Salutaridine (BioDeep_00000000497)
PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C19H21NO4 (327.14705060000006)
中文名称: 清风藤碱
谱图信息:
最多检出来源 Homo sapiens(plant) 17.89%
分子结构信息
SMILES: CN1CCC23C=C(C(=O)C=C2C1CC4=C3C(=C(C=C4)OC)O)OC
InChI: InChI=1S/C19H21NO4/c1-20-7-6-19-10-16(24-3)14(21)9-12(19)13(20)8-11-4-5-15(23-2)18(22)17(11)19/h4-5,9-10,13,22H,6-8H2,1-3H3
描述信息
Salutaridine is a morphinane alkaloid from the opium poppy, in which the 5,6,8,14-tetradehydromorphinan-7-one skeleton is substituted at position 4 by a hydroxyl group, positions 3 and 6 by methoxy groups and position N17 by a methyl group. An intermediate in the biosynthesis of narcotic analgesics such as morphine and codeine. It has a role as a metabolite and an anti-HBV agent. It is a conjugate base of a salutaridinium(1+). It derives from a hydride of a morphinan.
Salutaridine is a natural product found in Sarcocapnos saetabensis, Platycapnos saxicola, and other organisms with data available.
A morphinane alkaloid from the opium poppy, in which the 5,6,8,14-tetradehydromorphinan-7-one skeleton is substituted at position 4 by a hydroxyl group, positions 3 and 6 by methoxy groups and position N17 by a methyl group. An intermediate in the biosynthesis of narcotic analgesics such as morphine and codeine.
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
同义名列表
18 个代谢物同义名
(1S,9R)-3-hydroxy-4,13-dimethoxy-17-methyl-17-azatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,5,10,13-pentaen-12-one; Morphinan-7-one, 5,6,8,14-tetradehydro-4-hydroxy-3,6-dimethoxy-17-methyl-; 5,6,8,14-Tetradehydro-4-hydroxy-3,6-dimethoxy-17-methyl-morphinan-7-one; 4-Hydroxy-3,6-dimethoxy-17-methyl-5,6,8,14-tetradehydromorphinan-7-one; salutaridine, (9alpha,13alpha)-isomer; GVTRUVGBZQJVTF-YJYMSZOUSA-N; salutaridine, (+-)-isomer; SALUTARIDINE, (+)-; SALUTARIDINE [MI]; (+)-salutaridine; UNII-7X10PRH74D; salutaridine; SALUTARIDIN; Floripavine; sinoacutine; 7X10PRH74D; 5,6,8,14-Tetradehydro-4-hydroxy-3,6-dimethoxy-17-methyl-morphinan-7- one; Salutaridine
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:17225
- KEGG: C05179
- PubChem: 5408233
- PubChem: 625160
- Metlin: METLIN64360
- ChEMBL: CHEMBL404097
- Wikipedia: Salutaridine
- MeSH: salutaridine
- ChemIDplus: 0001936181
- MetaCyc: SALUTARIDINE
- KNApSAcK: C00025629
- CAS: 1936-18-1
- CAS: 4090-18-0
- PMhub: MS000015979
- MetaboLights: MTBLC17225
- PubChem: 7590
- KNApSAcK: C00001916
- 3DMET: B01822
- NIKKAJI: J7.824G
- RefMet: Salutaridine
- KNApSAcK: 17225
- LOTUS: LTS0157020
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
147 个相关的物种来源信息
- 52822 - Alstonia scholaris: 10.1016/J.JEP.2010.02.011
- 22140 - Annonaceae: LTS0157020
- 341008 - Antizoma: LTS0157020
- 341009 - Antizoma angustifolia:
- 341009 - Antizoma angustifolia: 10.1016/J.BSE.2004.04.003
- 341009 - Antizoma angustifolia: 10.1021/NP50057A023
- 341009 - Antizoma angustifolia: LTS0157020
- 225832 - Artabotrys: 10.1021/NP010036K
- 225832 - Artabotrys: LTS0157020
- 225833 - Artabotrys hexapetalus: 10.1021/NP010036K
- 225833 - Artabotrys hexapetalus: LTS0157020
- 41773 - Berberidaceae: LTS0157020
- 22774 - Berberis: LTS0157020
