NCBI Taxonomy: 205369
Artemisia judaica (ncbi_taxid: 205369)
found 172 associated metabolites at species taxonomy rank level.
Ancestor: Artemisia
Child Taxonomies: none taxonomy data.
Cinnamic acid
Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID C016 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
Camphor
Camphor appears as a colorless or white colored crystalline powder with a strong mothball-like odor. About the same density as water. Emits flammable vapors above 150 °F. Used to make moth proofings, pharmaceuticals, and flavorings. Camphor is a cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. It has a role as a plant metabolite. It is a bornane monoterpenoid and a cyclic monoterpene ketone. Camphor is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. A cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.986 Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
Luteolin
Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].
Cosmosiin
Cosmosiin, also known as apigenin 7-O-glucoside or apigetrin, is a member of the class of compounds known as flavonoid-7-O-glycosides. Flavonoid-7-O-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Cosmosiin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cosmosiin can be found in a number of food items, such as common thyme, white lupine, common oregano, and orange mint. Cosmosiin can also be found in dandelion coffee and in Teucrium gnaphalodes (Wikipedia). Cosmosiin can also be found plants such as wild celery and anise. Cosmosiin has been shown to exhibit anti-platelet function (PMID: 21834233). Apigenin 7-O-beta-D-glucoside is a glycosyloxyflavone that is apigenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a non-steroidal anti-inflammatory drug, a metabolite and an antibacterial agent. It is a beta-D-glucoside, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an apigenin. It is a conjugate acid of an apigenin 7-O-beta-D-glucoside(1-). It is an enantiomer of an apigenin 7-O-beta-L-glucoside. Cosmosiin is a natural product found in Galeopsis tetrahit, Carex fraseriana, and other organisms with data available. See also: Chamomile (part of). Apiumetrin, also known as 7-O-beta-D-glucosyl-5,7,4-trihydroxyflavone or cosmosiin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apiumetrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Apiumetrin can be found in wild celery, which makes apiumetrin a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Annotation level-1 Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].
Apigenin
Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.
Acacetin
5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].
Pectolinarigenin
Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].
3,7-Dimethyl-1,6-octadien-3-ol
3,7-Dimethyl-1,6-octadien-3-ol, also known simply as linalool is a naturally occurring terpene alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Linalool has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. There are two stereoisomers of Linalool ‚Äö√Ñ√¨ (S)-linalool and (R)-linalool. Linalool is used as a scent in 60\\\\\% to 80\\\\\% of perfumed hygiene products and cleaning agents including soaps, detergents, shampoos, and lotions. Linalool is also used by pest professionals as a flea, fruit fly, and cockroach insecticide. Linalool is found in more than 200 different species of plants, including many flowers and spice plants. (S)-linalool is found, for example, as a major constituent of the essential oils of coriander (Coriandrum sativum L.), cymbopogon (Cymbopogon martini var. martinii), and sweet orange (Citrus sinensis) flowers. (R)-linalool is present in lavender (Lavandula officinalis), bay laurel (Laurus nobilis), and sweet basil (Ocimum basilicum), among others. Linalool is also found in plants from the Lamiaceae family (mint and other herbs), Lauraceae (laurels, cinnamon, rosewood), Cinnamomum tamala, Solidago Meyen, Artemisia vulgaris (mugwort), Humulus lupulus. Linalool is also one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Like the majority of monoterpenes, linalool starts with the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl pyrophosphate (GPP) (PMID:7640522 ). Linalool is then synthesized with the aid of linalool synthase (LIS) (PMID:12572612 ). Linalool has a citrus, floral, rose, woody aroma and a citrus, orange, waxy taste. Linalool is found in a few different foods and spices, such as spearmints, corianders, common thymes, limes, grapes, lemons, grapefruit, oranges, pineapples, blackcurrants, basil, and common oregano. This could make, Linalool a potential biomarker for the consumption of these foods. Linalool is also synthesized, de novo, by yeast (C. cerevisiae) and may contribute to the floral tones found in some wines (PMID:15668008 ). Linalool is a monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. It has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. It is a tertiary alcohol and a monoterpenoid. Linalool is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. 3,7-Dimethyl-1,6-octadien-3-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon Leaf Oil (part of); Clary Sage Oil (part of); Cannabis sativa subsp. indica top (part of) ... View More ... A monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. Flavouring agent. Widespread natural occurrence as the optically active and racemic forms in over 200 essential oilsand is) also present in numerous fruits. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2]. Linalool is a natural monoterpene which is a competitive NMDA receptor antagonist. Linalool is orally active and crosses the blood-brain barrier. Linalool has anticancer, antibacterial, anti-inflammatory, neuroprotective, anxiolytic, antidepressant, anti-stress, cardioprotective, hepatoprotective, nephroprotective and pulmonary protective activities[1][2][3][4][5]. Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2].
Cirsilineol
Cirsilineol, also known as 4,5-dihydroxy-3,6,7-trimethoxy-flavone or anisomelin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsilineol is considered to be a flavonoid lipid molecule. Cirsilineol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsilineol can be found in a number of food items such as common thyme, tarragon, common sage, and hyssop, which makes cirsilineol a potential biomarker for the consumption of these food products. Cirsilineol is a bioactive flavone isolated from Artemisia and from Teucrium gnaphalodes . Cirsilineol is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsilineol is a natural product found in Thymus herba-barona, Salvia tomentosa, and other organisms with data available. See also: Tangerine peel (part of).
Chrysoeriol
Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].
D-Citronellol
Citronellol is formally classified as alkylalcohol although it is biochemically a monoterpenoid as it is synthesized from isoprene units. Citronellol is a neutral compound. It is a naturally occurring organic compound found in cannabis plants (PMID:6991645 ). Citronellol occurs in many essential oils as either ‚Äì or + enantiomers. -Citronellol is found in the oils of rose (18-55\\\\\\%) and Pelargonium geraniums while + citronellol is found in citronella oils extracted from the leaves and stems of Cymbopogon nardus or citronella grass. Citronellol has a citrus, floral, and geranium taste with a floral¬†leathery¬†waxy¬†rose¬†citrus odor ( Ref:DOI ). It is used in perfumery to add scents to soaps and incense. It is an insect repellent that repels mosquitos at short distances (PMID:2862274 ). Citronellol is found in highest concentrations in gingers, sweet basils, and winter savories and in lower concentrations in highbush blueberries, bilberries, and cardamoms. Citronellol has also been detected in blackcurrants, fennels, evergreen blackberries, herbs and spices, and nutmegs making citronellol a potential biomarker for the consumption of these foods. Citronellol has promising pharmacological activities (PMID:30453001 ) against human lung cancer (PMID:31280209 ), against induced rat breast cancer (PMID:31313341 ), has antifungal activity against Candida species (PMID:32150884 ) and has anti-hypertensive properties (PMID:26872991 ). (R)-(+)-citronellol is a citronellol that is oct-6-ene substituted by a hydroxy group at position 1 and methyl groups at positions 3 and 7 (the 3R-enantiomer). It is an enantiomer of a (S)-(-)-citronellol. D-Citronellol is a natural product found in Azadirachta indica, Saxifraga stolonifera, and other organisms with data available. See also: beta-CITRONELLOL, (R)-; GERANIOL (component of); beta-CITRONELLOL, (R)-; GERANIOL; LINALOOL, (+/-)- (component of) ... View More ... Constituent of black cumin (Nigella sativa) seeds. A common constituent of plant oils, especies in the Rutaceae. D-Citronellol is found in herbs and spices. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1].
