Subcellular Location: GTPase complex

Found 88 associated metabolites.

2 associated genes. HRAS, SOS1

Hesperetin 7-neohesperidoside

(S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one

C28H34O15 (610.1898)


Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. Constituent of Seville orange peel (Citrus aurantium) and other Citrus subspecies Very bitter flavouring agent. Hesperetin 7-neohesperidoside is found in many foods, some of which are grapefruit/pummelo hybrid, pummelo, citrus, and grapefruit. Hesperetin 7-neohesperidoside is found in citrus. Hesperetin 7-neohesperidoside is a constituent of Seville orange peel (Citrus aurantium) and other Citrus species Very bitter flavouring agent Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.

   

trans-Isoasarone

17-(1,5-Dimethyl-hexyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol; compound with 1,2,4-trimethoxy-5-propenyl-benzene (Alphaasarone and cholesterol)

C12H16O3 (208.1099)


Alpha-asarone is the trans-isomer of asarone. It has a role as an anticonvulsant and a GABA modulator. alpha-Asarone is a natural product found in Sphallerocarpus gracilis, Asarum hypogynum, and other organisms with data available. trans-Isoasarone is found in carrot. trans-Isoasarone is a constituent of Asarum species and carrot seed (Daucus carota) (CCD) Constituent of Asarum subspecies and carrot seed (Daucus carota) (CCD). trans-Isoasarone is found in wild carrot and carrot. D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D009676 - Noxae > D002273 - Carcinogens D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents The trans-isomer of asarone. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1]. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1].

   

Irigenin

4H-1-Benzopyran-4-one,5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-

C18H16O8 (360.0845)


Irigenin, also known as 5,7,3-trihydroxy-6,4,5-trimethoxyisoflavone, is a member of the class of compounds known as 3-hydroxy,4-methoxyisoflavonoids. 3-hydroxy,4-methoxyisoflavonoids are isoflavonoids carrying a methoxy group attached to the C4 atom, as well as a hydroxyl group at the C3-position of the isoflavonoid backbone. Thus, irigenin is considered to be a flavonoid lipid molecule. Irigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Irigenin can be synthesized from isoflavone. Irigenin can also be synthesized into iridin. Irigenin can be found in lima bean, which makes irigenin a potential biomarker for the consumption of this food product. Irigenin is an O-methylated isoflavone, a type of flavonoid. It can be isolated from the rhizomes of the leopard lily (Belamcanda chinensis), and Iris kemaonensis . Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].

   

Aristolochic acid

6-methoxy-9-nitro-14,16-dioxatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-1,3,5,7,9,11,13(17)-heptaene-11-carboxylic acid

C17H11NO7 (341.0535)


Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].

   

Swertiamarin

(3S,4R,4aR)-4a-hydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-4-vinyl-3,4,5,6-tetrahydropyrano[3,4-c]pyran-8-one;Swertiamarine

C16H22O10 (374.1213)


Swertiamarin is a glycoside. Swertiamarin is a natural product found in Lonicera japonica, Fontanesia philliraeoides, and other organisms with data available. See also: Centaurium erythraea whole (part of). Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1]. Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1].

   

Gynosaponin S

2-{[2-(16-hydroxy-2,6,6,10,11-pentamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C48H82O18 (946.5501)


Gypenoside XVII is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Gypenoside XVII is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. Gynosaponin S is found in tea. Gynosaponin S is a constituent of Panax species. Constituent of Panax subspecies Gynosaponin S is found in tea. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors.

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0685)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Linonin

11H,13H-Oxireno(d)pyrano(4,3:3,3a)isobenzofuro(5,4-f)(2)benzopyran-4,6,13(2H,5aH)-trione, 8-(3-furanyl)decahydro-2,2,4a,8a-tetramethyl-, (2aR-(2aalpha,4abeta,4bR,5aalpha,8alpha,8aalpha,10aalpha,10bR*,14aalpha))-

C26H30O8 (470.1941)


Linonin, also known as 7,16-dioxo-7,16-dideoxylimondiol or evodin, is a member of the class of compounds known as limonoids. Limonoids are highly oxygenated, modified terpenoids with a prototypical structure either containing or derived from a precursor with a 4,4,8-trimethyl-17-furanylsteroid skeleton. All naturally occurring citrus limonoids contain a furan ring attached to the D-ring, at C-17, as well as oxygen containing functional groups at C-3, C-4, C-7, C-16 and C-17. Linonin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Linonin can be found in lemon, which makes linonin a potential biomarker for the consumption of this food product. Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

Eriocitrin

(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O15 (596.1741)


Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. Eriocitrin is a flavonoid glycoside that can be found in plants like Citrus grandis, Citrus limon, Mentha longifolia, Mentha piperita, Thymus vulgaris. It shows important antioxidant activities. Isolated from Mentha piperita (peppermint) leaves and from Citrus subspecies Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].

   

Bruceine

(1R,2S,3R,3aR,3a1R,4R,6aR,7aS,11S,11aS,11bR)-1,2,3a,4,11-pentahydroxy-3,8,11a-trimethyl-1,2,3,3a,4,7,7a,11,11a,11b-decahydro-5H-3,3a1-(epoxymethano)dibenzo[de,g]chromene-5,10(6aH)-dione

C20H26O9 (410.1577)


Bruceine D is a quassinoid that is 13,20-epoxypicras-3-ene substituted by hydroxy groups at positions 1, 11, 12, 14 and 15 and oxo groups at positions 2 and 16. Isolated from the ethanol extract of the stem of Brucea mollis, it exhibits cytotoxic activity. It has a role as a metabolite, an antineoplastic agent and a plant metabolite. It is a delta-lactone, a pentol, a quassinoid, an organic heteropentacyclic compound and a secondary alpha-hydroxy ketone. It derives from a hydride of a picrasane. Brucein D is a natural product found in Brucea javanica, Brucea mollis, and Samadera indica with data available. A quassinoid that is 13,20-epoxypicras-3-ene substituted by hydroxy groups at positions 1, 11, 12, 14 and 15 and oxo groups at positions 2 and 16. Isolated from the ethanol extract of the stem of Brucea mollis, it exhibits cytotoxic activity. Bruceine D is a Notch inhibitor with anti-cancer activity and induces apoptosis in several human cancer cells. Bruceine D is an effective botanical insect antifeedant with outstanding systemic properties, causing potent pest growth inhibitory activity[1][2]. Bruceine D has strong anthelmintic activity against D. intermedius with an EC50 value of 0.57 mg/L[3]. Bruceine D is a Notch inhibitor with anti-cancer activity and induces apoptosis in several human cancer cells. Bruceine D is an effective botanical insect antifeedant with outstanding systemic properties, causing potent pest growth inhibitory activity[1][2]. Bruceine D has strong anthelmintic activity against D. intermedius with an EC50 value of 0.57 mg/L[3].

