NCBI Taxonomy: 211923

Newbouldia (ncbi_taxid: 211923)

found 386 associated metabolites at genus taxonomy rank level.

Ancestor: paleotropical clade

Child Taxonomies: Newbouldia laevis

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O5 (270.052821)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Chrysoeriol

3 inverted exclamation mark -Methoxy-4 inverted exclamation mark ,5,7-trihydroxyflavone

C16H12O6 (300.06338519999997)


Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Lapachol

4-hydroxy-3-(3-methylbut-2-en-1-yl)-1,2-dihydronaphthalene-1,2-dione

C15H14O3 (242.0942894)


Lapachol is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. It has a role as a plant metabolite, an antineoplastic agent, an antibacterial agent and an anti-inflammatory agent. It is a hydroxy-1,4-naphthoquinone and an olefinic compound. NA is a natural product found in Plenckia populnea, Stereospermum colais, and other organisms with data available. A hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents [Raw Data] CB290_Lapachol_pos_40eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_50eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_10eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_30eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_20eV_CB000086.txt [Raw Data] CB290_Lapachol_neg_10eV_000049.txt [Raw Data] CB290_Lapachol_neg_20eV_000049.txt [Raw Data] CB290_Lapachol_neg_40eV_000049.txt [Raw Data] CB290_Lapachol_neg_50eV_000049.txt [Raw Data] CB290_Lapachol_neg_30eV_000049.txt Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

   

Acteoside

6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054106)


The main hydroxycinnamic deriv. in olives. Acteoside is found in many foods, some of which are olive, lemon verbena, bitter gourd, and common verbena. Acteoside is found in bitter gourd. It is the main hydroxycinnamic derivative in olives Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.

   

Tectoquinone

2-methylanthracene-9,10-dione

C15H10O2 (222.06807600000002)


CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9354; ORIGINAL_PRECURSOR_SCAN_NO 9353 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9397; ORIGINAL_PRECURSOR_SCAN_NO 9396 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9371; ORIGINAL_PRECURSOR_SCAN_NO 9370 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9424; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9336; ORIGINAL_PRECURSOR_SCAN_NO 9335 CONFIDENCE standard compound; INTERNAL_ID 1128; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9398; ORIGINAL_PRECURSOR_SCAN_NO 9396 Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2]. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2].

   
   

lapachol

4-hydroxy-3-(3-methylbut-2-en-1-yl)-1,2-dihydronaphthalene-1,2-dione

C15H14O3 (242.0942894)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

   

Verbascoside

6-[2-(3,4-Dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C29H36O15 (624.2054106)


   

Verbascoside

[(2R,3R,4R,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054106)


Acteoside is a glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. It has a role as a neuroprotective agent, an antileishmanial agent, an anti-inflammatory agent, a plant metabolite and an antibacterial agent. It is a cinnamate ester, a disaccharide derivative, a member of catechols, a polyphenol and a glycoside. It is functionally related to a hydroxytyrosol and a trans-caffeic acid. Acteoside is under investigation in clinical trial NCT02662283 (Validity and Security of Reh-acteoside Therapy for Patients of IgA Nephropathy). Acteoside is a natural product found in Orobanche amethystea, Barleria lupulina, and other organisms with data available. See also: Harpagophytum zeyheri root (part of). A glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.

   

Atraric acid

Methyl 2,4-dihydroxy-3,6-dimethylbenzoate

C10H12O4 (196.0735552)


Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2]. Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2].