Polylimonene
Dipentene appears as a colorless liquid with an odor of lemon. Flash point 113 °F. Density about 7.2 lb /gal and insoluble in water. Hence floats on water. Vapors heavier than air. Used as a solvent for rosin, waxes, rubber; as a dispersing agent for oils, resins, paints, lacquers, varnishes, and in floor waxes and furniture polishes. Limonene is a monoterpene that is cyclohex-1-ene substituted by a methyl group at position 1 and a prop-1-en-2-yl group at position 4 respectively. It has a role as a human metabolite. It is a cycloalkene and a p-menthadiene. Limonene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Limonene, (+/-)- is a racemic mixture of limonene, a natural cyclic monoterpene and major component of the oil extracted from citrus rind with chemo-preventive and antitumor activities. The metabolites of DL-limonene, perillic acid, dihydroperillic acid, uroterpenol and limonene 1,2-diol are suggested to inhibit tumor growth through inhibition of p21-dependent signaling, induce apoptosis via the induction of the transforming growth factor beta-signaling pathway, inhibit post-translational modification of signal transduction proteins, result in G1 cell cycle arrest as well as cause differential expression of cell cycle- and apoptosis-related genes. Limonene is a metabolite found in or produced by Saccharomyces cerevisiae. A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). See also: Cannabis sativa subsp. indica top (part of); Larrea tridentata whole (part of). Constituent of many essential oils. (±)-Limonene is found in many foods, some of which are common oregano, nutmeg, herbs and spices, and summer savory. Dipentene is found in carrot. Dipentene is a constituent of many essential oils
5-Isopropyl-2-methylphenol
5-Isopropyl-2-methylphenol, also known as 2-hydroxy-p-cymene or 2-p-cymenol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. 5-Isopropyl-2-methylphenol is a very hydrophobic molecule, practically insoluble in water, but fairly soluble in organic solvents. Thus, 5-Isopropyl-2-methylphenol is considered to be an isoprenoid lipid molecule. Thymol is found in the essential oil of thyme and in the essential oils of several different plants. It can be extracted from Thymus vulgaris (common thyme), Ajwain and various other kinds of plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol has also been identified as a volatile compound found in cannabis samples obtained from police seizures (PMID:26657499 ). Carvacrol is a phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). It has a role as a volatile oil component, a flavouring agent, an antimicrobial agent, an agrochemical and a TRPA1 channel agonist. It is a member of phenols, a p-menthane monoterpenoid and a botanical anti-fungal agent. It derives from a hydride of a p-cymene. Carvacrol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. Carvacrol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Oregano Leaf Oil (part of). A phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). Constituent of many essential oils. Especies found in the Labiatae. Thyme oil (=70\\\\%) and Origanum oil (=80\\\\%) are rich sources. Flavouring ingredient COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].
6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin
5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]-8-(3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-4H-chromen-4-one is a member of flavonoids and a C-glycosyl compound. 5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one is a natural product found in Cymbidium kanran, Acanthus, and other organisms with data available. 6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin is found in herbs and spices. 6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin is a constituent of Passiflora incarnata (maypops). Constituent of Passiflora incarnata (maypops). Apigenin 6-C-glucoside 8-C-riboside is found in herbs and spices. Neoschaftoside is a flavone C-glycoside that is apigenin attached to a beta-D-glucopyranosyl and a beta-L-arabinopyranosyl residues at positions 6 and 8 respectively via C-glycosidic linkage. It has a role as a plant metabolite. It is a flavone C-glycoside and a dihydroxyflavone. It is functionally related to an apigenin. Neoschaftoside is a natural product found in Radula complanata, Artemisia judaica, and other organisms with data available. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1].
(2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol
Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents. 2-Bornanol is found in turmeric. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].
Pulegone
A p-menthane monoterpenoid that is cyclohexan-1-one substituted by a methyl group at position 5 and a propan-2-ylidene group at position 2. Occurs in oils of Mentha subspecies, Hedeoma pulegioides and many other essential oils. Fragrance and flavour ingredient. (R)-p-Menth-4(8)-en-3-one is found in many foods, some of which are blackcurrant, pepper (c. frutescens), spearmint, and red bell pepper. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].
Cirsimaritin
Cirsimaritin, also known as 4,5-dihydroxy-6,7-dimethoxyflavone or scrophulein, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsimaritin is considered to be a flavonoid lipid molecule. Cirsimaritin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsimaritin can be found in a number of food items such as italian oregano, lemon verbena, winter savory, and rosemary, which makes cirsimaritin a potential biomarker for the consumption of these food products.
Thymol
Thymol is a phenol that is a natural monoterpene derivative of cymene. It has a role as a volatile oil component. It is a member of phenols and a monoterpenoid. It derives from a hydride of a p-cymene. A phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. (Dorland, 28th ed) Thymol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A phenol obtained from thyme oil or other volatile oils used as a stabilizer in pharmaceutical preparations, and as an antiseptic (antibacterial or antifungal) agent. See also: Paeonia lactiflora root (part of); Elymus repens root (part of); Eucalyptol; thymol (component of) ... View More ... Thymol is a phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. Thymol is a monoterpene phenol derivative of cymene, C10H13OH, isomeric with carvacrol, found in oil of thyme, and extracted as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. It is also called "hydroxy cymene". In a 1994 report released by five top cigarette companies, thymol is one of the 599 additives to cigarettes. Its use or purpose, however, is unknown, like most cigarette additives. Found in many essential oils. Especies found in the Labiatae. Rich sources are thyme oil, seed oil of Ptychotis ajowan and oils of horsemint (Monarda punctata) and Ocimum subspecies Flavouring ingredient C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A phenol that is a natural monoterpene derivative of cymene. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].
(Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one
(Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one is found in citrus. (Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one occurs in peppermint oil, green tea and bergamot oranges (Citrus bergamia).Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. (Wikipedia Jasmone is a cyclic ketone. Jasmone is a natural product found in Lonicera japonica, Pulicaria arabica, and other organisms with data available. Occurs in peppermint oil, green tea and bergamot oranges (Citrus bergamia) Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].
Cuminyl alcohol
Cuminol or Cuminyl alcohol, also known as p-cumin-7-ol or 4-Isopropylbenzyl alcohol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Cuminol is an extremely weak basic (essentially neutral) compound (based on its pKa). Cuminol is an alcohol derivative of p-Cymene. It exists as a clear, colorless liquid that is poorly soluble in water. Cuminol can be used as a food additive or as a cosmetic fragrance. It has a cumin, caraway or spicy, herbal aroma and a similar spicy, herbal or peppery taste. Cuminol is found naturally in a number of plants, spices and foods including cumin seed and cumin oils, caraway eucalyptus oils, thyme, sunflowers, tuermeric, guava fruit and other spices and essential oils. Cumin, a widely used spice, is known to have anti-diabetic properties and two of its phytochemicals: cuminol and cuminaldehyde appear to be among the most active components. Cuminol is a potent insulinotrophic molecule that can enhance insulin secretion by up to 4-fold (in rat islet cells) (PMID:23507295 ). It also exhibits strong beta-cell protective action (PMID:23507295 ). 4-isopropylbenzyl alcohol is a member of the class of benzyl alcohols in which the hydrogen at position 4 on the phenyl ring of benzyl alcohol has been replaced by an isopropyl group. It has a role as a fragrance, an insect repellent, a volatile oil component, a plant metabolite and a xenobiotic metabolite. It is a p-menthane monoterpenoid and a member of benzyl alcohols. It is functionally related to a p-cymene. 4-Isopropylbenzyl alcohol is a natural product found in Xylopia aromatica, Curcuma amada, and other organisms with data available. Flavouring ingredient. Isolated from oils of Cuminum cyminum (cumin). Cuminyl alcohol is found in many foods, some of which are sweet bay, sunflower, cumin, and herbs and spices. A member of the class of benzyl alcohols in which the hydrogen at position 4 on the phenyl ring of benzyl alcohol has been replaced by an isopropyl group. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].
Geranyl acetate
Geranyl acetate is a clear colorless liquid with an odor of lavender. (NTP, 1992) Geranyl acetate is a monoterpenoid that is the acetate ester derivative of geraniol. It has a role as a plant metabolite. It is an acetate ester and a monoterpenoid. It is functionally related to a geraniol. Geranyl acetate is a natural product found in Nepeta nepetella, Xylopia sericea, and other organisms with data available. See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Java citronella oil (part of). Neryl acetate is found in cardamom. Neryl acetate is found in citrus, kumquat and pummelo peel oils, ginger, cardamon, clary sage, myrtle leaf and myrtle berries. Neryl acetate is a flavouring agent A monoterpenoid that is the acetate ester derivative of geraniol. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2].
(E)-methyl ester 3-phenyl-2-propenoic acid
Flavouring compound [Flavornet] Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Ethyl cinnamate
Occurs in storaxand is also present in many fruits, e.g. cherry, American cranberry, pineapple, blackberry and passion fruit. Ethyl cinnamate is found in many foods, some of which are corn, tarragon, tamarind, and ceylon cinnamon. Ethyl cinnamate is an alkyl cinnamate and an ethyl ester. Ethyl cinnamate is a natural product found in Hedychium spicatum, Cinnamomum verum, and other organisms with data available. Ethyl cinnamate is found in ceylan cinnamon. Ethyl cinnamate occurs in storax. Also present in many fruits, e.g. cherry, American cranberry, pineapple, blackberry and passion fruit. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2]. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2].
(+)-alpha-Pinene
alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].