   

Alisol

Dammar-13(17)-en-3-one, 24,25-epoxy-11,23-dihydroxy-,(8a,9b,11b,14b,23S,24R)-

C30H48O4 (472.3552)


Alisol B is a triterpenoid. Alisol B is a natural product found in Alisma, Alisma plantago-aquatica, and other organisms with data available. Alisol B is a potentially novel therapeutic compound for bone disorders by targeting the differentiation of osteoclasts as well as their functions. IC50 Value: Target: In vitro: The in vitro cultured human renal tubular epithelial HK-2 cells were intervened with 5 ng/mL transforming growth factor-beta (TGF-beta), 0.1 micromol C3a, and 0.1 micromol C3a + 10 micromol alisol B, respectively. Exogenous C3a could induce renal tubular EMT. Alisol B was capable of suppressing C3a induced EMT [1]. Alisol-B strongly inhibited RANKL-induced osteoclast formation when added during the early stage of cultures, suggesting that alisol-B acts on osteoclast precursors to inhibit RANKL/RANK signaling. Among the RANK signaling pathways, alisol-B inhibited the phosphorylation of JNK, which are upregulated in response to RANKL in bone marrow macrophages, alisol-B also inhibited RANKL-induced expression of NFATc1 and c-Fos, which are key transcription factors for osteoclastogenesis. In addition, alisol-B suppressed the pit-forming activity and disrupted the actin ring formation of mature osteoclasts [2]. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, it was showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase [3]. In vivo: Alisol B is a potentially novel therapeutic compound for bone disorders by targeting the differentiation of osteoclasts as well as their functions. IC50 Value: Target: In vitro: The in vitro cultured human renal tubular epithelial HK-2 cells were intervened with 5 ng/mL transforming growth factor-beta (TGF-beta), 0.1 micromol C3a, and 0.1 micromol C3a + 10 micromol alisol B, respectively. Exogenous C3a could induce renal tubular EMT. Alisol B was capable of suppressing C3a induced EMT [1]. Alisol-B strongly inhibited RANKL-induced osteoclast formation when added during the early stage of cultures, suggesting that alisol-B acts on osteoclast precursors to inhibit RANKL/RANK signaling. Among the RANK signaling pathways, alisol-B inhibited the phosphorylation of JNK, which are upregulated in response to RANKL in bone marrow macrophages, alisol-B also inhibited RANKL-induced expression of NFATc1 and c-Fos, which are key transcription factors for osteoclastogenesis. In addition, alisol-B suppressed the pit-forming activity and disrupted the actin ring formation of mature osteoclasts [2]. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, it was showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase [3]. In vivo:

   

Moupinamide

(Z,2E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C18H19NO4 (313.1314)


N-feruloyltyramine is a member of tyramines. It has a role as a metabolite. Moupinamide is a natural product found in Zanthoxylum beecheyanum, Polyalthia suberosa, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Alkaloid from Piper nigrum. Moupinamide is found in many foods, some of which are nutmeg, amaranth, sapodilla, and orange bell pepper. Moupinamide is found in eggplant. Moupinamide is an alkaloid from Piper nigru CASMI2013 Challenge_1 MS2 data; [MS1] MSJ00001 CASMI2013 Challenge_1 MS1 data; [MS2] MSJ00002 N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1]. N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].

   

Salutaridine

(1S,9R)-3-hydroxy-4,13-dimethoxy-17-methyl-17-azatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,5,10,13-pentaen-12-one

C19H21NO4 (327.1471)


Salutaridine is a morphinane alkaloid from the opium poppy, in which the 5,6,8,14-tetradehydromorphinan-7-one skeleton is substituted at position 4 by a hydroxyl group, positions 3 and 6 by methoxy groups and position N17 by a methyl group. An intermediate in the biosynthesis of narcotic analgesics such as morphine and codeine. It has a role as a metabolite and an anti-HBV agent. It is a conjugate base of a salutaridinium(1+). It derives from a hydride of a morphinan. Salutaridine is a natural product found in Sarcocapnos saetabensis, Platycapnos saxicola, and other organisms with data available. A morphinane alkaloid from the opium poppy, in which the 5,6,8,14-tetradehydromorphinan-7-one skeleton is substituted at position 4 by a hydroxyl group, positions 3 and 6 by methoxy groups and position N17 by a methyl group. An intermediate in the biosynthesis of narcotic analgesics such as morphine and codeine. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

(S)-Abscisic acid

(2Z,4E)-5-[(1S)-1-Hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl]-3-methyl-2,4-pentadienoic acid

C15H20O4 (264.1362)


(+)-abscisic acid is the naturally occurring (1S)-(+) enantiomer of abscisic acid. It is an important sesquiterpenoid plant hormone which acts as a regulator of plant responses to environmental stresses such as drought and cold. It has a role as a plant hormone and a plant metabolite. It is a conjugate acid of a (+)-abscisate. It is an enantiomer of a (-)-abscisic acid. Abscisic acid is a natural product found in Macaranga triloba, Cuscuta pentagona, and other organisms with data available. Abscission-accelerating plant growth substance isolated from young cotton fruit, leaves of sycamore, birch, and other plants, and from potatoes, lemons, avocados, and other fruits. Constituent of cabbage, potato, lemon etc. (S)-Abscisic acid is found in many foods, some of which are common wheat, peach, garden tomato (variety), and yellow wax bean. (S)-Abscisic acid is found in alcoholic beverages. (S)-Abscisic acid is a constituent of cabbage, potato, lemon etc D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D006133 - Growth Substances > D010937 - Plant Growth Regulators Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2].