   

Napabucasin

2-Acetylfuro-1,4-naphthoquinone

C14H8O4 (240.0422568)


C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Apigenin

5,7,4-Trihydroxyflavone

C15H10O5 (270.052821)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.058 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

2-acetyl-5-hydroxynaphtho[2,3-b]furan-4,9-dione

2-acetyl-5-hydroxynaphtho[2,3-b]furan-4,9-dione

C14H8O5 (256.0371718)


   

dmnq

2,3-Dimethoxy-1,4-naphthoquinone

C12H10O4 (218.057906)


   
   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Tithoniaquinone A

Tithoniaquinone A

C16H10O5 (282.052821)


   

Basalethanolide B

Basalethanolide B

C38H68O3 (572.5168178)


   

2-(1-Methylethenyl)-7-hydroxynaphtho[2,3-b]furan-4,9-dione

2-(1-Methylethenyl)-7-hydroxynaphtho[2,3-b]furan-4,9-dione

C15H10O4 (254.057906)


   

MOFCZHBPVDESNO-UHFFFAOYSA-

MOFCZHBPVDESNO-UHFFFAOYSA-

C15H10O4 (254.057906)


   

2-Methylanthraquinone

InChI=1/C15H10O2/c1-9-6-7-12-13(8-9)15(17)11-5-3-2-4-10(11)14(12)16/h2-8H,1H

C15H10O2 (222.06807600000002)


2-methylanthraquinone is an anthraquinone that is 9,10-anthraquinone in which the hydrogen at position 2 is substituted by a methyl group. It is functionally related to a 9,10-anthraquinone. 2-Methylanthraquinone is a natural product found in Clausena heptaphylla, Ophiorrhiza pumila, and other organisms with data available. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2]. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2].

   

Chrysoeriol

Chrysoeriol (Luteolin 3-methyl ether)

C16H12O6 (300.06338519999997)


Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Chryseriol

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-

C16H12O6 (300.06338519999997)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.094 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.096 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.093 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.091 Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Methyl 2,4-dihydroxy-3,6-dimethylbenzoate

Methyl 2,4-dihydroxy-3,6-dimethylbenzoate

C10H12O4 (196.0735552)


CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243; ORIGINAL_PRECURSOR_SCAN_NO 4241 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4554; ORIGINAL_PRECURSOR_SCAN_NO 4552 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4219; ORIGINAL_PRECURSOR_SCAN_NO 4216 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4573; ORIGINAL_PRECURSOR_SCAN_NO 4572 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3741; ORIGINAL_PRECURSOR_SCAN_NO 3740 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4554; ORIGINAL_PRECURSOR_SCAN_NO 4550 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7363; ORIGINAL_PRECURSOR_SCAN_NO 7360 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7378; ORIGINAL_PRECURSOR_SCAN_NO 7376 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7361; ORIGINAL_PRECURSOR_SCAN_NO 7359 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7404; ORIGINAL_PRECURSOR_SCAN_NO 7400 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7394; ORIGINAL_PRECURSOR_SCAN_NO 7391 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7418; ORIGINAL_PRECURSOR_SCAN_NO 7416 Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2]. Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2].

   

Versulin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxyphenyl)- (9CI)

C15H10O5 (270.052821)


Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Caryophyllin

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Tectochinon

InChI=1\C15H10O2\c1-9-6-7-12-13(8-9)15(17)11-5-3-2-4-10(11)14(12)16\h2-8H,1H

C15H10O2 (222.06807600000002)


Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2]. Tectoquinone (2-Methylanthraquinone) is a SARSCoV-2 main protease inhibitor against COVID-19. Tectoquinone exhibits strong mosquito larvicidal activity with the LC50 values of 3.3 and 5.4 μg/ml against A. aegypti and A. albopictus in 24 h, respectively[1][2].