- 186720 - Berberis buxifolia: 10.1007/978-1-4614-0560-3_5
- 186720 - Berberis buxifolia: LTS0157020
- 186727 - Berberis ilicifolia: 10.3987/COM-94-6909
- 186727 - Berberis ilicifolia: LTS0157020
- 186729 - Berberis microphylla: 10.1007/978-1-4614-0560-3_5
- 186729 - Berberis microphylla: LTS0157020
- 121072 - Cassytha: LTS0157020
- 121073 - Cassytha filiformis: 10.1021/NP070564H
- 121073 - Cassytha filiformis: LTS0157020
- 108408 - Cissampelos: LTS0157020
- 379217 - Cissampelos capensis: 10.3390/MOLECULES16043001
- 379217 - Cissampelos capensis: LTS0157020
- 3463 - Corydalis: LTS0157020
- 2973989 - Corydalis casimiriana: LTS0157020
- 581246 - Corydalis cava:
- 581246 - Corydalis cava: 10.1055/S-2007-981549
- 581246 - Corydalis cava: LTS0157020
- 404570 - Corydalis incisa:
- 404570 - Corydalis incisa: 10.1055/S-2007-981549
- 404570 - Corydalis incisa: LTS0157020
- 38903 - Corydalis pallida:
- 38903 - Corydalis pallida: 10.1055/S-2007-981549
- 38903 - Corydalis pallida: LTS0157020
- 282776 - Corydalis saxicola: 10.1055/S-2006-961402
- 282776 - Corydalis saxicola: 10.1055/S-2007-981549
- 282776 - Corydalis saxicola: LTS0157020
- 38914 - Corydalis solida:
- 38914 - Corydalis solida: 10.1055/S-2007-981549
- 38914 - Corydalis solida: LTS0157020
- 100370 - Croton: LTS0157020
- 323049 - Croton flavens: 10.1080/1478641031000111516
- 323049 - Croton flavens: LTS0157020
- 765397 - Croton hemiargyreus: 10.1016/S0031-9422(97)00764-4
- 765397 - Croton hemiargyreus: LTS0157020
- 323063 - Croton lechleri: 10.1055/S-2006-957819
- 323063 - Croton lechleri: LTS0157020
- 128612 - Dehaasia: LTS0157020
- 610223 - Dehaasia hainanensis: 10.1177/1934578X0700200115
- 610223 - Dehaasia hainanensis: LTS0157020
- 2759 - Eukaryota: LTS0157020
- 3977 - Euphorbiaceae: LTS0157020
- 56852 - Glaucium: LTS0157020
- 1353837 - Glaucium fimbrilligerum: 10.1002/JPS.2600650536
- 1353837 - Glaucium fimbrilligerum: 10.1021/NP9801920
- 1353837 - Glaucium fimbrilligerum: LTS0157020
- 56853 - Glaucium flavum: 10.1016/0031-9422(88)80265-6
- 56853 - Glaucium flavum: LTS0157020
- 3433 - Lauraceae: LTS0157020
- 3398 - Magnoliopsida: LTS0157020
- 3455 - Menispermaceae: LTS0157020
- 22063 - Monimiaceae: LTS0157020
- 41775 - Nandina: LTS0157020
- 41776 - Nandina domestica: 10.1021/NP8001496
- 41776 - Nandina domestica: LTS0157020
- 3468 - Papaver: LTS0157020
- 357465 - Papaver armeniacum:
- 357465 - Papaver armeniacum: 10.1055/S-2006-961487
- 215227 - Papaver bracteatum:
- 215227 - Papaver bracteatum: 10.1007/BF00565837
- 215227 - Papaver bracteatum: 10.1055/S-2006-961487
- 215227 - Papaver bracteatum: 10.1055/S-2007-969808
- 215227 - Papaver bracteatum: 10.1135/CCCC19851216
- 215227 - Papaver bracteatum: LTS0157020
- 22694 - Papaver orientale:
- 22694 - Papaver orientale: 10.1016/0031-9422(77)80115-5
- 22694 - Papaver orientale: 10.1016/S0031-9422(00)81705-7
- 22694 - Papaver orientale: 10.1021/NP50058A030
- 22694 - Papaver orientale: 10.1055/S-2006-961487
- 22694 - Papaver orientale: LTS0157020
- 215228 - Papaver pseudo-orientale:
- 215228 - Papaver pseudo-orientale: 10.1016/0031-9422(77)80115-5
- 215228 - Papaver pseudo-orientale: 10.1016/S0031-9422(00)81705-7