   

Benzyl isothiocyanate

4-12-00-02276 (Beilstein Handbook Reference)

C8H7NS (149.0299)


Benzyl isothiocyanate, also known as alpha-isothiocyanatotoluene or isothiocyanic acid, benzyl ester, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Benzyl isothiocyanate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Benzyl isothiocyanate is a mild, dusty, and horseradish tasting compound and can be found in a number of food items such as cabbage, garden onion, garden cress, and papaya, which makes benzyl isothiocyanate a potential biomarker for the consumption of these food products. Benzyl isothiocyanate (BITC) is an isothiocyanate found in plants of the mustard family . Benzyl isothiocyanate is an isothiocyanate and a member of benzenes. It has a role as an antibacterial drug. Benzyl isothiocyanate is a natural product found in Erucaria microcarpa, Simicratea welwitschii, and other organisms with data available. See also: Lepidium meyenii root (part of). Benzyl isothiocyanate is found in brassicas. Benzyl isothiocyanate is isolated from Tropaeolum majus (garden nasturtium) and Lepidium sativum (garden cress), also in other plants especially in the Cruciferae. Potential nutriceutical. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2]. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2].

   

MethylophiopogononeB

5,7-dihydroxy-3-[(4-methoxyphenyl)methyl]-6,8-dimethyl-4H-1-benzopyran-4-one

C19H18O5 (326.1154)


Methylophiopogonone B is a homoisoflavonoid that is 4H-1-benzopyran-4-one substituted by hydroxy groups at positions 5 and 7, methyl groups at positions 6 and 8 and a (4-methoxyphenyl)methyl group at position 3 respectively. It has a role as a plant metabolite. It is a homoisoflavonoid, a member of resorcinols and a monomethoxybenzene. Methylophiopogonone B is a natural product found in Ophiopogon japonicus with data available. A homoisoflavonoid that is 4H-1-benzopyran-4-one substituted by hydroxy groups at positions 5 and 7, methyl groups at positions 6 and 8 and a (4-methoxyphenyl)methyl group at position 3 respectively. Methylophiopogonone B, a homoisoflavonoidal compound that could be isolated from Ophiopogonis Tiber, could scavenge ?OH and H2O2 in vitro to a certain extent[1][2]. Methylophiopogonone B, a homoisoflavonoidal compound that could be isolated from Ophiopogonis Tiber, could scavenge ?OH and H2O2 in vitro to a certain extent[1][2].

   

Isochamaejasmin

(2S,3R)-3-[(2R,3S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydrochromen-3-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one

C30H22O10 (542.1213)


Chamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and other organisms with data available. Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available.

   

Picrocrocin

(R)-2,6,6-trimethyl-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-1-ene-1-carbaldehyde

C16H26O7 (330.1678)


Picrocrocin is a glycoside formed from glucose and safranal. It is found in the spice saffron, which comes from the crocus flower. Picrocrocin has a bitter taste and is the chemical most responsible for the taste of saffron. It is believed that picrocrocin is a degradation product of the carotenoid zeaxanthin (Wikipedia). Picrocrocin is a beta-D-glucoside of beta-cyclocitral; the precursor of safranal. It is the compound most responsible for the bitter taste of saffron. It is functionally related to a beta-cyclocitral. Picrocrocin is a natural product found in Crocus tommasinianus, Crocus sativus, and Crocus vernus with data available. Isolated from saffron (stamens of Crocus sativus). Food colour and flavouring ingredient Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1]. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1].

   

3-Feruloylquinic acid

(1S,3R,4R,5R)-1,3,4-trihydroxy-5-{[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid

C17H20O9 (368.1107)


3-Feruloylquinic acid (3-FQA) (CAS: 1899-29-2) belongs to the class of organic compounds known as quinic acids and derivatives. Quinic acids and derivatives are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, and 5, as well as a carboxylic acid at position 1. Coffee, especially green or raw coffee, is a major source of chlorogenic acids (CGA). CGAs have been associated with a range of health benefits including a reduction in the risk of cardiovascular disease, diabetes type 2, and Alzheimers disease. Major CGAs in coffee include 3-, 4-, and 5-feruloylquinic acids (PMID: 19022950). 3-FQA has been detected in the plasma and urine of humans who have ingested coffee (PMID: 19460943). 3-FQA is also found in chicory, tomatoes (Lycopersicon esculentum), and sunflowers (Helianthus annuus). 3-O-feruloyl-D-quinic acid is a quinic acid that is the 3-O-feruloyl derivative of D-quinic acid. It has a role as a plant metabolite. It is a quinic acid and an enoate ester. It is functionally related to a (-)-quinic acid and a ferulic acid. 3-O-Feruloylquinic acid is a natural product found in Astragalus onobrychis, Astragalus arguricus, and other organisms with data available. 5-feruloylquinic acid, also known as O-feruloylquinate, belongs to quinic acids and derivatives class of compounds. Those are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, and 5, as well as a carboxylic acid at position 1. 5-feruloylquinic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 5-feruloylquinic acid can be found in a number of food items such as sweet cherry, apricot, redcurrant, and peach (variety), which makes 5-feruloylquinic acid a potential biomarker for the consumption of these food products. . 3-Feruloylquinic acid, a derivative of quinic acid-bound phenolic acid, shows antioxidant activity. 3-Feruloylquinic acid markedly enhances by high photosynthetically active radiation (PAR) and UV irradiances[1][2]. 3-Feruloylquinic acid, a derivative of quinic acid-bound phenolic acid, shows antioxidant activity. 3-Feruloylquinic acid markedly enhances by high photosynthetically active radiation (PAR) and UV irradiances[1][2].

   

oxazepam

oxazepam

C15H11ClN2O2 (286.0509)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8781; ORIGINAL_PRECURSOR_SCAN_NO 8778 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8746; ORIGINAL_PRECURSOR_SCAN_NO 8744 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4409; ORIGINAL_PRECURSOR_SCAN_NO 4408 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8712; ORIGINAL_PRECURSOR_SCAN_NO 8710 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4423; ORIGINAL_PRECURSOR_SCAN_NO 4421 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8742; ORIGINAL_PRECURSOR_SCAN_NO 8740 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8757; ORIGINAL_PRECURSOR_SCAN_NO 8755 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4422; ORIGINAL_PRECURSOR_SCAN_NO 4421 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4393; ORIGINAL_PRECURSOR_SCAN_NO 4390 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8709; ORIGINAL_PRECURSOR_SCAN_NO 8708 CONFIDENCE standard compound; INTERNAL_ID 799; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4374; ORIGINAL_PRECURSOR_SCAN_NO 4372 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1083 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2743 CONFIDENCE standard compound; INTERNAL_ID 8604 CONFIDENCE standard compound; INTERNAL_ID 2680

   