Hydrocinnamic acid
Hydrocinnamic acid, also known as 3-phenylpropanoic acid or dihydrocinnamic acid, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid (C6-C3). Phenylpropanoic acid can be prepared from cinnamic acid by hydrogenation. Hydrocinnamic acid is a sweet, balsamic, and cinnamon tasting compound. This compound is used frequently in cosmetic products such as perfumes, bath gels, detergent powders, liquid detergents, fabric softeners, and soaps as it gives off a floral scent. A characteristic reaction of phenylpropanoic acid is its cyclization to indanones. Phenylpropanoic acid is used in the food industry to preserve and maintain the original aroma quality of frozen foods. Phenylpropanoic acid is also added to food for technological purposes in a wide variety including manufacturing, processing, preparation, treatment, packaging, transportation or storage, and food additives. This compound is used as a sweetener as well to sweeten food and can be found in tabletop sweeteners. Hydrocinnamic acid is an analogue of phenylalanine. It is a substrate of the enzyme oxidoreductases [EC 1.14.12.-] in the pathway phenylalanine metabolism (KEGG). 3-Phenylpropanoic acid is found in many foods, some of which are purple laver, quinoa, custard apple, and conch. KEIO_ID P109 Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
(+)-Camphor
Camphor, also known as (+)-camphor or (+)-bornan-2-one, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, camphor is primarily located in the membrane (predicted from logP). Camphor is a waxy, flammable, white or transparent solid with a strong aroma. It is a terpenoid with the chemical formula C10H16O. It is found in many plants, such as in the wood of the camphor laurel (Cinnamomum camphora), a large evergreen tree found in Asia (particularly in Sumatra and Borneo islands, Indonesia) and also of the unrelated Kapur tree, a tall timber tree from the same region. It also occurs in some other related trees in the laurel family, notably Ocotea usambarensis and in the oil in rosemary leaves (Rosmarinus officinalis). The mint family contains 10 to 20\\\\\\\\% camphor, while camphorweed (Heterotheca) only contains some 5\\\\\\\\%. Camphor can also be synthetically produced from oil of turpentine. It is used for its scent, as an ingredient in cooking (mainly in India), as an embalming fluid, for medicinal purposes, and in religious ceremonies. A major source of camphor in Asia is camphor basil (the parent of African blue basil) (Wikipedia). (R)-camphor is the (R)- enantiomer of camphor. It is an enantiomer of a (S)-camphor. Camphor is a bicyclic monoterpene ketone found widely in plants, especially Cinnamomum camphora. It is used topically as a skin antipruritic and as an anti-infective agent. When ingested, camphor has a rapid onset of toxic effects, and camphorated oil is the product most often responsible for its toxicity. The FDA ruled that camphorated oil could not be marketed in the United States and that no product could contain a concentration higher than 11\\\\\\\\%. It appears in the list of drug products withdrawn or removed from the market for safety or effectiveness. However, camphor can be found in several nonprescription medications at lower concentrations. D-Camphor is a natural product found in Chromolaena odorata, Curcuma amada, and other organisms with data available. See also: Coriander Oil (part of). C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C - Cardiovascular system > C01 - Cardiac therapy The (R)- enantiomer of camphor. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
3,5,5-Trimethyl-2-cyclohexen-1-one
3,5,5-Trimethyl-2-cyclohexen-1-one is found in fruits. 3,5,5-Trimethyl-2-cyclohexen-1-one is a flavouring ingredient. 3,5,5-Trimethyl-2-cyclohexen-1-one is present in cranberries (Vaccinium microcarpa) and saffron (Crocus sativus 3,5,5-Trimethyl-2-cyclohexen-1-one is a flavouring ingredient. It is present in cranberries (Vaccinium microcarpa) and saffron (Crocus sativus), as well as in other herbs and spices. CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2336 CONFIDENCE standard compound; INTERNAL_ID 2507
Phenylacetic acid
Phenylacetic acid, also known as phenylacetate or alpha-toluic acid, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Phenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Phenylacetic acid can be synthesized from acetic acid. Phenylacetic acid is also a parent compound for other transformation products, including but not limited to, hydratropic acid, 2,4,5-trihydroxyphenylacetic acid, and mandelamide. Phenylacetic acid is a sweet, civet, and floral tasting compound and can be found in a number of food items such as hyssop, cowpea, endive, and shea tree, which makes phenylacetic acid a potential biomarker for the consumption of these food products. Phenylacetic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), saliva, feces, and blood. Phenylacetic acid exists in all living species, ranging from bacteria to humans. In humans, phenylacetic acid is involved in the phenylacetate metabolism. Moreover, phenylacetic acid is found to be associated with kidney disease and phenylketonuria. Phenylacetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylacetic acid is a drug which is used for use as adjunctive therapy for the treatment of acute hyperammonemia and associated encephalopathy in patients with deficiencies in enzymes of the urea cycle. Phenyl acetate (or phenylacetate) is a carboxylic acid ester that has been found in the biofluids of patients with nephritis and/or hepatitis as well as patients with phenylketonuria (PKU), an inborn error of metabolism. Phenyl acetate has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Excess phenylalanine in the body can be disposed of through a transamination process leading to the production of phenylpyruvate. The phenylpyruvate can be further metabolized into a number of products. Decarboxylation of phenylpyruvate gives phenylacetate, while a reduction reaction gives phenyllactate. The phenylacetate can be further conjugated with glutamine to give phenylacetyl glutamine. All of these metabolites can be detected in serum and urine of PKU patients. Phenyl acetate is also produced endogenously as the metabolite of 2-Phenylethylamine, which is mainly metabolized by monoamine oxidase to form phenyl acetate. 2-phenylethylamine is an "endogenous amphetamine" which may modulate central adrenergic functions, and the urinary phenyl acetate levels have been postulated as a marker for depression. (PMID: 17978765 , 476920 , 6857245). Phenylacetate is also found in essential oils, e.g. neroli, rose oil, free and as esters and in many fruits. As a result it is used as a perfumery and flavoring ingredient. Phenyl acetate is a microbial metabolite. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents
dinatin
Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.
Isovaleric acid
Isovaleric acid, is a natural fatty acid found in a wide variety of plants and essential oils. Isovaleric acid is clear colorless liquid that is sparingly soluble in water, but well soluble in most common organic solvents. It has been suggested that isovaleric acid from pilot whales, a species frequently consumed in the Faroe Islands, may be the unusual dietary factor in prolonged gestation in the population of the Faroe Islands. Previous studies suggested that was due to the high intake of n-3 polyunsaturated fatty acids has been, but fatty acid data for eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA) in blood lipids of Faroese and Norwegians was reviewed in terms of the type of fish eaten (mostly lean white fish with DHA much greater than EPA); the popular lean fish, thus, probably provides too little EPA to produce a marked effect on human biochemistry (PMID 2646392). Isovaleric acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Flavouring agent. Simple esters are used in flavourings. Constituent of hops, cheese etc.; an important component of cheese aroma and flavour CONFIDENCE standard compound; INTERNAL_ID 152 KEIO_ID I018 Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human.
Eupatilin
Eupatilin is a trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. It has a role as an anti-ulcer drug, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antineoplastic agent, an anti-inflammatory agent and a metabolite. It is a trimethoxyflavone and a dihydroxyflavone. Eupatilin is a natural product found in Eupatorium capillifolium, Chromolaena odorata, and other organisms with data available. A trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. Eupatilin is found in herbs and spices. Eupatilin is isolated from Tanacetum vulgare (tansy Isolated from Tanacetum vulgare (tansy). Eupatilin is found in herbs and spices. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.
Vicenin 2
Constituent of lemons (Citrus limon). Vicenin 2 is found in many foods, some of which are common salsify, fenugreek, sweet orange, and cucumber. Vicenin 2 is found in citrus. Vicenin 2 is a constituent of lemons (Citrus limon) Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1]. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1].
1-Methoxy-4-(2-propenyl)benzene
1-Methoxy-4-(2-propenyl)benzene, also known as methylchavicol or estragol, belongs to the class of organic compounds known as anisoles. These are organic compounds containing a methoxybenzene or a derivative thereof. 1-Methoxy-4-(2-propenyl)benzene is a sweet, alcohol, and anise tasting compound. 1-Methoxy-4-(2-propenyl)benzene is found, on average, in the highest concentration within a few different foods, such as anises, fennels, and sweet basils and in a lower concentration in cumins, tarragons, and parsley. 1-Methoxy-4-(2-propenyl)benzene has also been detected, but not quantified, in several different foods, such as citrus, chinese cinnamons, caraway, fats and oils, and cloves. This could make 1-methoxy-4-(2-propenyl)benzene a potential biomarker for the consumption of these foods. 1-Methoxy-4-(2-propenyl)benzene, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Constituent of many essential oils. Found in apple, bilberry and orange fruits and juices. Flavouring agent. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].