- 215228 - Papaver pseudo-orientale: 10.1021/NP50058A030
- 215228 - Papaver pseudo-orientale: LTS0157020
- 3469 - Papaver somniferum:
- 3469 - Papaver somniferum: 10.1016/0031-9422(92)80111-Q
- 3469 - Papaver somniferum: 10.1016/S0031-9422(00)84526-4
- 3469 - Papaver somniferum: 10.1016/S0031-9422(00)90793-3
- 3469 - Papaver somniferum: 10.1021/BI00259A001
- 3469 - Papaver somniferum: 10.1039/C39890001725
- 3469 - Papaver somniferum: 10.1055/S-2006-961487
- 3469 - Papaver somniferum: 10.3987/COM-94-S73
- 3469 - Papaver somniferum: LTS0157020
- 400537 - Papaver triniifolium: 10.1055/S-2006-961487
- 400537 - Papaver triniifolium: 10.1055/S-2007-969808
- 400537 - Papaver triniifolium: LTS0157020
- 3465 - Papaveraceae: LTS0157020
- 63802 - Peumus: LTS0157020
- 63812 - Peumus boldus: 10.1021/NP50033A021
- 63812 - Peumus boldus: LTS0157020
- 200994 - Platycapnos: LTS0157020
- 1095362 - Platycapnos saxicola: 10.1016/0031-9422(91)83200-5
- 1095362 - Platycapnos saxicola: LTS0157020
- 54435 - Pseudofumaria: LTS0157020
- 367485 - Pseudofumaria alba: LTS0157020
- 2029228 - Pseudofumaria alba subsp. acaulis: 10.1055/S-2007-981549
- 2029228 - Pseudofumaria alba subsp. acaulis: LTS0157020
- 38923 - Sarcocapnos: LTS0157020
- 185659 - Sarcocapnos crassifolia:
- 185659 - Sarcocapnos crassifolia: 10.1016/0031-9422(89)85050-2
- 185659 - Sarcocapnos crassifolia: 10.1016/S0031-9422(00)95198-7
- 185659 - Sarcocapnos crassifolia: LTS0157020
- 38924 - Sarcocapnos enneaphylla: LTS0157020
- 107196 - Sarcocapnos saetabensis:
- 107196 - Sarcocapnos saetabensis: 10.1016/0031-9422(91)85069-C
- 107196 - Sarcocapnos saetabensis: 10.1016/S0031-9422(00)95198-7
- 107196 - Sarcocapnos saetabensis: LTS0157020
- 147243 - Stephania: LTS0157020
- 152368 - Stephania brachyandra:
- 152367 - Stephania cephalantha:
- 152367 - Stephania cephalantha: 10.1021/NP50099A005
- 152367 - Stephania cephalantha: 10.1021/NP960080D
- 152367 - Stephania cephalantha: 10.1248/CPB.45.470
- 152367 - Stephania cephalantha: LTS0157020
- 216145 - Stephania delavayi:
- 1501458 - Stephania dielsiana:
- 152364 - Stephania elegans:
- 1501461 - Stephania epigaea:
- 1501470 - Stephania mashanica:
- 2053797 - Stephania micrantha:
- 1501471 - Stephania officinarum:
- 1924984 - Stephania pierrei: 10.1021/NP50099A005
- 1924984 - Stephania pierrei: 10.1021/NP960080D
- 1924984 - Stephania pierrei: LTS0157020
- 152371 - Stephania yunnanensis:
- 152371 - Stephania yunnanensis: 10.1016/S0031-9422(00)80650-0
- 152371 - Stephania yunnanensis: LTS0157020
- 35493 - Streptophyta: LTS0157020
- 461635 - Strychnopsis: LTS0157020
- 461636 - Strychnopsis thouarsii: 10.1016/0305-1978(95)00051-8
- 461636 - Strychnopsis thouarsii: LTS0157020
- 58023 - Tracheophyta: LTS0157020
- 295132 - Trepobates:
- 33090 - Viridiplantae: LTS0157020
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Neda Safa, Tomaž Trobec, Darren C Holland, Blazej Slazak, Erik Jacobsson, Jeffrey A Hawkes, Robert Frangež, Kristina Sepčić, Ulf Göransson, Lindon W K Moodie, Luke P Robertson. Spatial Distribution and Stability of Cholinesterase Inhibitory Protoberberine Alkaloids from Papaver setiferum.
