsinolide B is a constituent of Artemisia absinthium (wormwood)

   

Canin

2-hydroxy-2,11-dimethyl-6-methylidene-8,12,15-trioxapentacyclo[8.5.0.0¹,¹⁴.0⁵,⁹.0¹¹,¹³]pentadecan-7-one

C15H18O5 (278.1154)


   

Poriferasterol

14-(5-ethyl-6-methylhept-3-en-2-yl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C29H48O (412.3705)


   

Reynosin

6-hydroxy-5a-methyl-3,9-dimethylidene-dodecahydronaphtho[1,2-b]furan-2-one

C15H20O3 (248.1412)


Reynosin belongs to eudesmanolides, secoeudesmanolides, and derivatives class of compounds. Those are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton. Reynosin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Reynosin can be found in sweet bay, which makes reynosin a potential biomarker for the consumption of this food product.

   

D-Camphor

1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one

C10H16O (152.1201)


(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Curcumene

alpha-Curcumene

C15H22 (202.1721)


   

Diosmetin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-

C16H12O6 (300.0634)


Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell. Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell.

   

Artemetin

4H-1-Benzopyran-4-one, 2-(3,4-dimethoxyphenyl)-5-hydroxy-3,6,7-trimethoxy-

C20H20O8 (388.1158)


Artemitin is a flavonol found in Laggera pterodonta (DC.) Benth., with antioxidative, anti-inflammatory, and antiviral activity[1]. Artemitin is a flavonol found in Laggera pterodonta (DC.) Benth., with antioxidative, anti-inflammatory, and antiviral activity[1].

   

Tricin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-HYDROXY-3,5-DIMETHOXYPHENYL)-

C17H14O7 (330.0739)


3,5-di-O-methyltricetin is the 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. It has a role as an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is a trihydroxyflavone, a dimethoxyflavone and a member of 3-methoxyflavones. It is functionally related to a tricetin. It is a conjugate acid of a 3,5-di-O-methyltricetin(1-). Tricin is a natural product found in Carex fraseriana, Smilax bracteata, and other organisms with data available. See also: Arnica montana Flower (part of); Elymus repens root (part of). The 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. Isolated from Triticum dicoccum (emmer). Tricin 5-diglucoside is found in wheat and cereals and cereal products. From leaves of Oryza sativa (rice). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one, also known as 3,5-O-dimethyltricetin or 5,7,4-trihydroxy-3,5-dimethoxy-flavone, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be synthesized from tricetin. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, tricin 7-O-glucoside, 4-O-beta-glucosyl-7-O-(6-O-sinapoylglucosyl)tricin, and tricin 7-O-(6-O-malonyl)-beta-D-glucopyranoside. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be found in barley, common wheat, oat, and rice, which makes 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   
   

Reynosin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, DECAHYDRO-6-HYDROXY-5A-METHYL-3,9-BIS(METHYLENE)-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.1412)


Reynosin is a sesquiterpene lactone of the eudesmanolide group, found particularly in Magnolia grandiflora and Laurus nobilis. It has a role as a metabolite. It is a sesquiterpene lactone and an organic heterotricyclic compound. Reynosin is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available. A sesquiterpene lactone of the eudesmanolide group, found particularly in Magnolia grandiflora and Laurus nobilis.

   

Piceol

4-Hydroxyacetophenone (Acetaminophen Impurity E), Pharmaceutical Secondary Standards; Certified Reference Material

C8H8O2 (136.0524)


4-hydroxyacetophenone is a monohydroxyacetophenone carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, a fungal metabolite and a mouse metabolite. 4-Hydroxyacetophenone is a natural product found in Ficus erecta var. beecheyana, Artemisia ordosica, and other organisms with data available. A monohydroxyacetophenone carrying a hydroxy substituent at position 4. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1]. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1].