Camphene
Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .
2-Butenal
(e)-2-butenal, also known as (cis)-crotonaldehyde or (E)-crotonaldehyde (iupac), is a member of the class of compounds known as enals. Enals are an alpha,beta-unsaturated aldehyde of general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position (e)-2-butenal is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (e)-2-butenal is a flower tasting compound found in fruits, garden tomato, and potato, which makes (e)-2-butenal a potential biomarker for the consumption of these food products (e)-2-butenal can be found primarily in feces and saliva. 2-Butenal (CAS: 4170-30-3), also known as crotonaldehyde, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. The (E)-form of 2-butenal predominates (>95\\%). 2-Butenal can undergo polycondensation with phenols to synthesize phenolic resins. It is an eye, skin, and mucous membrane irritant. (E)-2-Butenal is found in fruits and vegetables (e.g. tomato juice, strawberry aroma).
p-Cymene
Cymene, or p-cymene also known as p-cymol or isopropyltoluene, is a naturally occurring aromatic organic compound. It is classified as a hydrocarbon related to a monoterpene. Its structure consists of a benzene ring para-substituted with a methyl group and an isopropyl group. It is insoluble in water, but miscible with ethanol and ether. Cymene is a constituent of a number of essential oils, most commonly the oil of cumin and thyme. There are two less common geometric isomers. o-Cymene, in which the alkyl groups are ortho-substituted, and m-cymene, in which they are meta-substituted. p-Cymene is the only natural isomer. Cymene is a common ligand for ruthenium. V. widely distributed in plant oils e.g. terpentine and citrus oils and many others. It is used in flavour industries. 1-Isopropyl-4-methylbenzene is found in many foods, some of which are green bell pepper, lemon balm, saffron, and sweet basil.
Acetone
Acetone, or propanone, is an organic compound with the formula (CH3)2CO. It is the simplest and smallest ketone. It is a colourless, highly volatile and flammable liquid with a characteristic pungent odour. Acetone is miscible with water and serves as an important organic solvent in its own right, in industry, home, and laboratory. Acetone is produced and disposed of in the human body through normal metabolic processes. It is normally present in blood and urine. People with diabetic ketoacidosis produce it in larger amounts. Acetone is not regarded as a waste product of metabolism. However, its physiological role in biochemical machinery is not clear. A model for the role of acetone metabolism is presented that orders the events occurring in acetonemia in sequence: in diabetic ketosis or starvation, ketone body production (b-hydroxy-butyrate, acetoacetate) provides fuel for vital organs (heart, brain, among others) raising the chance of survival of the metabolic catastrophe. However, when ketone body production exceeds the degrading capacity, the accumulating acetoacetic acid presents a new challenge to the pH regulatory system. Acetone production and its further degradation to C3 fragments fulfill two purposes: the maintenance of pH buffering capacity and provision of fuel for peripheral tissues. Since ketosis develops under serious metabolic circumstances, all the mechanisms that balance or moderate the effects of ketosis enhance the chance for survival. From this point of view, the theory that transportable C3 fragments can serve as additional nutrients is a novel view of acetone metabolism which introduces a new approach to the study of acetone degradation, especially in understanding its physiological function and the interrelationship between liver and peripheral tissues. (PMID 10580530). Acetone is typically derived from acetoacetate through the action of microbial acetoacetate decarboxylases found in gut microflora. In chemistry, acetone is the simplest representative of the ketones. Acetone is a colorless, mobile, flammable liquid readily soluble in water, ethanol, ether, etc., and itself serves as an important solvent. It is an irritant and inhalation may lead to hepatotoxic effects (causing liver damage). Acetone can be found in Clostridium (PMID:685531). Solvent used in food processing as a colour diluent, flavour ingredient, etc. D012997 - Solvents
beta-Cadinene
beta-Cadinene is found in common oregano. beta-Cadinene is a constituent of Pinus caribaea. Mixed cadinene isomers, with b-cadinene usually predominating, occur in several essential oils, especially ylang-ylang, citronella and cade oil from Juniper species Cadinene isomers are used as a flavouring agent and/or flavour modifier.
Piperitenone
Piperitenone is a flavouring agent. It is found in grapefruit juice lemon juice, orange juice, spearmint oil and peppermint oil. It is also found in rosemary, mentha (mint), cornmint, and other herbs and spices. Piperitenone is found in citrus. Piperitenone is a flavouring agent. Piperitenone is present in grapefruit juice lemon juice, orange juice, spearmint oil and peppermint oi
(-)-Bornyl acetate
(-)-Bornyl acetate is isolated from Blumea balsamifera, Jasonia sp., Salvia fruticosa, carrot, rosemary, sage and lavender oil. (-)-Bornyl acetate is a flavouring agent [CCD]. Isolated from Blumea balsamifera, Jasonia species, Salvia fruticosa, carrot, rosemary, sage and lavender oil. Flavouring agent [CCD] (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1].
(+/-)-2-Hydroxypiperitone
(+/-)-2-hydroxypiperitone, also known as 2-hydroxy-6-isopropyl-3-methyl-2-cyclohexen-1-one or barosma camphor, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (+/-)-2-hydroxypiperitone is considered to be an isoprenoid lipid molecule (+/-)-2-hydroxypiperitone is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (+/-)-2-hydroxypiperitone is a blackcurrant, buchu, and leaves tasting compound found in blackcurrant, peppermint, and spearmint, which makes (+/-)-2-hydroxypiperitone a potential biomarker for the consumption of these food products.
(R)-Piperitone
(R)-Piperitone is found in cornmint. (R)-Piperitone is a constituent of Mentha species and Zanthoxylum piperitum (Japanese pepper tree) oil.Piperitone is a natural monoterpene ketone which is a component of some essential oils. Both stereoisomers, the D-form and the L-form, are known. The D-form has a peppermint-like aroma and has been isolated from the oils of plants from the genera Cymbopogon, Andropogon, and Mentha. The L-form has been isolated from Sitka spruce. (Wikipedia) Common constituent of Mentha subspecies oils
beta-Ionone
Beta-ionone is a colorless to light yellow liquid with an odor of cedar wood. In very dilute alcoholic solution the odor resembles odor of violets. Used in perfumery. Beta-ionone is an ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. It has a role as an antioxidant and a fragrance. beta-Ionone is a natural product found in Nepeta nepetella, Vitis rotundifolia, and other organisms with data available. beta-Ionone is a metabolite found in or produced by Saccharomyces cerevisiae. beta-Ionone, also known as (e)-b-ionone or trans-beta-ionone, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Found in many essential oils including oil of Boronia megastigma (brown boronia) and coml. ionone. Flavouring agent An ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=79-77-6 (retrieved 2024-11-06) (CAS RN: 79-77-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Germacrene D
Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.
Eucarvone
Eucarvone is a member of the class of compounds known as monocyclic monoterpenoids. Monocyclic monoterpenoids are monoterpenoids containing 1 ring in the isoprene chain. Eucarvone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Eucarvone can be found in blackcurrant, which makes eucarvone a potential biomarker for the consumption of this food product.
(+)-Ledene
(+)-Ledene belongs to the class of organic compounds known as 5,10-cycloaromadendrane sesquiterpenoids. These are aromadendrane sesquiterpenoids that arise from the C5-C10 cyclization of the aromadendrane skeleton.
Bicyclogermacrene
Constituent of the peel oil of Citrus junos (yuzu). Bicyclogermacrene is found in many foods, some of which are common oregano, lemon balm, hyssop, and orange mint. Bicyclogermacrene is found in citrus. Bicyclogermacrene is a constituent of the peel oil of Citrus junos (yuzu).