Journal of natural products.
2022 01; 85(1):215-224. doi:
10.1021/acs.jnatprod.1c00980
. [PMID: 34910498] - Liyuan Zhu, Jiahua Mei, Chaorui Peng, Yuancui Zhao, Yunkuan Liu, Lili Cui, Kun Zhang, Yunshu Ma. Pharmacokinetics, tissue distribution, plasma protein binding rate and excretion of sinoacutine following intravenous administration in female and male Sprague-Dawley rats.
Xenobiotica; the fate of foreign compounds in biological systems.
2022 Jan; 52(1):91-98. doi:
10.1080/00498254.2022.2036390
. [PMID: 35099357] - Yuancui Zhao, Lili Cui, Xing Xin Yang, Xingqian Sun, Yunkuan Liu, Zixian Yang, Liyuan Zhu, Chaorui Peng, Danye Li, Junfei Cai, Yunshu Ma. Sinoacutine inhibits inflammatory responses to attenuates acute lung injury by regulating NF-κB and JNK signaling pathways.
BMC complementary medicine and therapies.
2021 Nov; 21(1):284. doi:
10.1186/s12906-021-03458-0
. [PMID: 34801005] - Scott C Farrow, Jillian M Hagel, Guillaume A W Beaudoin, Darcy C Burns, Peter J Facchini. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy.
Nature chemical biology.
2015 Sep; 11(9):728-32. doi:
10.1038/nchembio.1879
. [PMID: 26147354] - Akpevwe Onoyovwe, Jillian M Hagel, Xue Chen, Morgan F Khan, David C Schriemer, Peter J Facchini. Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers.
The Plant cell.
2013 Oct; 25(10):4110-22. doi:
10.1105/tpc.113.115113
. [PMID: 24104569] - Nadja Grobe, Toni M Kutchan, Meinhart H Zenk. Rat CYP2D2, not 2D1, is functionally conserved with human CYP2D6 in endogenous morphine formation.
FEBS letters.
2012 Jun; 586(13):1749-53. doi:
10.1016/j.febslet.2012.05.021
. [PMID: 22641033] - Champa P Wijekoon, Peter J Facchini. Systematic knockdown of morphine pathway enzymes in opium poppy using virus-induced gene silencing.
The Plant journal : for cell and molecular biology.
2012 Mar; 69(6):1052-63. doi:
10.1111/j.1365-313x.2011.04855.x
. [PMID: 22098111] - Hefen Sun, Helei Hou, Ping Lu, Lixing Zhang, Fangyu Zhao, Chao Ge, Tingpu Wang, Ming Yao, Jinjun Li. Isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/m cell cycle arrest and apoptosis.
PloS one.
2012; 7(5):e36808. doi:
10.1371/journal.pone.0036808
. [PMID: 22623962] - Hongjing Dong, Yongqing Zhang, Lei Fang, Wenjuan Duan, Xiao Wang, Luqi Huang. Combinative application of pH-zone-refining and conventional high-speed counter-current chromatography for preparative separation of alkaloids from Stephania kwangsiensis.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2011 Apr; 879(13-14):945-9. doi:
10.1016/j.jchromb.2011.02.051
. [PMID: 21450539] - Helene de Wet, Fanie R van Heerden, Ben-Erik van Wyk. Alkaloidal variation in cissampelos capensis (Menispermaceae).