   

Scopoletin

Scopoletin

C10H8O4 (192.0423)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Coumarin

2H-1-Benzopyran-2-one

C9H6O2 (146.0368)


Coumarin, also known as 1,2-benzopyrone or benzo-alpha-pyrone, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Coumarin is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Coumarin is a sweet, green, and new mown hay tasting compound and can be found in a number of food items such as malus (crab apple), sunburst squash (pattypan squash), european cranberry, and star anise, which makes coumarin a potential biomarker for the consumption of these food products. Coumarin can be found primarily in saliva. Coumarin is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Coumarin was first synthesized in 1868. It is used in the pharmaceutical industry as a precursor reagent in the synthesis of a number of synthetic anticoagulant pharmaceuticals similar to dicoumarol, the notable ones being warfarin (brand name Coumadin) and some even more potent rodenticides that work by the same anticoagulant mechanism. 4-hydroxycoumarins are a type of vitamin K antagonist. Pharmaceutical (modified) coumarins were all developed from the study of sweet clover disease; see warfarin for this history. However, unmodified coumarin itself, as it occurs in plants, has no effect on the vitamin K coagulation system, or on the action of warfarin-type drugs . C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2337 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.657 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.654 IPB_RECORD: 3881; CONFIDENCE confident structure Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Chrysoeriol

Chrysoeriol (Luteolin 3-methyl ether)

C16H12O6 (300.0634)


Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Chryseriol

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-

C16H12O6 (300.0634)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.094 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.096 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.093 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.091 Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Coumarin

2H-1-Benzopyran-2-one

C9H6O2 (146.0368)


Coumarin (/ˈkuːmərɪn/) or 2H-chromen-2-one is an aromatic organic chemical compound with formula C9H6O2. Its molecule can be described as a benzene molecule with two adjacent hydrogen atoms replaced by an unsaturated lactone ring −(CH)=(CH)−(C=O)−O−, forming a second six-membered heterocycle that shares two carbons with the benzene ring. It belongs to the benzopyrone chemical class and considered as a lactone.[1] Coumarin is a colorless crystalline solid with a sweet odor resembling the scent of vanilla and a bitter taste.[1] It is found in many plants, where it may serve as a chemical defense against predators. Coumarin inhibits synthesis of vitamin K, a key component in blood clotting. A related compound, the prescription drug anticoagulant warfarin, is used to inhibit formation of blood clots, deep vein thrombosis, and pulmonary embolism.[1][2] Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   
   

Vanillyl alcohol

4-(Hydroxymethyl)-2-methoxyphenol

C8H10O3 (154.063)


Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].

   

beta-thujone

(+)-3-thujone;(+)-isothujone;(1S,4S,5R)-(+)-3-thujanone;(1S,4S,5R)-1-isopropyl-4-methylbicyclo[3.1.0]hexan-3-one;[1S-(1alpha,4beta,5alpha)]-4-methyl-1-(1-methylethyl)bicyclo[3.1.0]hexan-3-one

C10H16O (152.1201)


   

alpha-Curcumene

1-methyl-4-[(2R)-6-methylhept-5-en-2-yl]benzene

C15H22 (202.1721)


Alpha-curcumene is also known as α-curcumene. Alpha-curcumene is a herb tasting compound and can be found in a number of food items such as pepper (spice), lovage, wild carrot, and rosemary, which makes alpha-curcumene a potential biomarker for the consumption of these food products.

   

Isosecotanapartholide

Isosecotanapartholide

C15H18O5 (278.1154)


A sesquiterpene lactone isolated from Artemisia rutifolia and Artemisia iwayomogi and has been shown to inhibit nitric oxide synthase.

   

Scopoletol

2H-1-Benzopyran-2-one, 7-hydroxy-6-methoxy- (9CI)

C10H8O4 (192.0423)


Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Rattex

2-Propenoic acid, 3-(2-hydroxyphenyl)-, .delta.-lactone

C9H6O2 (146.0368)


C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

c0588

Benzenemethanol, 4-hydroxy-3-methoxy-

C8H10O3 (154.063)


Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].