1,7,7-Trimethyltricyclo[2.2.1.02,6]heptane
1,7,7-Trimethyltricyclo[2.2.1.02,6]heptane is found in caraway. 1,7,7-Trimethyltricyclo[2.2.1.02,6]heptane is found in essential oils, e.g. Juniperus communis (Juniper), Ferula galbaniflua (galbanum) and Picea species. Found in essential oils, e.g. Juniperus communis (Juniper), Ferula galbaniflua (galbanum) and Picea subspecies
Cinnamic acid
Cinnamic acid, also known as (Z)-cinnamate or 3-phenyl-acrylate, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Cinnamic acid can be obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is a weakly acidic compound (based on its pKa). It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Cinnamic acid exists in all living organisms, ranging from bacteria to plants to humans. Outside of the human body, cinnamic acid has been detected, but not quantified in, chinese cinnamons. In plants, cinnamic acid is a central intermediate in the biosynthesis of myriad natural products include lignols (precursors to lignin and lignocellulose), flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3778; ORIGINAL_PRECURSOR_SCAN_NO 3776 CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3783; ORIGINAL_PRECURSOR_SCAN_NO 3781 Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. cis-Cinnamic acid is found in chinese cinnamon. CONFIDENCE standard compound; INTERNAL_ID 183 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
(-)-cis-Carveol
(-)-cis-Carveol is found in citrus. (-)-cis-Carveol is a constituent of Valencia orange oil (Citrus sinensis). (-)-cis-Carveol is a flavouring agent Constituent of Valencia orange oil (Citrus sinensis). Flavouring agent. (-)-cis-Carveol is found in citrus.
Pinene
Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.
(3R,6E)-nerolidol
A (6E)-nerolidol in which the hydroxy group at positon 3 adopts an R-configuration. It is a fertility-related volatile compound secreted by the queens of higher termites from the subfamily Syntermitinae. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].
Schaftoside
Apigenin 6-c-glucoside 8-c-riboside is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Apigenin 6-c-glucoside 8-c-riboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 6-c-glucoside 8-c-riboside can be found in herbs and spices, which makes apigenin 6-c-glucoside 8-c-riboside a potential biomarker for the consumption of this food product. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1].
Casticin
Casticin is a tetramethoxyflavone that consists of quercetagetin in which the hydroxy groups at positions 3, 6, 7 and 4 have been replaced by methoxy groups. It has been isolated from Eremophila mitchellii. It has a role as an apoptosis inducer and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Casticin is a natural product found in Psiadia viscosa, Psiadia dentata, and other organisms with data available. See also: Chaste tree fruit (part of). A tetramethoxyflavone that consists of quercetagetin in which the hydroxy groups at positions 3, 6, 7 and 4 have been replaced by methoxy groups. It has been isolated from Eremophila mitchellii. Casticin is found in fruits. Casticin is a constituent of Vitex agnus-castus (agnus castus) seeds Casticin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=479-91-4 (retrieved 2024-07-01) (CAS RN: 479-91-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3. Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3.
2,6,6-Trimethyl-2-cyclohexene-1,4-dione
2,6,6-trimethyl-2-cyclohexene-1,4-dione, also known as ketoisophorone, is a member of the class of compounds known as cyclohexenones. Cyclohexenones are compounds containing a cylohexenone moiety, which is a six-membered aliphatic ring that carries a ketone and has one endocyclic double bond. 2,6,6-trimethyl-2-cyclohexene-1,4-dione is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). 2,6,6-trimethyl-2-cyclohexene-1,4-dione is a sweet, leaf, and musty tasting compound found in herbs and spices and tea, which makes 2,6,6-trimethyl-2-cyclohexene-1,4-dione a potential biomarker for the consumption of these food products. 2,6,6-trimethyl-2-cyclohexene-1,4-dione exists in all eukaryotes, ranging from yeast to humans. 2,6,6-Trimethyl-2-cyclohexene-1,4-dione is a member of cyclohexenones. 2,6,6-Trimethyl-2-cyclohexene-1,4-dione is a natural product found in Nicotiana bonariensis, Amauris echeria, and other organisms with data available. 2,6,6-Trimethyl-2-cyclohexene-1,4-dione is found in herbs and spices. 2,6,6-Trimethyl-2-cyclohexene-1,4-dione is present in saffron (Crocus sativus) and tea; flavouring ingredient.
Apigenin 4'-O-glucoside
Apigenin 4-O-glucoside is also known as apigenin 4-O-beta-D-glucopyranoside. Apigenin 4-O-glucoside is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 4-O-glucoside is a constituent of many plant species [CCD]. Apigenin 4-O-glucoside is a glycoside and a member of flavonoids. Apigenin-4-glucoside is a natural product found in Chaerophyllum aureum, Gerbera jamesonii, and other organisms with data available.
Pulegone
Pulegone belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. It is formally classified as a cyclic ketone although it is biochemically a monoterpenoid as it is synthesized via isoprene units. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plant cell plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Pulegone is a hydrophobic, neutral compound that is insoluble in water. It exists as a clear, colorless oil. There are two isomers of Pulegone (the R and the S isomer), with the R isomer being more common. It is used industrially as a food additive and a perfuming agent. Pulegone has a fresh, minty or peppermint odor and a minty, fruity or green taste. It is found naturally in the essential oils of a variety of plants such as Nepeta cataria (catnip), Hedeoma pulegioides (pennyroyal), and Mentha species. It is also found in a number of plant foods and spices such as blackberryies, black currants, bell peppers, cornmint, rosemary, black tea, thyme, orange mint, peppermint, and spearmint, which makes it a potential biomarker for the consumption of these food products. Pulegone is also one of more than 140 terpenes that are found in cannabis plants (PMID:6991645 ). Pulegone, also known as (+)-(R)-pulegone or (1r)-(+)-P-menth-4(8)-en-3-one, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, pulegone is considered to be an isoprenoid lipid molecule. Pulegone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Pulegone can be found in a number of food items such as globe artichoke, sacred lotus, garden onion, and rubus (blackberry, raspberry), which makes pulegone a potential biomarker for the consumption of these food products. Pulegone can be found primarily in saliva. Pulegone is a naturally occurring organic compound obtained from the essential oils of a variety of plants such as Nepeta cataria (catnip), Mentha piperita, and pennyroyal. It is classified as a monoterpene . (+)-pulegone is the (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone is a natural product found in Hedeoma multiflora, Clinopodium dalmaticum, and other organisms with data available. See also: Agathosma betulina leaf (part of). The (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].
beta-Damascenone
Beta-damascenone is a cyclic monoterpene ketone that is 2,6,6-trimethylcyclohexa-1,3-diene substituted at position 1 by a crotonoyl group. It has a role as a fragrance, a volatile oil component and a plant metabolite. It is an enone, an apo carotenoid monoterpenoid and a cyclic monoterpene ketone. Damascenone is a natural product found in Vitis rotundifolia, Vitis labrusca, and other organisms with data available. 1-[2,6,6-Trimethyl-1,3-cyclohexadien-1-yl]-2-buten-1-one is a metabolite found in or produced by Saccharomyces cerevisiae. trans-beta-damascenone is a metabolite found in or produced by Saccharomyces cerevisiae. Damascenones are a series of closely related chemical compounds that are components of a variety of essential oils. The damascenones belong to a family of chemicals known as rose ketones, which also includes damascones and ionones. beta-Damascenone is a major contributor to the aroma of roses, despite its very low concentration, and is an important fragrance chemical used in perfumery. [Wikipedia] From Rosa damascena and many other sources. 3,5,8-Megastigmatrien-7-one is found in many foods, some of which are herbs and spices, tea, common grape, and green vegetables. A cyclic monoterpene ketone that is 2,6,6-trimethylcyclohexa-1,3-diene substituted at position 1 by a crotonoyl group. Damascenone ((E/Z)-Damascenone) is an active compound of?Epipremnum pinnatum with anti-inflammatory activity[1]. Damascenone is a mixture complex of?E-isomer-Damascenone and Z-isomer Damascenone. Damascenone ((E/Z)-Damascenone) is an active compound of?Epipremnum pinnatum with anti-inflammatory activity[1]. Damascenone is a mixture complex of?E-isomer-Damascenone and Z-isomer Damascenone.
skrofulein
Cirsimaritin is a dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5 and 4 respectively. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsimaritin is a natural product found in Achillea santolina, Schoenia cassiniana, and other organisms with data available. See also: Tangerine peel (part of).
Piperitone
Piperitone is found in ceylan cinnamon. Piperitone is a flavouring ingredient.Piperitone is a natural monoterpene ketone which is a component of some essential oils. Both stereoisomers, the D-form and the L-form, are known. The D-form has a peppermint-like aroma and has been isolated from the oils of plants from the genera Cymbopogon, Andropogon, and Mentha. The L-form has been isolated from Sitka spruce. (Wikipedia Piperitone is a p-menthane monoterpenoid that is cyclohex-2-en-1-one substituted by a methyl group at position 3 and an isopropyl group at position 6. It has a role as a volatile oil component and a plant metabolite. It is a p-menthane monoterpenoid and a cyclic terpene ketone. Piperitone is a natural product found in Clinopodium dalmaticum, Eucalyptus fasciculosa, and other organisms with data available. A p-menthane monoterpenoid that is cyclohex-2-en-1-one substituted by a methyl group at position 3 and an isopropyl group at position 6. Flavouring ingredient Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1]. Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1].