   

Tecomin

InChI=1\C15H14O3\c1-9(2)7-8-12-13(16)10-5-3-4-6-11(10)14(17)15(12)18\h3-7,18H,8H2,1-2H

C15H14O3 (242.0942894)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

   

4-[(3s,3as)-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazol-3-yl]phenol

4-[(3s,3as)-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazol-3-yl]phenol

C12H14N2O (202.1106074)


   

(5-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3-hydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(5-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3-hydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C35H46O19 (770.2633166)


   

(2r)-5-methoxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2r)-5-methoxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C16H14O4 (270.0892044)


   

2,3-dimethoxy-p-benzoquinone

2,3-dimethoxy-p-benzoquinone

C8H8O4 (168.0422568)


   

3-(4-methoxyphenyl)-4h,5h,6h-pyrrolo[1,2-b]pyrazole

3-(4-methoxyphenyl)-4h,5h,6h-pyrrolo[1,2-b]pyrazole

C13H14N2O (214.1106074)


   

(2r,3r,4r,5r,6r)-5-hydroxy-6-[2-(3-hydroxy-4-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-5-hydroxy-6-[2-(3-hydroxy-4-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C31H40O15 (652.236709)


   

2-(4-hydroxyphenyl)ethyl triacontanoate

2-(4-hydroxyphenyl)ethyl triacontanoate

C38H68O3 (572.5168178)


   

3-(4-methoxyphenyl)-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

3-(4-methoxyphenyl)-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

C13H16N2O (216.12625659999998)


   

[(2r,3s,4s,5r,6r)-5-{[(2s,3s,4r,5r,6s)-4,5-dihydroxy-3-{[(2s,3r,4r)-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,4-dihydroxyoxan-2-yl]methyl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

[(2r,3s,4s,5r,6r)-5-{[(2s,3s,4r,5r,6s)-4,5-dihydroxy-3-{[(2s,3r,4r)-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3,4-dihydroxyoxan-2-yl]methyl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate

C46H56O23 (976.3212226)


   

[(2r,3r,4s,5r,6r)-5-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

[(2r,3r,4s,5r,6r)-5-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C34H44O19 (756.2476674)


   

(2s)-5,7-dihydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2s)-5,7-dihydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O5 (272.0684702)


   

[5-({2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-({[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}methyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl}oxy)-3,4-dihydroxyoxolan-3-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[5-({2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-({[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}methyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl}oxy)-3,4-dihydroxyoxolan-3-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C46H56O23 (976.3212226)


   

2,2-dimethyl-4ah,10ah-benzo[g]chromene-5,10-dione

2,2-dimethyl-4ah,10ah-benzo[g]chromene-5,10-dione

C15H14O3 (242.0942894)


   

[(3s,4r,5s)-5-{[(2r,3r,4s,5s,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-4-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

[(3s,4r,5s)-5-{[(2r,3r,4s,5s,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-4-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

C34H46O20 (774.2582316)


   

(3s,3as)-3-phenyl-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

(3s,3as)-3-phenyl-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

C12H14N2 (186.1156924)


   

(2r,3r)-3,8-dihydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2r,3r)-3,8-dihydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O5 (272.0684702)


   

4-{4h,5h,6h-pyrrolo[1,2-b]pyrazol-3-yl}phenol

4-{4h,5h,6h-pyrrolo[1,2-b]pyrazol-3-yl}phenol

C12H12N2O (200.09495819999998)


   

6-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

6-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O4 (256.0735552)


   

(2s)-5-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2s)-5-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O4 (256.0735552)


   

[(3s,4r,5s)-5-{[(2r,3r,4s,5r,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

[(3s,4r,5s)-5-{[(2r,3r,4s,5r,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

C34H46O20 (774.2582316)


   

2-[(3-hydroxy-1,4-dioxonaphthalen-2-yl)oxy]-3-methylanthracene-9,10-dione

2-[(3-hydroxy-1,4-dioxonaphthalen-2-yl)oxy]-3-methylanthracene-9,10-dione

C25H14O6 (410.0790344)


   

[(3s,4r,5s)-5-{[(2r,3r,4s,5r,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

[(3s,4r,5s)-5-{[(2r,3r,4s,5r,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

C44H54O23 (950.3055734000001)


   

7,10-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

7,10-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


   

3,8-dihydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

3,8-dihydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O5 (272.0684702)


   