Guanosine diphosphate

[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O11P2 (443.0243)


Guanosine diphosphate, also known as gdp or 5-diphosphate, guanosine, is a member of the class of compounds known as purine ribonucleoside diphosphates. Purine ribonucleoside diphosphates are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate can be found in a number of food items such as strawberry, onion-family vegetables, walnut, and scarlet bean, which makes guanosine diphosphate a potential biomarker for the consumption of these food products. Guanosine diphosphate can be found primarily in blood and cerebrospinal fluid (CSF). Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in several metabolic pathways, some of which include betahistine h1-antihistamine action, fexofenadine h1-antihistamine action, clocinizine h1-antihistamine action, and bepotastine h1-antihistamine action. Guanosine diphosphate is also involved in several metabolic disorders, some of which include adenine phosphoribosyltransferase deficiency (APRT), canavan disease, gout or kelley-seegmiller syndrome, and pyruvate dehydrogenase complex deficiency. Moreover, guanosine diphosphate is found to be associated with epilepsy, subarachnoid hemorrhage, neuroinfection, and stroke. Guanosine diphosphate, abbreviated GDP, is a nucleoside diphosphate. It is an ester of pyrophosphoric acid with the nucleoside guanosine. GDP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase guanine . Guanosine diphosphate, also known as 5-GDP or 5-diphosphate, guanosine, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in intracellular signalling through adenosine receptor A2B and adenosine. Outside of the human body, Guanosine diphosphate has been detected, but not quantified in several different foods, such as devilfish, java plums, green beans, almonds, and orange mints. Guanosine diphosphate is a purine ribonucleoside 5-diphosphate resulting from the formal condensation of the hydroxy group at the 5 position of guanosine with pyrophosphoric acid. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Fluridone

1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-1,4-dihydropyridin-4-one

C19H14F3NO (329.1027)


CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8814; ORIGINAL_PRECURSOR_SCAN_NO 8813 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8806; ORIGINAL_PRECURSOR_SCAN_NO 8805 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8777; ORIGINAL_PRECURSOR_SCAN_NO 8775 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8811; ORIGINAL_PRECURSOR_SCAN_NO 8810 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8752; ORIGINAL_PRECURSOR_SCAN_NO 8747 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8718; ORIGINAL_PRECURSOR_SCAN_NO 8717 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Phosalone

O,O-diethyl {[(6-chloro-2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)methyl]sulfanyl}phosphonothioate

C12H15ClNO4PS2 (366.9869)


CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9787; ORIGINAL_PRECURSOR_SCAN_NO 9783 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9765; ORIGINAL_PRECURSOR_SCAN_NO 9762 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9731; ORIGINAL_PRECURSOR_SCAN_NO 9728 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9703; ORIGINAL_PRECURSOR_SCAN_NO 9702 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9750; ORIGINAL_PRECURSOR_SCAN_NO 9747 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9781; ORIGINAL_PRECURSOR_SCAN_NO 9778 Phosalone is an organophosphate chemical commonly used as an insecticide and acaricide. It is developed by Rhone-Poulenc in France but EU eliminated it from pesticide registration on December 2006. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Propoxur

2-(1-Methylethoxy)phenyl methylcarbamic acid

C11H15NO3 (209.1052)


CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7950; ORIGINAL_PRECURSOR_SCAN_NO 7947 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7933; ORIGINAL_PRECURSOR_SCAN_NO 7930 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7922; ORIGINAL_PRECURSOR_SCAN_NO 7920 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7940; ORIGINAL_PRECURSOR_SCAN_NO 7937 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7982; ORIGINAL_PRECURSOR_SCAN_NO 7979 CONFIDENCE standard compound; INTERNAL_ID 365; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7967; ORIGINAL_PRECURSOR_SCAN_NO 7964 D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Apigenin 7-O-beta-D-rutinoside

7-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C27H30O14 (578.1635)


Apigenin 7-o-beta-d-rutinoside, also known as rhoifolin or apigenin-7-O-rhamnoglucoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apigenin 7-o-beta-d-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 7-o-beta-d-rutinoside can be found in carrot, orange mint, and wild carrot, which makes apigenin 7-o-beta-d-rutinoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB080_Rhoifolin_pos_30eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_10eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_20eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_50eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_40eV_CB000032.txt [Raw Data] CB080_Rhoifolin_neg_50eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_10eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_20eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_40eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_30eV_000023.txt Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

   

Nizatidine

dimethyl[(4-{[(2-{[(E)-1-(methylamino)-2-nitroethenyl]amino}ethyl)sulfanyl]methyl}-1,3-thiazol-2-yl)methyl]amine

C12H21N5O2S2 (331.1137)


Nizatidine is only found in individuals that have used or taken this drug. It is a histamine H2 receptor antagonist with low toxicity that inhibits gastric acid secretion. The drug is used for the treatment of duodenal ulcers. [PubChem]Nizatidine competes with histamine for binding at the H2-receptors on the gastric basolateral membrane of parietal cells. Competitive inhibition results in reduction of basal and nocturnal gastric acid secretions. The drug also decreases the gastric acid response to stimuli such as food, caffeine, insulin, betazole, or pentagastrin. A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BA - H2-receptor antagonists C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Nizatidine is a potent and orally active histamine H2 receptor antagonist, can be used for the research of stomach?and?intestines ulcers. Nizatidine works by decreasing the secretion of gastric?acid the stomach makes and prevent ulcers from coming back after they have healed in animal models[1].