Molecules (Basel, Switzerland).
2011 Apr; 16(4):3001-9. doi:
10.3390/molecules16043001
. [PMID: 21475122] - Yasuhiro Higashi, Toni M Kutchan, Thomas J Smith. Atomic structure of salutaridine reductase from the opium poppy (Papaver somniferum).
The Journal of biological chemistry.
2011 Feb; 286(8):6532-41. doi:
10.1074/jbc.m110.168633
. [PMID: 21169353] - Nadja Grobe, Xuan Ren, Toni M Kutchan, Meinhart H Zenk. An (R)-specific N-methyltransferase involved in human morphine biosynthesis.
Archives of biochemistry and biophysics.
2011 Feb; 506(1):42-7. doi:
10.1016/j.abb.2010.11.010
. [PMID: 21093406] - Isabel Desgagné-Penix, Morgan F Khan, David C Schriemer, Dustin Cram, Jacek Nowak, Peter J Facchini. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures.
BMC plant biology.
2010 Nov; 10(?):252. doi:
10.1186/1471-2229-10-252
. [PMID: 21083930] - Nadja Grobe, Marc Lamshöft, Robert G Orth, Birgit Dräger, Toni M Kutchan, Meinhart H Zenk, Michael Spiteller. Urinary excretion of morphine and biosynthetic precursors in mice.
Proceedings of the National Academy of Sciences of the United States of America.
2010 May; 107(18):8147-52. doi:
10.1073/pnas.1003423107
. [PMID: 20421505] - Li He, Yuanhu Zhang, Lijia Tang, Shaohui Song, Qianyun Sun. [Alkaloids in stems and leaves of Stephania cepharantha].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 May; 35(10):1272-5. doi:
10.4268/cjcmm20101011
. [PMID: 20707195] - Yasuhiro Higashi, Thomas J Smith, Joseph M Jez, Toni M Kutchan. Crystallization and preliminary X-ray diffraction analysis of salutaridine reductase from the opium poppy Papaver somniferum.
Acta crystallographica. Section F, Structural biology and crystallization communications.
2010 Feb; 66(Pt 2):163-6. doi:
10.1107/s174430910904932x
. [PMID: 20124713] - Jillian M Hagel, Peter J Facchini. Biochemistry and occurrence of o-demethylation in plant metabolism.
Frontiers in physiology.
2010; 1(?):14. doi:
10.3389/fphys.2010.00014
. [PMID: 21423357] - Jörg Ziegler, Peter J Facchini, René Geissler, Jürgen Schmidt, Christian Ammer, Robert Kramell, Susan Voigtländer, Andreas Gesell, Silke Pienkny, Wolfgang Brandt. Evolution of morphine biosynthesis in opium poppy.
Phytochemistry.
2009 Oct; 70(15-16):1696-707. doi:
10.1016/j.phytochem.2009.07.006
. [PMID: 19665152] - Jörg Ziegler, Wolfgang Brandt, René Geissler, Peter J Facchini. Removal of substrate inhibition and increase in maximal velocity in the short chain dehydrogenase/reductase salutaridine reductase involved in morphine biosynthesis.
The Journal of biological chemistry.
2009 Sep; 284(39):26758-67. doi:
10.1074/jbc.m109.030957
. [PMID: 19648114] - Andreas Gesell, Megan Rolf, Jörg Ziegler, María Luisa Díaz Chávez, Fong-Chin Huang, Toni M Kutchan. CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy.
The Journal of biological chemistry.
2009 Sep; 284(36):24432-42. doi:
10.1074/jbc.m109.033373
. [PMID: 19567876] - Nadja Grobe, Baichen Zhang, Ursula Fisinger, Toni M Kutchan, Meinhart H Zenk, F Peter Guengerich. Mammalian cytochrome P450 enzymes catalyze the phenol-coupling step in endogenous morphine biosynthesis.
The Journal of biological chemistry.