2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-6-ol

2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-6-ol

C11H12O2 (176.0837252)


   

5-methoxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

5-methoxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C16H14O4 (270.0892044)


   

(2r,3r,3ar,9ar)-3-hydroxy-2-(prop-1-en-2-yl)-2h,3h,3ah,9ah-naphtho[2,3-b]furan-4,9-dione

(2r,3r,3ar,9ar)-3-hydroxy-2-(prop-1-en-2-yl)-2h,3h,3ah,9ah-naphtho[2,3-b]furan-4,9-dione

C15H14O4 (258.0892044)


   

n-(1,3,4,5-tetrahydroxytetracosan-2-yl)octadecanimidic acid

n-(1,3,4,5-tetrahydroxytetracosan-2-yl)octadecanimidic acid

C42H85NO5 (683.6427399999999)


   

1-(3-hydroxy-1,4-dioxonaphthalen-2-yl)-2-methylanthracene-9,10-dione

1-(3-hydroxy-1,4-dioxonaphthalen-2-yl)-2-methylanthracene-9,10-dione

C25H14O5 (394.0841194)


   

(2r,3r,4r,5r,6r)-5-hydroxy-6-[2-(4-hydroxy-3-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-5-hydroxy-6-[2-(4-hydroxy-3-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C31H40O15 (652.236709)


   

4-{3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazol-3-yl}phenol

4-{3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazol-3-yl}phenol

C12H14N2O (202.1106074)


   

2-hydroxy-3-methoxy-9,10-dioxoanthracene-1-carbaldehyde

2-hydroxy-3-methoxy-9,10-dioxoanthracene-1-carbaldehyde

C16H10O5 (282.052821)


   

(4as,6ar,6br,7s,8ar,10s,12as,12br,14bs)-7,10-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6ar,6br,7s,8ar,10s,12as,12br,14bs)-7,10-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


   

3-hydroxy-5-methoxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

3-hydroxy-5-methoxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C16H14O5 (286.0841194)


   

7-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

7-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O4 (256.0735552)


   

3,5-dihydroxy-2-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione

3,5-dihydroxy-2-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione

C15H14O4 (258.0892044)


   

(2r)-5,7-dihydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2r)-5,7-dihydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O5 (272.0684702)


   

(2r)-6-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2r)-6-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O4 (256.0735552)


   

[(2r,3r,4s,5r,6r)-5-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5r,6r)-5-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-3-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C35H46O19 (770.2633166)


   

3-phenyl-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

3-phenyl-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

C12H14N2 (186.1156924)


   

(3s,3as)-3-(4-methoxyphenyl)-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

(3s,3as)-3-(4-methoxyphenyl)-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

C13H16N2O (216.12625659999998)


   

(2r,3r,4s,5s,6s)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6s)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

(3r,3ar)-3-phenyl-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

(3r,3ar)-3-phenyl-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

C12H14N2 (186.1156924)


   

(2r)-5-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2r)-5-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O4 (256.0735552)


   

7-hydroxy-2-(prop-1-en-2-yl)naphtho[2,3-b]furan-4,9-dione

7-hydroxy-2-(prop-1-en-2-yl)naphtho[2,3-b]furan-4,9-dione

C15H10O4 (254.057906)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

2-(prop-1-en-2-yl)naphtho[2,3-b]furan-4,9-dione

2-(prop-1-en-2-yl)naphtho[2,3-b]furan-4,9-dione

C15H10O3 (238.062991)


   

2-(prop-1-en-2-yl)-1-benzofuran-6-ol

2-(prop-1-en-2-yl)-1-benzofuran-6-ol

C11H10O2 (174.06807600000002)


   

[5-({2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl}oxy)-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

[5-({2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl}oxy)-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

C34H46O20 (774.2582316)


   

5-hydroxy-2-(prop-1-en-2-yl)naphtho[2,3-b]furan-4,9-dione

5-hydroxy-2-(prop-1-en-2-yl)naphtho[2,3-b]furan-4,9-dione

C15H10O4 (254.057906)