   

Balchanin

NAPHTHO(1,2-B)FURAN-2(3H)-ONE, 3A,4,5,5A,6,7,9A,9B-OCTAHYDRO-6-HYDROXY-5A,9-DIMETHYL-3-METHYLENE-, (3AS-(3A.ALPHA.,5A.BETA.,6.BETA.,9A.ALPHA.,9B.BETA.))-

C15H20O3 (248.1412)


Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.

   

603-56-5

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. A tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Cirsilineol

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-

C18H16O7 (344.0896)


Cirsilineol is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsilineol is a natural product found in Thymus herba-barona, Salvia tomentosa, and other organisms with data available. See also: Tangerine peel (part of). A trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively.

   
   

(3R,3aS,9aS,9bS)-3,6,9-trimethyl-3,3a,4,5,9a,9b-hexahydroazuleno[4,5-b]furan-2,7-dione

(3R,3aS,9aS,9bS)-3,6,9-trimethyl-3,3a,4,5,9a,9b-hexahydroazuleno[4,5-b]furan-2,7-dione

C15H18O3 (246.1256)


   

VERBENOL

cis-verbenol

C10H16O (152.1201)


   

9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

(3as,9s,11ar)-9-hydroxy-6,10-dimethyl-3-methylidene-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3as,9s,11ar)-9-hydroxy-6,10-dimethyl-3-methylidene-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H20O3 (248.1412)


   

(1s,4s,5r,7s,8z,11s)-4-hydroxy-4,9-dimethyl-14-methylidene-6,12-dioxatricyclo[9.3.0.0⁵,⁷]tetradec-8-ene-10,13-dione

(1s,4s,5r,7s,8z,11s)-4-hydroxy-4,9-dimethyl-14-methylidene-6,12-dioxatricyclo[9.3.0.0⁵,⁷]tetradec-8-ene-10,13-dione

C15H18O5 (278.1154)


   

6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(1s,2r,5s,9s,10s,11s)-2-hydroxy-2,11-dimethyl-6-methylidene-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-7-one

(1s,2r,5s,9s,10s,11s)-2-hydroxy-2,11-dimethyl-6-methylidene-8,12,13-trioxatetracyclo[9.2.2.0¹,¹⁰.0⁵,⁹]pentadec-14-en-7-one

C15H18O5 (278.1154)


   

3,7,11-trimethyldodeca-1,6,10-triene-3,9-diol

3,7,11-trimethyldodeca-1,6,10-triene-3,9-diol

C15H26O2 (238.1933)


   

6,9a-dihydroxy-6,9-dimethyl-3-methylidene-3ah,4h,5h,6ah,9bh-azuleno[4,5-b]furan-2,7-dione

6,9a-dihydroxy-6,9-dimethyl-3-methylidene-3ah,4h,5h,6ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O5 (278.1154)


   

(4s,5s)-5-[(3r)-3-methoxy-2-methyl-5-oxocyclopent-1-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

(4s,5s)-5-[(3r)-3-methoxy-2-methyl-5-oxocyclopent-1-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

C16H20O5 (292.1311)


   

(4s,5s)-5-[(1s,2s)-2-hydroxy-2-methyl-5-oxocyclopent-3-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

(4s,5s)-5-[(1s,2s)-2-hydroxy-2-methyl-5-oxocyclopent-3-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

C15H18O5 (278.1154)


   

7,9-dihydroxy-10-methyl-3,6-dimethylidene-3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

7,9-dihydroxy-10-methyl-3,6-dimethylidene-3ah,4h,5h,7h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H20O4 (264.1362)


   

6,6a,7,8,9-pentahydroxy-6,9-dimethyl-3-methylidene-hexahydro-3ah-azuleno[4,5-b]furan-2-one

6,6a,7,8,9-pentahydroxy-6,9-dimethyl-3-methylidene-hexahydro-3ah-azuleno[4,5-b]furan-2-one