Methyl_cinnamate
Methyl cinnamate is a methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. It has a role as a flavouring agent, a fragrance, an insect attractant, a volatile oil component and an anti-inflammatory agent. It is a methyl ester and an alkyl cinnamate. Methyl cinnamate is a natural product found in Melaleuca viridiflora, Alpinia formosana, and other organisms with data available. Methyl cinnamate is a metabolite found in or produced by Saccharomyces cerevisiae. The E (trans) isomer of methyl cinnamate. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Ethyl benzoate
Ethyl benzoate, also known as benzoic ether or fema 2422, belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid. Ethyl benzoate is the ester formed by the condensation of benzoic acid and ethanol. It is a component of some artificial fruit flavors. It is a colorless liquid that is almost insoluble in water, but miscible with most organic solvents. As with many volatile esters, ethyl benzoate has a pleasant odor. Ethyl benzoate is a sweet, anise, and balsam tasting compound. Ethyl benzoate has been detected, but not quantified, in several different foods, such as black elderberries, pomes, alcoholic beverages, allspices, and blackcurrants. It has also been found in various fruits, e.g. apple, banana, sweet cherryand is also present in milk, butter, wines, black tea, bourbon vanilla and fruit brandies. Ethyl benzoate is a potentially toxic compound. ; Found in various fruits, e.g. apple, banana, sweet cherryand is also present in milk, butter, wines, black tea, bourbon vanilla and fruit brandies. Flavouring agent
Methyl cinnamate
Methyl cinnamate is found in ceylan cinnamon. Methyl cinnamate occurs in essential oils e.g. from Ocimum and Alpinia species Also present in various fruits, e.g. guava, feijoa, strawberry. Methyl cinnamate is a flavouring agent.Methyl cinnamate is the methyl ester of cinnamic acid and is a white or transparent solid with a strong, aromatic odor. It is found naturally in a variety of plants, including in fruits, like strawberry, and some culinary spices, such as Sichuan pepper and some varieties of basil. Eucalyptus olida has the highest known concentrations of methyl cinnamate (98\\\\\%) with a 2-6\\\\\% fresh weight yield in the leaf and twigs. Occurs in essential oils e.g. from Ocimum and Alpinia subspecies Also present in various fruits, e.g. guava, feijoa, strawberry. Flavouring agent Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Luteolin 4'-glucoside
Luteolin 4-glucoside is isolated from Spartium junceum and many other plant species [CCD]. Isolated from Spartium junceum and many other plant subspecies [CCD]
Nerolidol
A component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Flavouring agent. Nerolidol is found in many foods, some of which are coriander, sweet basil, roman camomile, and sweet orange. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].
Apigenin 7-glucuronide
Apigenin-7-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 12.87, 22.39, 17.52, 0.27 μM for MMP-3, MMP-8, MMP-9, MMP-13, respectively. Apigenin-7-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 12.87, 22.39, 17.52, 0.27 μM for MMP-3, MMP-8, MMP-9, MMP-13, respectively.
Chrysoeriol 7-rutinoside
Chrysoeriol 7-rutinoside is found in german camomile. Chrysoeriol 7-rutinoside is isolated from Matricaria chamomilla (German chamomile). Isolated from Matricaria chamomilla (German chamomile). Chrysoeriol 7-rutinoside is found in german camomile and herbs and spices.
(E)-Calamene
Calamene is a metabolite of plant Turnera diffusa. Turnera diffusa (Damiana, Mexican holly, Old Womans Broom) is a small shrub of the family Tuneraceae. T. diffusa is native to both Central and South America and now commercially cultivated in Bolivia and Mexico. The leaf includes volatile oils (1,8-cineole, p-cymene, alpha- and beta-pinene, thymol, alpha-copaene, and calamene); luteolin; tannins, flavonoids (arbutin, acacetin, apigenin and pinocembrin), beta-sitosterol, damianin, and the cyanogenic glycoside tetraphyllin B. (www.globinmed.com) (e)-calamene is also known as calamenene or 1,6-dimethyl-4-isopropyltetralin. (e)-calamene can be found in a number of food items such as guava, lovage, summer savory, and rosemary, which makes (e)-calamene a potential biomarker for the consumption of these food products (e)-calamene can be found primarily in urine.
trans-Jasmone
trans-Jasmone is found in spearmint. Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. (Wikipedia Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. trans-Jasmone is found in spearmint. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].
cis-Ocimene
Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. cis-beta-Ocimene is found in many foods, some of which are cornmint, sweet orange, sweet basil, and common sage. cis-Ocimene is found in allspice. Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. (Wikipedia
Benzyl 3-methylbutanoate
Benzyl 3-methylbutanoate is used in food flavourin
1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester
1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester is found in fruits. 1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester is a constituent of Physalis peruviana (Cape gooseberry).
Alkhanol
Alkhanol is found in herbs and spices. Alkhanol is a constituent of Balsamita major (costmary) Constituent of Balsamita major (costmary). Alkhanol is found in tea and herbs and spices.
Ethyl phenylacetate
Ethyl phenylacetate, also known as ethyl alpha -toluate or ethyl benzeneacetate, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. Ethyl phenylacetate is a sweet, anise, and balsam tasting compound. Ethyl phenylacetate is found, on average, in the highest concentration within corns. Ethyl phenylacetate has also been detected, but not quantified, in several different foods, such as citrus, pulses, german camomiles, alcoholic beverages, and cereals and cereal products. Ethyl phenylacetate is an odoriferous constituent of many plants. It is found in many foods, some of which are apple, grapefruit, guava fruit, papaya, melon, pineapple, wheat bread, crispbread, wines, fruit brandies, shoyu, bael (Aegle marmelos), sake, and ceriman (Monstera deliciosa). It can be used as a flavouring ingredient.
1-Phenyl-1-propanone
Present in Camembert cheese, coffee, tea and roasted nuts. Flavouring ingredient. 1-Phenyl-1-propanone is found in many foods, some of which are tea, coffee and coffee products, nuts, and milk and milk products. 1-Phenyl-1-propanone is found in coffee and coffee products. 1-Phenyl-1-propanone is present in Camembert cheese, coffee, tea and roasted nuts. 1-Phenyl-1-propanone is a flavouring ingredien
2-Phenylbutyric acid
2-Phenylbutyric acid, also known as alpha-phenylbutyrate or alpha-ethyl-alpha-toluate, belongs to the class of organic compounds known as phenylpropanes. Phenylpropanes are organic compounds containing a phenylpropane moiety. 2-Phenylbutyric acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-Phenylbutyric acid can be biosynthesized from butyric acid. 2-Phenylbutyric acid is used as an anticholesteremic. C471 - Enzyme Inhibitor > C1946 - Histone Deacetylase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent 2-Phenylbutyric acid is used as an anticholesteremic. [HMDB] 2-Phenylbutanoic acid is an endogenous metabolite.
Ethyl 2-methylbutyrate
Ethyl 2-methylbutyrate is found in bilberry. Ethyl 2-methylbutyrate is found in many fruits, e.g.raw and cooked apple, apricot, orange, grapefruit. Ethyl 2-methylbutyrate is a flavouring agent. Ethyl 2-methylbutyrate is used in fruit flavouring. Found in many fruits, e.g.raw and cooked apple, apricot, orange, grapefruit. Flavouring agent. It is used in fruit flavouring.
Benzyl ethyl ether
Benzyl ethyl ether is found in cocoa and cocoa products. Benzyl ethyl ether is present in cocoa. Benzyl ethyl ether is a flavouring agent Present in cocoa. Flavouring agent. Benzyl ethyl ether is found in cocoa and cocoa products. (Ethoxymethyl)benzene is an endogenous metabolite.