2009 Sep; 284(36):24425-31. doi:
10.1074/jbc.m109.011320
. [PMID: 19561069] - Katja Kempe, Yasuhiro Higashi, Susanne Frick, Khaled Sabarna, Toni M Kutchan. RNAi suppression of the morphine biosynthetic gene salAT and evidence of association of pathway enzymes.
Phytochemistry.
2009 Mar; 70(5):579-89. doi:
10.1016/j.phytochem.2009.03.002
. [PMID: 19359021] - Kristy M Hawkins, Christina D Smolke. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae.
Nature chemical biology.
2008 Sep; 4(9):564-73. doi:
10.1038/nchembio.105
. [PMID: 18690217] - Kinuko Iwasa, Teturo Takahashi, Yumi Nishiyama, Masataka Moriyasu, Makiko Sugiura, Atsuko Takeuchi, Chisato Tode, Harukuni Tokuda, Kazuyoshi Takeda. Online structural elucidation of alkaloids and other constituents in crude extracts and cultured cells of Nandina domestica by combination of LC-MS/MS, LC-NMR, and LC-CD analyses.
Journal of natural products.
2008 Aug; 71(8):1376-85. doi:
10.1021/np8001496
. [PMID: 18671433] - Robert S Allen, James A C Miller, Julie A Chitty, Anthony J Fist, Wayne L Gerlach, Philip J Larkin. Metabolic engineering of morphinan alkaloids by over-expression and RNAi suppression of salutaridinol 7-O-acetyltransferase in opium poppy.
Plant biotechnology journal.
2008 Jan; 6(1):22-30. doi:
10.1111/j.1467-7652.2007.00293.x
. [PMID: 17854406] - René Geissler, Wolfgang Brandt, Jörg Ziegler. Molecular modeling and site-directed mutagenesis reveal the benzylisoquinoline binding site of the short-chain dehydrogenase/reductase salutaridine reductase.
Plant physiology.
2007 Apr; 143(4):1493-503. doi:
10.1104/pp.106.095166
. [PMID: 17337529] - Jörg Ziegler, Susan Voigtländer, Jürgen Schmidt, Robert Kramell, Otto Miersch, Christian Ammer, Andreas Gesell, Toni M Kutchan. Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis.
The Plant journal : for cell and molecular biology.
2006 Oct; 48(2):177-92. doi:
10.1111/j.1365-313x.2006.02860.x
. [PMID: 16968522] - Franz Bracher, Wolfram J Eisenreich, Jörg Mühlbacher, Michael Dreyer, Gerhard Bringmann. Saludimerines A and B, novel-type dimeric alkaloids with stereogenic centers and configurationally semistable biaryl axes.
The Journal of organic chemistry.
2004 Dec; 69(25):8602-8. doi:
10.1021/jo048631p
. [PMID: 15575735] - Susanne Frick, Julie A Chitty, Robert Kramell, Jürgen Schmidt, Robert S Allen, Philip J Larkin, Toni M Kutchan. Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots.
Transgenic research.
2004 Dec; 13(6):607-13. doi:
10.1007/s11248-004-2892-6
. [PMID: 15672841] - J Huang, J Guo, G Duan. [Determination of 7 bio-active alkaloids in Stephania plants by RP-HPLC].
Yao xue xue bao = Acta pharmaceutica Sinica.
1998 Jul; 33(7):528-33. doi:
. [PMID: 12016887]
- T G Dekker, T G Fourie, E Matthee, F O Snyckers. A morphinan alkaloid from Antizoma angustifolia.
Journal of natural products.
1988 May; 51(3):584. doi:
10.1021/np50057a023
. [PMID: 3404154] - H Joseph, J Gleye, C Moulis, L J Mensah, C Roussakis, C Gratas. Justicidin B, a cytotoxic principle from Justicia pectoralis.
Journal of natural products.
1988 May; 51(3):599-600. doi:
10.1021/np50057a030
. [PMID: 3404155] - M Tin-Wa, N R Farnsworth, K A Zirvi. Sinoacutine from Glaucium contortuplicatum Boiss.
Journal of pharmaceutical sciences.
1976 May; 65(5):755-6. doi:
10.1002/jps.2600650536
. [PMID: 932953]