   

n-[(2s,3r,4s,5s)-1,3,4,5-tetrahydroxytetracosan-2-yl]octadecanimidic acid

n-[(2s,3r,4s,5s)-1,3,4,5-tetrahydroxytetracosan-2-yl]octadecanimidic acid

C42H85NO5 (683.6427399999999)


   

2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O3 (240.0786402)


   

(4as,10as)-2,2-dimethyl-4ah,10ah-benzo[g]chromene-5,10-dione

(4as,10as)-2,2-dimethyl-4ah,10ah-benzo[g]chromene-5,10-dione

C15H14O3 (242.0942894)


   

(3r,3ar)-3-(4-methoxyphenyl)-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

(3r,3ar)-3-(4-methoxyphenyl)-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazole

C13H16N2O (216.12625659999998)


   

[(3s,4r,5s)-5-{[(2r,3r,4s,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-4-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

[(3s,4r,5s)-5-{[(2r,3r,4s,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-4-hydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

C34H46O20 (774.2582316)


   

(2r)-7-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2r)-7-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O4 (256.0735552)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

(2s)-5-hydroxy-7-methoxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2s)-5-hydroxy-7-methoxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C16H14O5 (286.0841194)


   

[(3s,4r,5s)-5-{[(2r,3r,4s,5r,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-({[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(3s,4r,5s)-5-{[(2r,3r,4s,5r,6r)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-({[(2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C46H56O23 (976.3212226)


   

(2r,3r)-3-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2r,3r)-3-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O4 (256.0735552)


   

3-hydroxy-2-(prop-1-en-2-yl)-2h,3h,3ah,9ah-naphtho[2,3-b]furan-4,9-dione

3-hydroxy-2-(prop-1-en-2-yl)-2h,3h,3ah,9ah-naphtho[2,3-b]furan-4,9-dione

C15H14O4 (258.0892044)


   

(3r,4r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3s,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(3r,4r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3s,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054106)


   

(2s)-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-6-ol

(2s)-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-6-ol

C11H12O2 (176.0837252)


   

(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054106)


   

(2s,3s)-3-hydroxy-5-methoxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2s,3s)-3-hydroxy-5-methoxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C16H14O5 (286.0841194)


   

3-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

3-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O4 (256.0735552)


   

(4as,6as,6br,8as,10s,12ar,12bs,14br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8as,10s,12ar,12bs,14br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


   

5-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

5-hydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O4 (256.0735552)


   

(2r)-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2r)-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O3 (240.0786402)


   

4-[(3r,3ar)-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazol-3-yl]phenol

4-[(3r,3ar)-3h,3ah,4h,5h,6h-pyrrolo[1,2-b]pyrazol-3-yl]phenol

C12H14N2O (202.1106074)


   

n-[(2s,3s,4r,5r)-1,3,4,5-tetrahydroxytetracosan-2-yl]octadecanimidic acid

n-[(2s,3s,4r,5r)-1,3,4,5-tetrahydroxytetracosan-2-yl]octadecanimidic acid

C42H85NO5 (683.6427399999999)


   

2,2-dimethylbenzo[g]chromene-5,10-dione

2,2-dimethylbenzo[g]chromene-5,10-dione

C15H12O3 (240.0786402)


   

[5-({2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl}oxy)-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

[5-({2-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl}oxy)-3,4-dihydroxyoxolan-3-yl]methyl 4-hydroxy-3,5-dimethoxybenzoate

C44H54O23 (950.3055734000001)


   

5,7-dihydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

5,7-dihydroxy-2-(prop-1-en-2-yl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C15H12O5 (272.0684702)


   

5-hydroxy-6-[2-(4-hydroxy-3-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

5-hydroxy-6-[2-(4-hydroxy-3-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C31H40O15 (652.236709)