C15H22O7 (314.1365)


   

(3as,9as,9bs)-6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3as,9as,9bs)-6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H16O3 (244.1099)


   

(3s,3as,5ar,6r,9as,9bs)-3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-6-yl acetate

(3s,3as,5ar,6r,9as,9bs)-3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-6-yl acetate

C17H24O4 (292.1675)


   

7-hydroxy-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-one

7-hydroxy-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-one

C10H14O2 (166.0994)


   

(3as,6as,9r,9as,9bs)-6a,9-dihydroxy-9-methyl-3,6-dimethylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2-one

(3as,6as,9r,9as,9bs)-6a,9-dihydroxy-9-methyl-3,6-dimethylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2-one

C15H18O4 (262.1205)


   

2-methyl-3-[4-methylidene-5-oxo-3-(3-oxobutyl)oxolan-2-yl]-4-oxocyclopent-2-en-1-yl acetate

2-methyl-3-[4-methylidene-5-oxo-3-(3-oxobutyl)oxolan-2-yl]-4-oxocyclopent-2-en-1-yl acetate

C17H20O6 (320.126)


   

(3as,9ar,9bs)-6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3as,9ar,9bs)-6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H16O3 (244.1099)


   

6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H16O3 (244.1099)


   

(3r,3as,9s,11as)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3r,3as,9s,11as)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

6a,9-dihydroxy-9-methyl-3,6-dimethylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2-one

6a,9-dihydroxy-9-methyl-3,6-dimethylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2-one

C15H18O4 (262.1205)


   

(3s,3as,5ar,6r,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

(3s,3as,5ar,6r,9bs)-6-hydroxy-3,5a,9-trimethyl-3h,3ah,4h,5h,6h,7h,8h,9bh-naphtho[1,2-b]furan-2-one

C15H22O3 (250.1569)


   

(1r,3s,5r,6r)-7,7-dimethyl-2-methylidenebicyclo[3.1.1]heptane-3,6-diol

(1r,3s,5r,6r)-7,7-dimethyl-2-methylidenebicyclo[3.1.1]heptane-3,6-diol

C10H16O2 (168.115)


   

(1r,5r,7r)-7-hydroxy-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-one

(1r,5r,7r)-7-hydroxy-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-one

C10H14O2 (166.0994)


   

(3as,6r,6ar,7s,8r,9r,9as,9br)-6,6a,7,8,9-pentahydroxy-6,9-dimethyl-3-methylidene-hexahydro-3ah-azuleno[4,5-b]furan-2-one

(3as,6r,6ar,7s,8r,9r,9as,9br)-6,6a,7,8,9-pentahydroxy-6,9-dimethyl-3-methylidene-hexahydro-3ah-azuleno[4,5-b]furan-2-one

C15H22O7 (314.1365)


   

(1r,5r)-5-hydroxy-2,2,4-trimethylcyclohex-3-ene-1-carbaldehyde

(1r,5r)-5-hydroxy-2,2,4-trimethylcyclohex-3-ene-1-carbaldehyde

C10H16O2 (168.115)


   

(4s,5s)-5-[(1s,2r)-2-hydroxy-2-methyl-5-oxocyclopent-3-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

(4s,5s)-5-[(1s,2r)-2-hydroxy-2-methyl-5-oxocyclopent-3-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

C15H18O5 (278.1154)


   

(3as,6r,6ar,7s,8r,9s,9as,9br)-6,6a,7,8,9-pentahydroxy-6,9-dimethyl-3-methylidene-hexahydro-3ah-azuleno[4,5-b]furan-2-one

(3as,6r,6ar,7s,8r,9s,9as,9br)-6,6a,7,8,9-pentahydroxy-6,9-dimethyl-3-methylidene-hexahydro-3ah-azuleno[4,5-b]furan-2-one