Thymol
Thymol Sulfate is also known as Thymol sulfuric acid. Thymol Sulfate is considered to be practically insoluble (in water) and acidic. Thymol (also known as 2-isopropyl-5-methylphenol, IPMP), C10H14O, is a natural monoterpenoid phenol derivative of p-Cymene, isomeric with carvacrol, found in oil of thyme, and extracted from Thymus vulgaris (common thyme), ajwain,[4] and various other plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol is only slightly soluble in water at neutral pH, but it is extremely soluble in alcohols and other organic solvents. It is also soluble in strongly alkaline aqueous solutions due to deprotonation of the phenol. Its dissociation constant (pKa) is 10.59±0.10.[5] Thymol absorbs maximum UV radiation at 274 nm.[6] Ancient Egyptians used thyme for embalming.[9] The ancient Greeks used it in their baths and burned it as incense in their temples, believing it was a source of courage. The spread of thyme throughout Europe was thought to be due to the Romans, as they used it to purify their rooms and to "give an aromatic flavour to cheese and liqueurs".[10] In the European Middle Ages, the herb was placed beneath pillows to aid sleep and ward off nightmares.[11] In this period, women also often gave knights and warriors gifts that included thyme leaves, because it was believed to bring courage to the bearer. Thyme was also used as incense and placed on coffins during funerals, because it was supposed to ensure passage into the next life.[12] The bee balms Monarda fistulosa and Monarda didyma, North American wildflowers, are natural sources of thymol. The Blackfoot Native Americans recognized these plants' strong antiseptic action and used poultices of the plants for skin infections and minor wounds. A tisane made from them was also used to treat mouth and throat infections caused by dental caries and gingivitis.[13] Thymol was first isolated by German chemist Caspar Neumann in 1719.[14] In 1853, French chemist Alexandre Lallemand[15] (1816-1886) named thymol and determined its empirical formula.[16] Thymol was first synthesized by Swedish chemist Oskar Widman[17] (1852-1930) in 1882.[18]
Apigenin 7-glucuronide
Apigenin 7-o-glucuronide is a member of the class of compounds known as flavonoid-7-o-glucuronides. Flavonoid-7-o-glucuronides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to glucuronic acid at the C7-position. Apigenin 7-o-glucuronide is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Apigenin 7-o-glucuronide can be found in globe artichoke, which makes apigenin 7-o-glucuronide a potential biomarker for the consumption of this food product. Apigenin-7-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 12.87, 22.39, 17.52, 0.27 μM for MMP-3, MMP-8, MMP-9, MMP-13, respectively. Apigenin-7-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 12.87, 22.39, 17.52, 0.27 μM for MMP-3, MMP-8, MMP-9, MMP-13, respectively.
1-S-cis-Calamenene
(E)-Calamene, also known as calamenene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. (E)-Calamene is possibly neutral. (E)-Calamene is found in highest concentrations in allspices, common oregano, and rosemaries and in lower concentrations in lovages. (E)-Calamene has also been detected in cloves, guava, summer savories, sweet basils, and pepper (spice). This could make (E)-calamene a potential biomarker for the consumption of these foods. Calamene is a metabolite of plant Turnera diffusa (Damiana, Mexican holly, Old Womans Broom), a small shrub of the family Tuneraceae. T. diffusa is native to both Central and South America and now commercially cultivated in Bolivia and Mexico. 1-s-cis-calamenene, also known as (7r,10r)-calamenene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. 1-s-cis-calamenene is a herb and spice tasting compound found in rosemary, which makes 1-s-cis-calamenene a potential biomarker for the consumption of this food product.
Bornyl acetate
Bornyl acetate, also known as bornyl acetic acid, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Bornyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Bornyl acetate is a camphor, cedar, and herbal tasting compound and can be found in a number of food items such as nutmeg, rosemary, spearmint, and sunflower, which makes bornyl acetate a potential biomarker for the consumption of these food products. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].
D-Camphor
(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
Artemisia ketone
Artemisia ketone is a member of the class of compounds known as enones. Enones are compounds containing the enone functional group, with the structure RC(=O)CR. Artemisia ketone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Artemisia ketone is a berry, green, and herbal tasting compound found in sunflower and tarragon, which makes artemisia ketone a potential biomarker for the consumption of these food products.
Luteolin 7-gentiobioside
Luteolin 7-gentiobioside is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Luteolin 7-gentiobioside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Luteolin 7-gentiobioside can be found in dandelion, which makes luteolin 7-gentiobioside a potential biomarker for the consumption of this food product.
3,3,6-trimethyl-1,5-heptadien-4-ol
Flavouring compound [Flavornet]
PHENYLACETIC ACID
D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents
3-phenylpropanoic acid
Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
Nerolidol
Nerolidol is a farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. It has a role as a flavouring agent, a cosmetic, a pheromone, a neuroprotective agent, an antifungal agent, an anti-inflammatory agent, an antihypertensive agent, an antioxidant, a volatile oil component, an insect attractant and a herbicide. It is a farnesane sesquiterpenoid, a tertiary allylic alcohol and a volatile organic compound. Nerolidol is a natural product found in Xylopia sericea, Rhododendron calostrotum, and other organisms with data available. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent. Nerolidol has been shown to exhibit anti-fungal function (A7933).Nerolidol belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units. A nerolidol in which the double bond at position 6 adopts a trans-configuration. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].
Hispidulin
Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.
Vicenin
Isovitexin 8-C-beta-glucoside is a C-glycosyl compound that is isovitexin in which the hydrogen at position 8 is replaced by a beta-D-glucosyl residue. It has a role as a metabolite. It is a trihydroxyflavone and a C-glycosyl compound. It is functionally related to an isovitexin. Vicenin-2 is a natural product found in Carex fraseriana, Pseudarrhenatherum longifolium, and other organisms with data available. A C-glycosyl compound that is isovitexin in which the hydrogen at position 8 is replaced by a beta-D-glucosyl residue. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1]. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1].
Acacetin
5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. A monomethoxyflavone that is the 4-methyl ether derivative of apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one, also known as 4-methoxy-5,7-dihydroxyflavone or acacetin, is a member of the class of compounds known as 4-o-methylated flavonoids. 4-o-methylated flavonoids are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be synthesized from apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, acacetin-7-O-beta-D-galactopyranoside, acacetin-8-C-neohesperidoside, and isoginkgetin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be found in ginkgo nuts, orange mint, and winter savory, which makes 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.223 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.225 Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].
Pectolinarigenin
Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. A dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. Pectolinarigenin, also known as 5,7-dihydroxy-4,6-dimethoxyflavone or 4-methylcapillarisin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, pectolinarigenin is considered to be a flavonoid lipid molecule. Pectolinarigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pectolinarigenin can be found in sunflower and tarragon, which makes pectolinarigenin a potential biomarker for the consumption of these food products. Pectolinarigenin is a Cirsium isolate with anti-inflammatory activity and belongs to the flavones . Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].
Neoschaftoside
6-beta-d-glucopyranosyl-8-beta-d-ribopyranosylapigenin is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. 6-beta-d-glucopyranosyl-8-beta-d-ribopyranosylapigenin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 6-beta-d-glucopyranosyl-8-beta-d-ribopyranosylapigenin can be found in herbs and spices, which makes 6-beta-d-glucopyranosyl-8-beta-d-ribopyranosylapigenin a potential biomarker for the consumption of this food product.
Apigenin 7-rutinoside
Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2]. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2].
Apigenin
Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.058 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.
Luteolin
Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].
dinatin
Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.
Eupatilin
Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.
Casticin
[Raw Data] CB178_Casticin_pos_50eV_CB000067.txt [Raw Data] CB178_Casticin_pos_40eV_CB000067.txt [Raw Data] CB178_Casticin_pos_30eV_CB000067.txt [Raw Data] CB178_Casticin_pos_20eV_CB000067.txt [Raw Data] CB178_Casticin_pos_10eV_CB000067.txt Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3. Casticin is a methyoxylated flavonol isolated from Vitex rotundifolia, with antimitotic and anti-inflammatory effect. Casticin inhibits the activation of STAT3.
Cinnamic Acid
Trans-cinnamic acid, also known as (2e)-3-phenyl-2-propenoic acid or (E)-cinnamate, is a member of the class of compounds known as cinnamic acids. Cinnamic acids are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Trans-cinnamic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Trans-cinnamic acid is a sweet, balsam, and honey tasting compound and can be found in a number of food items such as maitake, mustard spinach, common wheat, and barley, which makes trans-cinnamic acid a potential biomarker for the consumption of these food products. Trans-cinnamic acid can be found primarily in saliva. Trans-cinnamic acid exists in all living species, ranging from bacteria to humans. Trans-cinnamic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cinnamic acid is an organic compound with the formula C6H5CHCHCO2H. It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Classified as an unsaturated carboxylic acid, it occurs naturally in a number of plants. It exists as both a cis and a trans isomer, although the latter is more common . Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
Germacrene D
(-)-germacrene D is a germacrene D. It is an enantiomer of a (+)-germacrene D. (-)-Germacrene D is a natural product found in Teucrium montanum, Stachys obliqua, and other organisms with data available. See also: Clary Sage Oil (part of).
bicyclogermacrene
A sesquiterpene derived from germacrane by dehydrogenation across the C(1)-C(10) and C(4)-C(5) bonds and cyclisation across the C(8)-C(9) bond.