   

1-Methyl-6-phenyl-1H-imidazo[4,5-b]pyridin-2-amine

1H-imidazo(4,5-b)Pyridin-2-amine, 1-methyl-6-phenyl- (9ci)

C13H12N4 (224.1062)


1-Methyl-6-phenyl-1H-imidazo[4,5-b]pyridin-2-amine is a food-related mutagen, reported to be the most abundant heterocyclic amine found in cooked meat and fish. Food-related mutagen, reported to be the most abundant heterocyclic amine found in cooked meat and fish CONFIDENCE standard compound; INTERNAL_ID 8317 CONFIDENCE standard compound; INTERNAL_ID 2293 CONFIDENCE standard compound; INTERNAL_ID 9 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

4-Hydroxyquinoline

1,4-dihydroquinolin-4-one

C9H7NO (145.0528)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE standard compound; INTERNAL_ID 2492 KEIO_ID H139

   

Glucotropaeolin

{[(E)-(2-phenyl-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxy}sulfonic acid

C14H19NO9S2 (409.0501)


Glucotropeolin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucotropaeolin has been detected, but not quantified in, several different foods, such as white mustards, garden cress, horseradish, cabbages, and Brassicas. This could make glucotropaeolin a potential biomarker for the consumption of these foods. Glucotropaeolin is isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress), and other crucifers. Isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress) and other crucifers. Glucotropaeolin is found in many foods, some of which are brassicas, horseradish, papaya, and white mustard. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Scutellarein

6-hydroxyapigenin

C15H10O6 (286.0477)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Sinensetin

2-(3,4-dimethoxyphenyl)-5,6,7-trimethoxy-chromen-4-one;Sinensetin

C20H20O7 (372.1209)


Sinensetin is a pentamethoxyflavone that is flavone substituted by methoxy groups at positions 5, 6, 7, 3 and 4 respectively. It has a role as a plant metabolite. It is functionally related to a flavone. Sinensetin is a natural product found in Citrus tankan, Citrus keraji, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). A pentamethoxyflavone that is flavone substituted by methoxy groups at positions 5, 6, 7, 3 and 4 respectively. Sinensetin is found in citrus. Sinensetin is found in orange peel and other plant sources. Found in orange peel and other plant sources Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties. Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties.

   

Bufogein

5-[(1R,2S,4R,6R,7R,10S,11S,14S,16R)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0(2),?.0(2),?.0(1)(1),(1)?]octadecan-6-yl]-2H-pyran-2-one

C24H32O4 (384.23)


Bufogenin is a steroid lactone of Chan su (toad venom), a Chinese medicine obtained from the skin venom gland of toads. A specific Na/K-ATPase protein inhibitor, it is used as a cardiotonic and central nervous system (CNS) respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a steroid lactone and an epoxy steroid. It is functionally related to a bufanolide. Resibufogenin is a natural product found in Sclerophrys mauritanica, Bufo gargarizans, and other organisms with data available. Bufogenin is a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans; it is also one of the glycosides in the traditional Chinese medicine ChanSu, with potential cardiotonic activity. Although the mechanism of action of bufogenin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and has been shown to reduce blood pressure in a rat model of preeclampsia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents C471 - Enzyme Inhibitor Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.

   

Chlorophyll a

(5R,22S,23S)-17-ethenyl-12-ethyl-5-(methoxycarbonyl)-8,13,18,22-tetramethyl-6-oxo-23-(3-oxo-3-{[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-2,25lambda5,26lambda5,27-tetraaza-1-magnesanonacyclo[12.11.1.1^{1,16}.0^{2,9}.0^{3,7}.0^{4,24}.0^{11,26}.0^{21,25}.0^{19,27}]heptacosa-3,7,9,11(26),12,14,16,18,20,24-decaene-25,26-bis(ylium)-1,1-diuide

C55H72MgN4O5 (892.5353)


Chlorophyll a is found in common wheat. Chlorophyll a is used in food processing as an appearance control agent for colours.Chlorophyll is a chlorin pigment, which is structurally similar to and produced through the same metabolic pathway as other porphyrin pigments such as heme. At the center of the chlorin ring is a magnesium ion. For the structures depicted in this article, some of the ligands attached to the Mg2+ center are omitted for clarity. The chlorin ring can have several different side chains, usually including a long phytol chain. There are a few different forms that occur naturally, but the most widely distributed form in terrestrial plants is chlorophyll a. The general structure of chlorophyll a was elucidated by Hans Fischer in 1940, and by 1960, when most of the stereochemistry of chlorophyll a was known, Robert Burns Woodward published a total synthesis of the molecule as then known. In 1967, the last remaining stereochemical elucidation was completed by Ian Fleming, and in 1990 Woodward and co-authors published an updated synthesis. Chlorophyll is a green pigment found in most plants, algae, and cyanobacteria. Its name is derived from the Greek (chloros "green") and (phyllon "leaf"). Chlorophyll absorbs light most strongly in the blue and red but poorly in the green portions of the electromagnetic spectrum, hence the green colour of chlorophyll-containing tissues such as plant leaves. Chlorophyll itself is bound to proteins and can transfer the absorbed energy in the required direction. Protochlorophyllide, differently, mostly occur in the free form and under light conditions act as photosensitizer, forming highly toxic free radicals. Hence plants need an efficient mechanism of regulating the amount of chlorophyll precursor. In angiosperms, this is done at the step of aminolevulinic acid (ALA), one of the intermediate compounds in the biosynthesis pathway. Plants that are fed by ALA accumulate high and toxic levels of protochlorophyllide, so do the mutants with the damaged regulatory system. Chlorosis is a condition in which leaves produce insufficient chlorophyll, turning them yellow. Chlorosis can be caused by a nutrient deficiency including iron - called iron chlorosis, or in a shortage of magnesium or nitrogen. Soil pH sometimes play a role in nutrient-caused chlorosis, many plants are adapted to grow in soils with specific pHs and their ability to absorb nutrients from the soil can be dependent on the soil pH. Chlorosis can also be caused by pathogens including viruses, bacteria and fungal infections or sap sucking insects It is used in food processing as an appearance control agent for colours

   

Butanone

Methyl(ethyl) ketone

C4H8O (72.0575)


Butanone occurs as a natural product. It is made by some trees and found in some fruits and vegetables in small amounts. It is also released to the air from car and truck exhausts. The known health effects to people from exposure to butanone are irritation of the nose, throat, skin, and eyes. (wikipedia).

   

2-Furanmethanol

(2-FURYL)-methanol (furfurylalcohol)

C5H6O2 (98.0368)


2-Furanmethanol, also known as 2-furylcarbinol or furfural alcohol, belongs to the class of organic compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. Its structure is that of a furan bearing a hydroxymethyl substituent at the 2-position. 2-Furanmethanol is a sweet, alcoholic and bitter tasting compound. 2-Furanmethanol has been detected, but not quantified, in several different foods, such as cereals and cereal products, potato, white mustards, arabica coffee, and cocoa and cocoa products. This could make 2-furanmethanol a potential biomarker for the consumption of these foods. Isolated from coffee aroma, tea, wheat bread, crispbread, soybean, cocoa, rice, potato chips and other sources. Flavouring ingredient. 2-Furanmethanol is found in many foods, some of which are sesame, pulses, white mustard, and potato.