C15H22O7 (314.1365)


   

(3as,6r,6as,9r,9as,9bs)-6,6a,9-trihydroxy-6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2-one

(3as,6r,6as,9r,9as,9bs)-6,6a,9-trihydroxy-6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2-one

C15H20O5 (280.1311)


   

(3as,6r,6as,9as,9bs)-6,9a-dihydroxy-6,9-dimethyl-3-methylidene-3ah,4h,5h,6ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3as,6r,6as,9as,9bs)-6,9a-dihydroxy-6,9-dimethyl-3-methylidene-3ah,4h,5h,6ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O5 (278.1154)


   

(3r,3as,9r,11as)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3r,3as,9r,11as)-9-hydroxy-3,6,10-trimethyl-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H22O3 (250.1569)


   

methyl 2-[(1s,2r,4ar,5r,7s,8as)-1,5,7-trihydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]prop-2-enoate

methyl 2-[(1s,2r,4ar,5r,7s,8as)-1,5,7-trihydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]prop-2-enoate

C16H24O5 (296.1624)


   

(3as,9s,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

(3as,9s,11ar)-6,10-dimethyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-9-yl acetate

C17H22O4 (290.1518)


   

9-hydroxy-6,10-dimethyl-3-methylidene-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

9-hydroxy-6,10-dimethyl-3-methylidene-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H20O3 (248.1412)


   

3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O3 (246.1256)


   

4-hydroxy-4,9-dimethyl-14-methylidene-6,12-dioxatricyclo[9.3.0.0⁵,⁷]tetradec-8-ene-10,13-dione

4-hydroxy-4,9-dimethyl-14-methylidene-6,12-dioxatricyclo[9.3.0.0⁵,⁷]tetradec-8-ene-10,13-dione

C15H18O5 (278.1154)


   

6-hydroxy-5a,9-dimethyl-3-methylidene-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

6-hydroxy-5a,9-dimethyl-3-methylidene-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-2-one

C15H20O3 (248.1412)


   

(3r,6e,9r)-3,7,11-trimethyldodeca-1,6,10-triene-3,9-diol

(3r,6e,9r)-3,7,11-trimethyldodeca-1,6,10-triene-3,9-diol

C15H26O2 (238.1933)


   

6,6a,9-trihydroxy-6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2-one

6,6a,9-trihydroxy-6,9-dimethyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2-one

C15H20O5 (280.1311)


   

(3e)-1-[(2s,3s)-4-methylidene-5-oxo-3-(3-oxobutyl)oxolan-2-yl]hex-3-ene-2,5-dione

(3e)-1-[(2s,3s)-4-methylidene-5-oxo-3-(3-oxobutyl)oxolan-2-yl]hex-3-ene-2,5-dione

C15H18O5 (278.1154)


   

5,7-dihydroxy-2-(3-methoxy-3-oxoprop-1-en-2-yl)-4a-methyl-8-methylidene-octahydronaphthalen-1-yl 2-(hydroxymethyl)prop-2-enoate

5,7-dihydroxy-2-(3-methoxy-3-oxoprop-1-en-2-yl)-4a-methyl-8-methylidene-octahydronaphthalen-1-yl 2-(hydroxymethyl)prop-2-enoate

C20H28O7 (380.1835)


   

3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-6-yl acetate

3,5a,9-trimethyl-2-oxo-3h,3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-6-yl acetate

C17H24O4 (292.1675)


   

methyl 2-(1,5,7-trihydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl)prop-2-enoate

methyl 2-(1,5,7-trihydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl)prop-2-enoate

C16H24O5 (296.1624)


   

(3as,9r,11ar)-9-hydroxy-6,10-dimethyl-3-methylidene-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3as,9r,11ar)-9-hydroxy-6,10-dimethyl-3-methylidene-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C15H20O3 (248.1412)


   