ETHYL MANDELATE
D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids
apigenin-7-O-gentiobioside
A glycosyloxyflavone that is apigenin substituted by a 6-O-beta-D-glucopyranosyl-beta-D-glucopyranoside group at position 7.
Bornyl_acetate
Bornyl acetate is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].
1-Methoxy-4-(2-propenyl)benzene
1-Methoxy-4-(2-propenyl)benzene, also known as methylchavicol or estragol, belongs to the class of organic compounds known as anisoles. These are organic compounds containing a methoxybenzene or a derivative thereof. 1-Methoxy-4-(2-propenyl)benzene is a sweet, alcohol, and anise tasting compound. 1-Methoxy-4-(2-propenyl)benzene is found, on average, in the highest concentration within a few different foods, such as anises, fennels, and sweet basils and in a lower concentration in cumins, tarragons, and parsley. 1-Methoxy-4-(2-propenyl)benzene has also been detected, but not quantified, in several different foods, such as citrus, chinese cinnamons, caraway, fats and oils, and cloves. This could make 1-methoxy-4-(2-propenyl)benzene a potential biomarker for the consumption of these foods. 1-Methoxy-4-(2-propenyl)benzene, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Estragole is a colorless liquid with odor of anise. Insoluble in water. Isolated from rind of persea gratissima grath. and from oil of estragon. Found in oils of Russian anise, basil, fennel turpentine, tarragon oil, anise bark oil. (NTP, 1992) Estragole is a phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. It has a role as a flavouring agent, an insect attractant, a plant metabolite, a genotoxin and a carcinogenic agent. It is an alkenylbenzene, a monomethoxybenzene and a phenylpropanoid. It is functionally related to a chavicol. Estragole is a natural product found in Vitis rotundifolia, Chaerophyllum macrospermum, and other organisms with data available. See also: Anise Oil (part of). Constituent of many essential oils. Found in apple, bilberry and orange fruits and juices. Flavouring agent. A phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].
Termopsoside
Thermopsoside is a natural product found in Cleome amblyocarpa, Narthecium ossifragum, and other organisms with data available.
Citronellol
Citronellol is a monoterpenoid that is oct-6-ene substituted by a hydroxy group at position 1 and methyl groups at positions 3 and 7. It has a role as a plant metabolite. Citronellol is a natural product found in Xylopia aromatica, Eupatorium cannabinum, and other organisms with data available. 3,7-Dimethyl-6-octen-1-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Java citronella oil (part of). A monoterpenoid that is oct-6-ene substituted by a hydroxy group at position 1 and methyl groups at positions 3 and 7. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1].
Isoschaftoside
Corymboside, also known as 6-arabinopyranosyl-8-galactopyranosylapigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Corymboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Corymboside can be found in a number of food items such as red bell pepper, carob, common wheat, and orange bell pepper, which makes corymboside a potential biomarker for the consumption of these food products. [Raw Data] CBA22_Isoschaftoside_neg_50eV_1-4_01_1416.txt [Raw Data] CBA22_Isoschaftoside_neg_40eV_1-4_01_1415.txt [Raw Data] CBA22_Isoschaftoside_neg_30eV_1-4_01_1414.txt [Raw Data] CBA22_Isoschaftoside_neg_20eV_1-4_01_1413.txt [Raw Data] CBA22_Isoschaftoside_neg_10eV_1-4_01_1366.txt [Raw Data] CBA22_Isoschaftoside_pos_50eV_1-4_01_1389.txt [Raw Data] CBA22_Isoschaftoside_pos_40eV_1-4_01_1388.txt [Raw Data] CBA22_Isoschaftoside_pos_30eV_1-4_01_1387.txt [Raw Data] CBA22_Isoschaftoside_pos_20eV_1-4_01_1386.txt [Raw Data] CBA22_Isoschaftoside_pos_10eV_1-4_01_1355.txt Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, can inhibit growth of germinated S. hermonthica radicles[1][2]. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, can inhibit growth of germinated S. hermonthica radicles[1][2].
Chrysoeriol
Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].
Chryseriol
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.094 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.096 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.093 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.091 Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].
Verbenone
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants 4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one is a carbobicyclic compound that is bicyclo[3.1.1]heptane which is substituted by an oxo group at position 2 and by methyl groups at positions 4, 6 and 6, and which contains a double bond between positions 3 and 4. It is a carbobicyclic compound, a cyclic ketone and an enone. Verbenone is a natural product found in Eucalyptus fasciculosa, Eucalyptus intertexta, and other organisms with data available. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.872 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.873 Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2]. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2].
PHENYLACETIC ACID
A monocarboxylic acid that is toluene in which one of the hydrogens of the methyl group has been replaced by a carboxy group. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents
hydrocinnamic acid
Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
ISOVALERIC ACID
A C5, branched-chain saturated fatty acid. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human.
Thymol
Thymol, also known as 1-hydroxy-5-methyl-2-isopropylbenzene or 2-isopropyl-5-methylphenol, is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. Thus, thymol is considered to be an isoprenoid lipid molecule. Thymol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Thymol can be synthesized from p-cymene. Thymol can also be synthesized into thymol sulfate and thymol sulfate(1-). Thymol is a camphor, herbal, and medicinal tasting compound and can be found in a number of food items such as anise, common oregano, caraway, and highbush blueberry, which makes thymol a potential biomarker for the consumption of these food products. Thymol can be found primarily in saliva and urine, as well as in human liver and skeletal muscle tissues. Thymol exists in all eukaryotes, ranging from yeast to humans. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].
Methyl cinnamate
A methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. Annotation level-3
UNII:S7S079H2C2
A monocarboxylic acid that is butyric acid substituted by a phenyl group at position 2. C471 - Enzyme Inhibitor > C1946 - Histone Deacetylase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent 2-Phenylbutanoic acid is an endogenous metabolite.
Apigenin 7-glucuronide
Apigenin 7-glucuronide is a member of the class of compounds known as flavonoid-7-o-glucuronides. Flavonoid-7-o-glucuronides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to glucuronic acid at the C7-position. Apigenin 7-glucuronide is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Apigenin 7-glucuronide can be found in common sage and dill, which makes apigenin 7-glucuronide a potential biomarker for the consumption of these food products. Apigenin-7-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 12.87, 22.39, 17.52, 0.27 μM for MMP-3, MMP-8, MMP-9, MMP-13, respectively. Apigenin-7-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 12.87, 22.39, 17.52, 0.27 μM for MMP-3, MMP-8, MMP-9, MMP-13, respectively.
Luteolin 3-methyl ether 7-glucuronosyl-(1->2)-glucuronide
Damascenone
Damascenone ((E/Z)-Damascenone) is an active compound of?Epipremnum pinnatum with anti-inflammatory activity[1]. Damascenone is a mixture complex of?E-isomer-Damascenone and Z-isomer Damascenone. Damascenone ((E/Z)-Damascenone) is an active compound of?Epipremnum pinnatum with anti-inflammatory activity[1]. Damascenone is a mixture complex of?E-isomer-Damascenone and Z-isomer Damascenone.
Piperitone
Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1]. Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1].
borneol
Flavouring agent. (±)-Borneol is found in many foods, some of which are pot marjoram, pepper (spice), saffron, and german camomile. Constituent of Curcuma aromatica and other plants. (+)-Borneol is found in nutmeg, herbs and spices, and ginger. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].
Cephrol
Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1].
Chrysoeriol 7-rutinoside
FEMA 2159
(-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1].
Apigenin 4'-O-glucoside
Diosphenol
A cyclic monoterpene ketone that is cyclohex-2-en-1-one substituted by a hydroxy group at position 2, a methyl group at position 3 and an isopropyl group at position 6.
nerolidol
A farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].
3-phenylpropanoic acid
A monocarboxylic acid that is propionic acid substituted at position 3 by a phenyl group. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
ISOPHORONE
A cyclic ketone, the structure of which is that of cyclohex-2-en-1-one substituted by methyl groups at positions 3, 5 and 5.
β-Ionone
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1].
Bornyl acetate
Same as: D09740 (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2]. Bornyl acetate is a potent odorant, exhibiting one of the highest flavor dilution factor (FD factor). Bornyl acetate possesses anti-cancer activity[1][2].
cosmetin
Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].
α-Pinene
A pinene that is bicyclo[3.1.1]hept-2-ene substituted by methyl groups at positions 2, 6 and 6 respectively. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].
Geranyl acetate
Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate has been reported in Cymbopogon martinii, Cymbopogon distans
AI3-00579
Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Antioxine
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].