   

Sodium

sodium(1+)

Na+ (22.9898)


Na+, also known as sodium ion or na(+), is a member of the class of compounds known as homogeneous alkali metal compounds. Homogeneous alkali metal compounds are inorganic compounds containing only metal atoms,with the largest atom being a alkali metal atom. Na+ can be found in a number of food items such as nanking cherry, opium poppy, alpine sweetvetch, and salmonberry, which makes na+ a potential biomarker for the consumption of these food products. Na+ can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human kidney tissue. Na+ exists in all eukaryotes, ranging from yeast to humans. In humans, na+ is involved in several metabolic pathways, some of which include eplerenone action pathway, betaxolol action pathway, furosemide action pathway, and morphine action pathway. Na+ is also involved in several metabolic disorders, some of which include diltiazem action pathway, bendroflumethiazide action pathway, dimethylthiambutene action pathway, and lidocaine (antiarrhythmic) action pathway. NA, N.A., Na, or n/a may refer to: . Sodium ions are necessary for regulation of blood and body fluids, transmission of nerve impulses, heart activity, and certain metabolic functions. Physiologically, it exists as an ion in the body. Sodium is needed by animals, which maintain high concentrations in their blood and extracellular fluids, but the ion is not needed by plants. The human requirement for sodium in the diet is less than 500 mg per day, which is typically less than a tenth as much as many diets "seasoned to taste." Most people consume far more sodium than is physiologically needed. For certain people with salt-sensitive blood pressure, this extra intake may cause a negative effect on health.

   

Ophiobolin A

(+)-Ophiobolin A

C25H36O4 (400.2613)


   

Calanolide

Calanolide A

C22H26O5 (370.178)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents

   

Sodium chloride (NaCl)

Sodium chloride, (24)nacl

ClNa (57.9586)


Preservative, chilling medium, curing agent, flavour enhancer, firming agent, pH control agent, antimicrobial agent, separation/filtration aid, moisture control agent, texturizer, colourant aid, emulsifier, material handling aid, leavening agent and clarifying/flocculating agent B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CB - Salt solutions A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent S - Sensory organs > S01 - Ophthalmologicals Same as: D02056

   

PS(16:0/18:1(9Z))

(2S)-2-amino-3-({[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C40H76NO10P (761.5207)


PS(16:0/18:1(9Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(16:0/18:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

(-)-1-Chloro-2-(2,2,2-trichloro-1-(4-chlorophenyl)ethyl)benzene

(-)-1-Chloro-2-(2,2,2-trichloro-1-(4-chlorophenyl)ethyl)benzene

C14H9Cl5 (351.9147)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens

   

Tetramethylscutellarein

5,6,7-Trimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C19H18O6 (342.1103)


Tetramethylscutellarein, also known as 4,5,6,7-tetramethoxyflavone or 5-methoxysalvigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, tetramethylscutellarein is considered to be a flavonoid lipid molecule. Tetramethylscutellarein is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, tetramethylscutellarein is found, on average, in the highest concentration within sweet oranges. Tetramethylscutellarein has also been detected, but not quantified, in herbs, spices, tea. This could make tetramethylscutellarein a potential biomarker for the consumption of these foods. Tetramethylscutellarein is isolated from Salvia officinalis (sage) leaves. Isolated from Salvia officinalis (sage) leaves. Tetramethylscutellarein is found in tea, sweet orange, and herbs and spices. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].

   

N-Methyl-N-nitrosourea

N-(C-hydroxycarbonimidoyl)-N-nitrosomethanamine

C2H5N3O2 (103.0382)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents

   

Rhoifolin

7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one

C27H30O14 (578.1635)


Apigenin 7-O-neohesperidoside is an apigenin derivative having an alpha-(1->2)-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as a metabolite. It is a neohesperidoside, a dihydroxyflavone and a glycosyloxyflavone. It is functionally related to an apigenin. Rhoifolin is a natural product found in Ligustrum robustum, Lonicera japonica, and other organisms with data available. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

   

Oxazepam

7-chloro-3-hydroxy-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepin-2-one

C15H11ClN2O2 (286.0509)


Oxazepam is only found in individuals that have used or taken this drug. It is an intermediate-acting benzodiazepine used to treat alcohol withdrawal and anxiety disorders. It is a metabolite of diazepam, prazepam, temazepam, and clorazepate, and has moderate amnesic, anxiolytic, anticonvulsant, hypnotic, sedative, and skeletal muscle relaxant properties compared to other benzodiazepines (Wikipedia). Like other benzodiazepines, oxazepam exerts its anxiolytic effects by potentiating the effect of gamma-aminobutyric acid (GABA) on GABA-A receptors through a cooperative mechanism of action. GABA receptors are ionotropic chloride-linked channel receptors that produce inhibitory postsynaptic potentials. When activated by GABA, the GABA receptor/chloride ionophore complex undergoes a conformational change that allows the passage of chloride ions through the channel. Benzodiazepines are believed to exert their effect by increasing the effect of GABA at its receptor. Benzodiazepine binding increases chloride conductance in the presence of GABA by increasing the frequency at which the channel opens. In contrast, barbiturates increase chloride conductance in the presence of GABA by prolonging the time in which the channel remains open. There are 18 subtypes of the GABA receptor subunits. The α2 subunit of the α2β3γ2 receptor complex is thought to mediate anxiolytic effects while the α1 subunit of the α1β2γ2 receptor complex is thought to mediate sedative, anticonvulsant, and anterograde amnesia effects. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent

   

Limonin

19-(furan-3-yl)-9,9,13,20-tetramethyl-4,8,15,18-tetraoxahexacyclo[11.9.0.0²,⁷.0²,¹⁰.0¹⁴,¹⁶.0¹⁴,²⁰]docosane-5,12,17-trione

C26H30O8 (470.1941)


Limonin is found in citrus. Limonin is isolated from oranges and other citrus fruits (Citrus species). Limonin is a limonoid, and a bitter, white, crystalline substance found in orange and lemon seeds. It is also known as limonoate D-ring-lactone and limonoic acid di-delta-lactone. Chemically, it is a member of the class of compounds known as furanolactones Isolated from oranges and other citrus fruits (Citrus subspecies). Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

3-O-Caffeoyl-4-O-methylquinic acid

1,3,4-trihydroxy-5-{[(2Z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid

C17H20O9 (368.1107)


3-O-Caffeoyl-4-O-methylquinic acid is found in green vegetables. It is a constituent of Phyllostachys edulis (moso bamboo). Constituent of Phyllostachys edulis (moso bamboo). 3-O-Caffeoyl-4-O-methylquinic acid is found in green vegetables. 3-Feruloylquinic acid, a derivative of quinic acid-bound phenolic acid, shows antioxidant activity. 3-Feruloylquinic acid markedly enhances by high photosynthetically active radiation (PAR) and UV irradiances[1][2]. 3-Feruloylquinic acid, a derivative of quinic acid-bound phenolic acid, shows antioxidant activity. 3-Feruloylquinic acid markedly enhances by high photosynthetically active radiation (PAR) and UV irradiances[1][2].