1-[4-methylidene-5-oxo-3-(3-oxobutyl)oxolan-2-yl]hex-3-ene-2,5-dione

1-[4-methylidene-5-oxo-3-(3-oxobutyl)oxolan-2-yl]hex-3-ene-2,5-dione

C15H18O5 (278.1154)


   

(4s,5s)-5-[(3s)-3-methoxy-2-methyl-5-oxocyclopent-1-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

(4s,5s)-5-[(3s)-3-methoxy-2-methyl-5-oxocyclopent-1-en-1-yl]-3-methylidene-4-(3-oxobutyl)oxolan-2-one

C16H20O5 (292.1311)


   

5-(3-methoxy-2-methyl-5-oxocyclopent-1-en-1-yl)-3-methylidene-4-(3-oxobutyl)oxolan-2-one

5-(3-methoxy-2-methyl-5-oxocyclopent-1-en-1-yl)-3-methylidene-4-(3-oxobutyl)oxolan-2-one

C16H20O5 (292.1311)


   

(1s,2s,4ar,5r,7s,8as)-5,7-dihydroxy-2-(3-methoxy-3-oxoprop-1-en-2-yl)-4a-methyl-8-methylidene-octahydronaphthalen-1-yl 2-(hydroxymethyl)prop-2-enoate

(1s,2s,4ar,5r,7s,8as)-5,7-dihydroxy-2-(3-methoxy-3-oxoprop-1-en-2-yl)-4a-methyl-8-methylidene-octahydronaphthalen-1-yl 2-(hydroxymethyl)prop-2-enoate

C20H28O7 (380.1835)


   

7,7-dimethyl-2-methylidenebicyclo[3.1.1]heptane-3,6-diol

7,7-dimethyl-2-methylidenebicyclo[3.1.1]heptane-3,6-diol

C10H16O2 (168.115)


   

(1r)-2-methyl-3-[(2s,3s)-4-methylidene-5-oxo-3-(3-oxobutyl)oxolan-2-yl]-4-oxocyclopent-2-en-1-yl acetate

(1r)-2-methyl-3-[(2s,3s)-4-methylidene-5-oxo-3-(3-oxobutyl)oxolan-2-yl]-4-oxocyclopent-2-en-1-yl acetate

C17H20O6 (320.126)


   

5-hydroxy-2,2,4-trimethylcyclohex-3-ene-1-carbaldehyde

5-hydroxy-2,2,4-trimethylcyclohex-3-ene-1-carbaldehyde

C10H16O2 (168.115)


   

(3as,6as,9s,9as,9bs)-6a,9-dihydroxy-9-methyl-3,6-dimethylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2-one

(3as,6as,9s,9as,9bs)-6a,9-dihydroxy-9-methyl-3,6-dimethylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2-one

C15H18O4 (262.1205)


   

(1s,5s)-4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-ol

(1s,5s)-4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-ol

C10H16O (152.1201)


   

8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

C15H24 (204.1878)


   

(6e)-3,7,11-trimethyldodeca-1,6,10-triene-3,9-diol

(6e)-3,7,11-trimethyldodeca-1,6,10-triene-3,9-diol

C15H26O2 (238.1933)


   

(1s,5r,6r)-2,7,7-trimethylbicyclo[3.1.1]hept-2-en-6-ol

(1s,5r,6r)-2,7,7-trimethylbicyclo[3.1.1]hept-2-en-6-ol

C10H16O (152.1201)


   

(r)-cis-verbenol

(r)-cis-verbenol

C10H16O (152.1201)


   

(1s)-2-methyl-3-[(2s,3s)-4-methylidene-5-oxo-3-(3-oxobutyl)oxolan-2-yl]-4-oxocyclopent-2-en-1-yl acetate

(1s)-2-methyl-3-[(2s,3s)-4-methylidene-5-oxo-3-(3-oxobutyl)oxolan-2-yl]-4-oxocyclopent-2-en-1-yl acetate

C17H20O6 (320.126)