   

(-)-Abscisic acid

5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-methylpenta-2,4-dienoic acid

C15H20O4 (264.1362)


   

Bufogenin

5-{14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}-2H-pyran-2-one

C24H32O4 (384.23)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents

   

Scutellarein

(2S)-2,3-dihydro-5,6,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.0477)


Scutellarein is flavone substituted with hydroxy groups at C-4, -5, -6 and -7. It has a role as a metabolite. It is functionally related to an apigenin. It is a conjugate acid of a scutellarein(1-). Scutellarein is a natural product found in Scoparia dulcis, Artemisia douglasiana, and other organisms with data available. Flavone substituted with hydroxy groups at C-4, -5, -6 and -7. Scutellarein, also known as 6-hydroxyapigenin or 4,5,6,7-tetrahydroxyflavanone, is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, scutellarein is considered to be a flavonoid lipid molecule. Scutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Scutellarein can be synthesized from apigenin. Scutellarein is also a parent compound for other transformation products, including but not limited to, scutellarin, 4,6-dihydroxy-5,7-dimethoxyflavone, and 6-hydroxy-4,5,7-trimethoxyflavone. Scutellarein is a bitter tasting compound found in mexican oregano and sweet orange, which makes scutellarein a potential biomarker for the consumption of these food products. Scutellarein is a flavone that can be found in Scutellaria lateriflora and other members of the genus Scutellaria, as well as the fern Asplenium belangeri . Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Abscisic_acid

(2Z,4E)-5-[(1S)-1-Hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl]-3-methyl-2,4-pentadienoic acid

C15H20O4 (264.1362)


(+)-abscisic acid is the naturally occurring (1S)-(+) enantiomer of abscisic acid. It is an important sesquiterpenoid plant hormone which acts as a regulator of plant responses to environmental stresses such as drought and cold. It has a role as a plant hormone and a plant metabolite. It is a conjugate acid of a (+)-abscisate. It is an enantiomer of a (-)-abscisic acid. Abscisic acid is a natural product found in Macaranga triloba, Cuscuta pentagona, and other organisms with data available. Abscission-accelerating plant growth substance isolated from young cotton fruit, leaves of sycamore, birch, and other plants, and from potatoes, lemons, avocados, and other fruits. The naturally occurring (1S)-(+) enantiomer of abscisic acid. It is an important sesquiterpenoid plant hormone which acts as a regulator of plant responses to environmental stresses such as drought and cold. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D006133 - Growth Substances > D010937 - Plant Growth Regulators 2-cis-abscisic acid is a member of the class of abscisic acids in which the double bond betweeen positions 2 and 3 has cis- (natural) geometry. It has a role as an abscisic acid receptor agonist. It is a conjugate acid of a 2-cis-abscisate. Dormin is a natural product found in Axinella polypoides, Botrytis cinerea, and Leptosphaeria maculans with data available. Abscission-accelerating plant growth substance isolated from young cotton fruit, leaves of sycamore, birch, and other plants, and from potatoes, lemons, avocados, and other fruits. (±)-Abscisic acid is an orally active plant hormone that is present also in animals. (±)-Abscisic acid (ABA) contributes to the regulation of glycemia in mammals[1]. (±)-Abscisic acid is an orally active plant hormone that is present also in animals. (±)-Abscisic acid (ABA) contributes to the regulation of glycemia in mammals[1]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2].

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0685)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. A monomethoxyflavone that is the 4-methyl ether derivative of apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one, also known as 4-methoxy-5,7-dihydroxyflavone or acacetin, is a member of the class of compounds known as 4-o-methylated flavonoids. 4-o-methylated flavonoids are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be synthesized from apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, acacetin-7-O-beta-D-galactopyranoside, acacetin-8-C-neohesperidoside, and isoginkgetin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be found in ginkgo nuts, orange mint, and winter savory, which makes 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.223 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.225 Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Eriocitrin

(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O15 (596.1741)


Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. A disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].

   

Sinensetin

4H-1-Benzopyran-4-one, 2-(3,4-dimethoxyphenyl)-5,6,7-trimethoxy-

C20H20O7 (372.1209)


Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties. Sinensetin is a methylated flavonoid found in fruits that has strong anti-vascular and anti-inflammatory properties.

   

Irigenin

4H-1-Benzopyran-4-one,5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-

C18H16O8 (360.0845)


Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].

   

Limonin

11H,13H-Oxireno(d)pyrano(4,3:3,3a)isobenzofuro(5,4-f)(2)benzopyran-4,6,13(2H,5aH)-trione, 8-(3-furanyl)decahydro-2,2,4a,8a-tetramethyl-, (2aR-(2aalpha,4abeta,4bR,5aalpha,8alpha,8aalpha,10aalpha,10bR*,14aalpha))-

C26H30O8 (470.1941)


Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

Tetramethylscutellarein

4H-1-Benzopyran-4-one, 5,6, 7-trimethoxy-2-(4-methoxyphenyl)-

C19H18O6 (342.1103)


Tetramethylscutellarein, also known as 4,5,6,7-tetramethoxyflavone or 5-methoxysalvigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, tetramethylscutellarein is considered to be a flavonoid lipid molecule. Tetramethylscutellarein is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, tetramethylscutellarein is found, on average, in the highest concentration within sweet oranges. Tetramethylscutellarein has also been detected, but not quantified, in herbs, spices, tea. This could make tetramethylscutellarein a potential biomarker for the consumption of these foods. Tetramethylscutellarein is isolated from Salvia officinalis (sage) leaves. 4,5,6,7-tetramethoxyflavone is a tetramethoxyflavone that is the tetra-O-methyl derivative of scutellarein. It has a role as an antimutagen and a plant metabolite. It is functionally related to a scutellarein. 4,5,6,7-Tetramethoxyflavone is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from Salvia officinalis (sage) leaves. Tetramethylscutellarein is found in tea, sweet orange, and herbs and spices. A tetramethoxyflavone that is the tetra-O-methyl derivative of scutellarein. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) is a bioactive component of Siam weed extract. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) exhibits anti-inflammatory activity through NF-κB pathway[1]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) modulats of bacterial agent resistance via efflux pump inhibition[2]. Scutellarein tetramethyl ether (4',5,6,7-Tetramethoxyflavone) can enhance blood coagulation[3].

   

Resibufogenin

Resibufogenin

C24H32O4 (384.23)


Annotation level-1 Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.

   

Swertiamarin

(4aR,5R,6S)-4a-hydroxy-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-5-vinyl-3,4,5,6-tetrahydropyrano[5,4-c]pyran-1-one

C16H22O10 (374.1213)


Annotation level-1 Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1]. Swertiamarin, a secoiridoid glycoside found in genera of Enicostemma littorale, confers anti-hyperglycemic and anti-hyperlipidemic effects[1].

   

Rhoifolin

7-[[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-5-hydroxy-2-(4-hydroxyphenyl)-4-chromenone

C27H30O14 (578.1635)


Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

   

Abscisic Acid

(+)-Abscisic acid

C15H20O4 (264.1362)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.880 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.877 Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2].

   

Neohesperidin

(S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one

C28H34O15 (610.1898)


Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. A flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.

   

propoxur

Pesticide3_Propoxur_C11H15NO3_Baygon

C11H15NO3 (209.1052)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

PS 34:1

L-Serine, 3-[(1-oxohexadecyl)oxy]-2-[(1-oxo-9-octadecenyl)oxy]propyl hydrogen phosphate (ester), [R-(Z)]-

C40H76NO10P (761.5207)


A 3-sn-phosphatidyl-L-serine compound with a palmitoyl group at the 1-position and an oleoyl group at the 2-position.

   

Sodium chloride

Fast green FCF aluminium salt

ClNa (57.9586)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CB - Salt solutions A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent S - Sensory organs > S01 - Ophthalmologicals Same as: D02056 FDA permitted colourant for foods and food contact paper or board [DFC]

   

8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid

8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid

C17H11NO7 (341.0535)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].

   

Flavonoid

4H-1-Benzopyran-4-one, 5,6,7-trihydroxy-2-(4-hydroxyphenyl)-

C15H10O6 (286.0477)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Urogran

4-12-00-02276 (Beilstein Handbook Reference)

C8H7NS (149.0299)


Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2]. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2].

   

Meetco

Ethyl methyl ketone or methyl ethyl ketone [UN1193] [Flammable liquid]

C4H8O (72.0575)


   

LS-2036

5-17-03-00338 (Beilstein Handbook Reference)

C5H6O2 (98.0368)


   

Bolfo

Carbamic acid, methyl-, o-isopropoxyphenyl ester

C11H15NO3 (209.1052)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

2-Butanone

Methyl ethyl ketone

C4H8O (72.0575)


A dialkyl ketone that is a four-carbon ketone carrying a single keto- group at position C-2. Butanone, also known as methyl ethyl ketone or mek, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, butanone is considered to be an oxygenated hydrocarbon lipid molecule. Butanone is soluble (in water) and an extremely weak acidic compound (based on its pKa). Butanone is an acetone, camphor, and ethereal tasting compound and can be found in a number of food items such as arctic blackberry, onion-family vegetables, sweet orange, and devilfish, which makes butanone a potential biomarker for the consumption of these food products. Butanone can be found primarily in blood, feces, saliva, and urine, as well as in human pancreas and stratum corneum tissues. Moreover, butanone is found to be associated with alcoholism. Butanone is a non-carcinogenic (not listed by IARC) potentially toxic compound.

   

Aristolochic_acid

8-methoxy-6-nitro-naphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid

C17H11NO7 (341.0535)


Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). An aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].

   

GP-17

(3beta,12beta)-20-{[6-O-(beta-D-glucopyranosyl)-beta-D-glucopyranosyl]oxy}-12-hydroxydammar-24-en-3-yl beta-D-glucopyranoside

C48H82O18 (946.5501)


Gypenoside XVII is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Gypenoside XVII is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors.

   

Isochamaejasmin

(2S,3R)-3-[(2R,3S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydrochromen-3-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one

C30H22O10 (542.1213)


Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available. A biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3.

   

Picrocrocin

(R)-2,6,6-trimethyl-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-1-ene-1-carbaldehyde

C16H26O7 (330.1678)


Picrocrocin is a beta-D-glucoside of beta-cyclocitral; the precursor of safranal. It is the compound most responsible for the bitter taste of saffron. It is functionally related to a beta-cyclocitral. Picrocrocin is a natural product found in Crocus tommasinianus, Crocus sativus, and Crocus vernus with data available. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1]. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1].

   

FURFURYL ALCOHOL

FURFURYL ALCOHOL

C5H6O2 (98.0368)


   

FLURIDONE

FLURIDONE

C19H14F3NO (329.1027)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Guanosine-5-diphosphate

Guanosine-5-diphosphate

C10H15N5O11P2 (443.0243)


A purine ribonucleoside 5-diphosphate resulting from the formal condensation of the hydroxy group at the 5 position of guanosine with pyrophosphoric acid. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Calanolide A

Calanolide A

C22H26O5 (370.178)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents

   

4-quinolone

4-Hydroxyquinoline

C9H7NO (145.0528)


   

Sodium Cation

SODIUM ION CHROMATOGRAPHY STANDARD

Na+ (22.9898)


A monoatomic monocation obtained from sodium.

   

PhIP

2-amino-1-Methyl-6-phenylimidazo(4,5-b)pyridine

C13H12N4 (224.1062)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   
   

(+)-Abscisic acid

(S)-2-trans-abscisic acid

C15H20O4 (264.1362)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D006133 - Growth Substances > D010937 - Plant Growth Regulators Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2].

   

phosalone

phosalone

C12H15ClNO4PS2 (366.9869)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

O,P-DDT

1,1,1-Trichloro-2-(O-chlorophenyl)-2-(p-chlorophenyl)ethane

C14H9Cl5 (351.9147)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens

   

Methylnitrosourea

N-Methyl-N-nitrosourea

C2H5N3O2 (103.0382)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents