Isoquercitrin (BioDeep_00000000179)

 

Secondary id: BioDeep_00000270288, BioDeep_00000275350, BioDeep_00000337862, BioDeep_00000408302, BioDeep_00000894603

natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs PANOMIX-Anthocyanidin BioNovoGene_Lab2019


代谢物信息卡片


2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

化学式: C21H20O12 (464.0955)
中文名称: 槲皮素 3-β-D-葡萄糖甙, 槲皮素-3-葡萄糖苷, 异槲皮苷, 异懈皮苷, 槲皮素-3-O-葡萄糖苷, 槲皮素-3-β-D-葡萄糖苷、异槲皮苷
谱图信息: 最多检出来源 Viridiplantae(plant) 32.7%

Reviewed

Last reviewed on 2024-07-09.

Cite this Page

Isoquercitrin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/isoquercitrin (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000179). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: c1(cc(c2c(c1)oc(c(c2=O)O[C@H]1[C@@H]([C@@H]([C@@H]([C@H](O1)CO)O)O)O)c1ccc(c(c1)O)O)O)O
InChI: InChI=1/C21H20O12/c22-6-13-15(27)17(29)18(30)21(32-13)33-20-16(28)14-11(26)4-8(23)5-12(14)31-19(20)7-1-2-9(24)10(25)3-7/h1-5,13,15,17-18,21-27,29-30H,6H2/t13-,15-,17+,18-,21+/m1/s1

描述信息

Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-).
Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others.
Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available.
Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation.

Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia
A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells

[Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt
[Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt
[Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt
[Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt
[Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt
[Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt
[Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt
[Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt
[Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt
[Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt

Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2].
Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2].
Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.
Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

同义名列表

123 个代谢物同义名

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one; 2-(3,4-Dihydroxy-phenyl)-5,7-dihydroxy-3-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-chromen-4-one; 4H-1-Benzopyran-4-one, 2-(3,4-dihydroxy-phenyl)-3-(.beta.-D-glucofuranosyloxy)-5,7-dihydroxy-; 4H-1-BENZOPYRAN-4-ONE, 2-(3,4-DIHYDROXYPHENYL)-3-(.BETA.-D-GLUCOPYRANOSYLOXY)-5,7-DIHYDROXY-; 2-(3,4-Dihydroxyphenyl)-3-(b-D-glucopyranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one, 9CI; 4H-1-BENZOPYRAN-4-ONE, 2- (3,4-DIHYDROXYPHENYL)-3- (SS-D-GLUCOFURANOSYLOXY)-5,7-DIHYDROXY-; 4H-1-benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3-(beta-D-glucopyranosyloxy)-5,7-dihydroxy-; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(3,4-dihydroxyphenyl)-3-(beta-D-glucopyranosyloxy)-; 4H-1-benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3-(beta-D-glucofuranosyloxy)-5,7-dihydroxy; 2-(3,4-Dihidroxyphenyl)-3-(beta-D-glucofuranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 4H-1-BENZOPYRAN-4-ONE, 2-(3,4-DIHYDROXYPHENYL)-3-(SS-D-GLUCOFURANOSYLOXY)-5,7-DIHYDROXY-; 2-(3,4-dihydroxyphenyl)-3-(beta-D-glucopyranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 2-(3,4-dihydroxyphenyl)-3-(beta-D-glucofuranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 4H-1-Benzopyran-4-one,2-(3,4-dihydroxyphenyl)-3-(b-D-glucopyranosyloxy)-5,7-dihydroxy-; 2-(3,4-Dihidroxyphenyl)-3-(β-D-glucofuranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 2-(3,4-Dihydroxyphenyl)-3-(b-D-glucopyranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 2-(3,4-Dihydroxyphenyl)-3-(β-D-glucopyranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 2-(3,4-Dihidroxyphenyl)-3-(b-D-glucofuranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl beta-D-glucopyranoside; flavone, 3,3,4,5,7-pentahydroxy-, 3-beta-D-glucofuranoside; Isoquercitrin, primary pharmaceutical reference standard; 3,4,5,7-TETRAHYDROXYFLAVONE-3-.BETA.-D-GLUCOPYRANOSIDE; QUERCETIN 3-O-GLUCOSIDE (CONSTITUENT OF GINKGO) [DSC]; 3,4,5,7-TETRAHYDROXYFLAVONE-3-beta-D-GLUCOPYRANOSIDE; 3’,4’,5,7-Tetrahydroxyflavone-3-β-D-glucopyranoside; 3,4,5,7-Tetrahydroxyflavone-3-β-D-glucopyranoside; 3,3,4,5,7-pentahydroxyflavone-3-beta-O-glucoside; QUERCETIN 3-O-GLUCOSIDE (CONSTITUENT OF GINKGO); 3-Glucopyranosyloxy-3,4,5,7-tetrahydroxyflavone; 3,3,4,5,7-Pentahydroxyflavone 3-beta-glucoside; 4-18-00-03493 (Beilstein Handbook Reference); Quercetin 3-beta-D-glucoside, >=90\\% (HPLC); 3,3,4,5,7-Pentahydroxyflavone 3-A-glucoside; Quercetin 3-glucoside, analytical standard; (-)-Quercetin-3-O-beta-D-glucopyranoside; quercetin -3-O-beta-D-galactopyranoside; QUERCETIN 3-O-GLUCOPYRANOSIDE [WHO-DD]; Quercetin-3-O-beta-D-galactopyranoside; Quercetin 3-O-.beta.-D-glucopyranoside; quercetin-3-O-beta-D-glucopyranoside; quercetin 3-(beta-D-glucofuranoside); quercetin 3-O-beta-D-glucopyranoside; 3-O-.BETA.-D-GLUCOPYRANOSYLQUERCETIN; quercetin 3-O-beta-D-glucofuranoside; Quercetin 3-beta-D-glucopyranoside; QUERCETIN-3-.BETA.-GLUCOPYRANOSIDE; quercetin-3-o-beta-glucopyranoside; 3-o-beta-d-glucopyranosylquercetin; Quercetin 3-O-β-D-glucopyranoside; Quercetin 3-O-b-D-glucopyranoside; quercetin-3-beta-glucopyranoside; QUERCETIN-3-O-.BETA.-D-GLUCOSIDE; 3-O-β-D-Glucopyranosylquercetin; Quercetin 3-β-D-glucopyranoside; Quercetin 3- beta -D-glucoside; quercetin 3-O-beta-D-glucoside; Quercetin-3-O-glucopyranoside; Quercetin-3-β-glucopyranoside; Quercetin 3-o-glucopyranoside; Quercetin 3-beta-O-glucoside; Quercetin 3-mono-D-glucoside; Quercetin 3-O-beta-glucoside; Quercetin 3-beta-D-glucoside; quercetin-3-O-beta-glucoside; Quercetin 3-O-β-D-glucoside; Quercetin 3beta-O-glucoside; Quercetin 3.beta.-glucoside; Quercetin 3-glucopyranoside; OVSQVDMCBVZWGM-QSOFNFLRSA-N; Quercetin 3-beta-glucoside; Quercetin 3-ss-D-glucoside; 3-beta-D-Glucosylquercetin; QUERCETIN 3beta-GLUCOSIDE; Quercetin 3-β-D-glucoside; Quercetol 3-monoglucoside; Quercetin 3-O-β-glucoside; 3-glucoside isoquercitrin; Quercetin 3-monoglucoside; Quercetin 3β-O-glucoside; Quercetin 3-D-glucoside; Quercetin 3-O-glucoside; quercetin-3-O-glucoside; 3-β-D-Glucosylquercetin; Quercetin 3β-glucoside; Ronacare isoquercetin; Quercetin 3-glucoside; Quercetol 3-glucoside; quercetin-3-glucoside; Glucosyl 3-quercetin; Glucosyl-3-quercetin; Quercetin-3-glucose; ISOQUERCETIN [INCI]; 3-Glucosylquercetin; quercetin glucoside; ISOQUERCITRIN [MI]; Isoquercetin, (-)-; (-)-Isoquercetrin; Isoquercitrin (6); isoquercitroside; UNII-6HN2PC637T; CONTIGOSIDE B; Isoquercetrin; Isoquercitrin; isoquercitin; PDSP1_001363; isotrifoliin; PDSP2_001347; Isoquercetin; ACon1_002134; trifoliin A; 6HN2PC637T; Hirsutrin; hydroside; trifoliin; Q 5; HW2; 2-(3,4-Dihidroxyphenyl)-3-(β-D-glucofuranosyloxy)-5,7-dihydroxy- 4H-1-benzopyran-4-one; Quercetin 3-O-glucoside



数据库引用编号

67 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(1)

PharmGKB(0)

347 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AKT1, CASP3, CAT, CTNNB1, NFE2L2, PIK3CA, PRKAA2, PTGS2, SYT1, TLR4, TYR
Peripheral membrane protein 1 PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 2 HMOX1, PTGS2
Nucleus 7 AKT1, CASP3, CTNNB1, HMOX1, NFE2L2, PCNA, PRKAA2
cytosol 9 AKT1, CASP3, CAT, CTNNB1, HMOX1, LIPE, NFE2L2, PIK3CA, PRKAA2
dendrite 1 PRKAA2
nuclear body 1 PCNA
centrosome 3 CTNNB1, NFE2L2, PCNA
nucleoplasm 7 AKT1, CASP3, CTNNB1, HMOX1, NFE2L2, PCNA, PRKAA2
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 6 AKT1, CTNNB1, LIPE, MGAM, TLR4, TNF
Cytoplasmic side 1 HMOX1
lamellipodium 3 AKT1, CTNNB1, PIK3CA
Multi-pass membrane protein 1 SLC5A1
Synapse 2 CTNNB1, SYT1
cell cortex 2 AKT1, CTNNB1
cell junction 1 CTNNB1
cell surface 2 TLR4, TNF
glutamatergic synapse 4 AKT1, CASP3, CTNNB1, SYT1
Golgi apparatus 3 NFE2L2, PRKAA2, SYT1
Golgi membrane 1 INS
neuronal cell body 3 CASP3, PRKAA2, TNF
postsynapse 1 AKT1
presynaptic membrane 2 CTNNB1, SYT1
synaptic vesicle 1 SYT1
Cytoplasm, cytosol 2 LIPE, NFE2L2
Lysosome 1 TYR
plasma membrane 9 AKT1, CTNNB1, MGAM, NFE2L2, PIK3CA, SLC5A1, SYT1, TLR4, TNF
presynaptic active zone 1 SYT1
synaptic vesicle membrane 1 SYT1
Membrane 9 AKT1, CAT, CTNNB1, HMOX1, LIPE, MGAM, PRKAA2, SYT1, TLR4
apical plasma membrane 2 MGAM, SLC5A1
axon 2 PRKAA2, SYT1
basolateral plasma membrane 1 CTNNB1
caveola 2 LIPE, PTGS2
extracellular exosome 6 BMP3, CAT, CTNNB1, MGAM, PCNA, SLC5A1
endoplasmic reticulum 2 HMOX1, PTGS2
extracellular space 5 BMP3, HMOX1, IL6, INS, TNF
perinuclear region of cytoplasm 6 CTNNB1, HMOX1, PIK3CA, SLC5A1, TLR4, TYR
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 1 CAT
protein-containing complex 4 AKT1, CAT, CTNNB1, PTGS2
intracellular membrane-bounded organelle 2 CAT, TYR
Microsome membrane 1 PTGS2
postsynaptic density 2 CASP3, SYT1
Single-pass type I membrane protein 2 TLR4, TYR
Secreted 4 BMP3, IL6, INS, MGAM
extracellular region 6 BMP3, CAT, IL6, INS, MGAM, TNF
Single-pass membrane protein 2 MGAM, SYT1
mitochondrial outer membrane 1 HMOX1
excitatory synapse 1 SYT1
hippocampal mossy fiber to CA3 synapse 1 SYT1
mitochondrial matrix 1 CAT
transcription regulator complex 1 CTNNB1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 SYT1
external side of plasma membrane 2 TLR4, TNF
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
microtubule cytoskeleton 1 AKT1
Wnt signalosome 1 CTNNB1
Melanosome membrane 1 TYR
Early endosome 2 SLC5A1, TLR4
apical part of cell 1 CTNNB1
cell-cell junction 2 AKT1, CTNNB1
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
postsynaptic membrane 2 CTNNB1, SYT1
Apical cell membrane 1 SLC5A1
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 2 CAT, CTNNB1
spindle 1 AKT1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
Peroxisome 1 CAT
intracellular vesicle 1 SLC5A1
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
nuclear speck 1 PRKAA2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 2 PTGS2, SYT1
ciliary basal body 1 AKT1
chromatin 2 NFE2L2, PCNA
mediator complex 1 NFE2L2
phagocytic cup 2 TLR4, TNF
cell periphery 1 CTNNB1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
brush border membrane 1 SLC5A1
spindle pole 1 CTNNB1
nuclear replication fork 1 PCNA
chromosome, telomeric region 1 PCNA
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
Endomembrane system 2 CTNNB1, SYT1
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
tertiary granule membrane 1 MGAM
Melanosome 1 TYR
cytoplasmic stress granule 1 PRKAA2
euchromatin 1 CTNNB1
replication fork 1 PCNA
exocytic vesicle 1 SYT1
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
male germ cell nucleus 1 PCNA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
dense core granule 1 SYT1
transport vesicle 1 INS
beta-catenin-TCF complex 1 CTNNB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
presynaptic active zone cytoplasmic component 1 CTNNB1
nuclear lamina 1 PCNA
clathrin-coated endocytic vesicle membrane 1 SYT1
protein-DNA complex 2 CTNNB1, NFE2L2
ficolin-1-rich granule membrane 1 MGAM
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, secretory vesicle membrane 1 SYT1
nucleotide-activated protein kinase complex 1 PRKAA2
postsynaptic cytosol 1 SYT1
catenin complex 1 CTNNB1
presynaptic cytosol 1 SYT1
cyclin-dependent protein kinase holoenzyme complex 1 PCNA
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
neuron projection terminus 1 SYT1
Cytoplasmic vesicle, secretory vesicle, chromaffin granule membrane 1 SYT1
chromaffin granule membrane 1 SYT1
clathrin-sculpted gamma-aminobutyric acid transport vesicle membrane 1 SYT1
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
intracellular organelle 1 SLC5A1
beta-catenin-TCF7L2 complex 1 CTNNB1
clathrin-sculpted acetylcholine transport vesicle membrane 1 SYT1
clathrin-sculpted glutamate transport vesicle membrane 1 SYT1
clathrin-sculpted monoamine transport vesicle membrane 1 SYT1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Qi-Yang Wang, Hao-Yu Wang, Wei-Guo Zhang, Jian-Zhong Xu. Economical one-pot synthesis of isoquercetin and D-allulose from quercetin and sucrose using whole-cell biocatalyst. Enzyme and microbial technology. 2024 May; 176(?):110412. doi: 10.1016/j.enzmictec.2024.110412. [PMID: 38402828]
  • Tengfei Niu, Chaokang Huang, Rufeng Wang, Li Yang, Shujuan Zhao, Zhengtao Wang. Combinatorial metabolic engineering of Bacillus subtilis enables the efficient biosynthesis of isoquercitrin from quercetin. Microbial cell factories. 2024 Apr; 23(1):114. doi: 10.1186/s12934-024-02390-5. [PMID: 38641799]
  • Hong-Liu Jin, Xiao-Ying Feng, Sen-Ling Feng, Ling Dai, Wen-Ting Zhu, Zhong-Wen Yuan. Isoquercitrin attenuates the progression of non-alcoholic steatohepatitis in mice by modulating galectin-3-mediated insulin resistance and lipid metabolism. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jan; 123(?):155188. doi: 10.1016/j.phymed.2023.155188. [PMID: 38056146]
  • Meijuan Yi, Opeyemi B Fasina, Yajing Li, Lan Xiang, Jianhua Qi. Mixture of Peanut Skin Extract, Geniposide, and Isoquercitrin Improves the Hepatic Lipid Accumulation of Mice via Modification of Gut Microbiota Homeostasis and the TLR4 and AMPK Signaling Pathways. International journal of molecular sciences. 2023 Nov; 24(23):. doi: 10.3390/ijms242316684. [PMID: 38069009]
  • Xinggu Luo, Yongqian Gong, Qingshan Jiang, Qin Wang, Songtao Li, Lijun Liu. Isoquercitrin promotes ferroptosis and oxidative stress in nasopharyngeal carcinoma via the AMPK/NF-κB pathway. Journal of biochemical and molecular toxicology. 2023 Sep; ?(?):e23542. doi: 10.1002/jbt.23542. [PMID: 37712196]
  • Muxin Zheng, Shenghao Chen, Yi Liu, Yang He. α-Glucosidase inhibitory activities of constituents from Psidium guajava leaves. Natural product research. 2023 Jul; ?(?):1-4. doi: 10.1080/14786419.2023.2238113. [PMID: 37506309]
  • Ye-Jin Moon, Hee-Seong Kim, Min-Ji Kim, Hyeon-Yeong Im, Yun-Hee Lee. Synergistic Effects of Heat-Treated Green Tea Extract and Enzymatically-Modified Isoquercitrin in Preventing Obesity. Nutrients. 2023 Jun; 15(13):. doi: 10.3390/nu15132931. [PMID: 37447257]
  • Mohamad Fawzi Mahomoodally, Gokhan Zengin, Seebaluck-Sandoram Roumita, Giovanni Caprioli, Ahmed M Mustafa, Diletta Piatti, Evren Yıldıztugay, Gunes Ak, Ayşe Esra Karadağ, Asaad Khalid, Ashraf N Abdalla, Abdullahi Ibrahim Uba, Fatih Demirci. Chemical Characterization and Multidirectional Biological Effects of Different Solvent Extracts of Arum elongatum: in Vitro and in Silico Approaches. Chemistry & biodiversity. 2023 Mar; ?(?):e202201181. doi: 10.1002/cbdv.202201181. [PMID: 36891864]
  • Sou Hyun Kim, Chawon Yun, Doyoung Kwon, Yun-Hee Lee, Jae-Hwan Kwak, Young-Suk Jung. Effect of Isoquercitrin on Free Fatty Acid-Induced Lipid Accumulation in HepG2 Cells. Molecules (Basel, Switzerland). 2023 Feb; 28(3):. doi: 10.3390/molecules28031476. [PMID: 36771140]
  • Jiang Liu, LiJun Ren, HaoWen Wang, Zuowei Li. Isoquercitrin Induces Endoplasmic Reticulum Stress and Immunogenic Cell Death in Gastric Cancer Cells. Biochemical genetics. 2022 Dec; ?(?):. doi: 10.1007/s10528-022-10309-1. [PMID: 36480095]
  • Majid Manzoor, Makoto Muroi, Naoko Ogawa, Hiroki Kobayashi, Haruna Nishimura, Danni Chen, Opeyemi B Fasina, Jianyu Wang, Hiroyuki Osada, Minoru Yoshida, Lan Xiang, Jianhua Qi. Isoquercitrin from Apocynum venetum L. produces an anti-obesity effect on obese mice by targeting C-1-tetrahydrofolate synthase, carbonyl reductase, and glutathione S-transferase P and modification of the AMPK/SREBP-1c/FAS/CD36 signaling pathway in mice in vivo. Food & function. 2022 Oct; 13(21):10923-10936. doi: 10.1039/d2fo02438a. [PMID: 36205648]
  • Xue Li, Dongyue Zhou, Di Yang, Yunhua Fu, Xingyu Tao, Xuan Hu, Yulin Dai, Hao Yue. Isoquercitrin Attenuates Osteogenic Injury in MC3T3 Osteoblastic Cells and the Zebrafish Model via the Keap1-Nrf2-ARE Pathway. Molecules (Basel, Switzerland). 2022 May; 27(11):. doi: 10.3390/molecules27113459. [PMID: 35684398]
  • Daisuke Takahashi, Eri Matsunaga, Tomohiro Yamashita, Jose M M Caaveiro, Yoshito Abe, Tadashi Ueda. Compound screening identified gossypetin and isoquercitrin as novel inhibitors for amyloid fibril formations of Vλ6 proteins associated with AL amyloidosis. Biochemical and biophysical research communications. 2022 03; 596(?):22-28. doi: 10.1016/j.bbrc.2022.01.066. [PMID: 35108650]
  • Fatma Kübra Ata, Fahriye Ercan, Serap Yalcin Azarkan. In vivo, in vitro and Molecular Modelling Analysis of Isoquercetin, Roseoside, Coreximine, Anonaine, and Arianacin Molecules. Current computer-aided drug design. 2022; 18(3):168-184. doi: 10.2174/1573409918666220509213313. [PMID: 35538817]
  • Shi-Chang Cai, Chuan-An Yi, Xiang-Shang Hu, Gen-Yun Tang, Li-Ming Yi, Xiu-Ping Li. Isoquercitrin Upregulates Aldolase C Through Nrf2 to Ameliorate OGD/R-Induced Damage in SH-SY5Y Cells. Neurotoxicity research. 2021 Dec; 39(6):1959-1969. doi: 10.1007/s12640-021-00430-1. [PMID: 34773594]
  • Edward Owen Norman, Stuart Hombsch, James Lever, Robert Brkljača, Jonathan White, Robin B Gasser, Aya C Taki, Sylvia Urban. Phytochemical Profiling and Biological Testing of the Constituents of the Australian Plant Haemodorum brevisepalum. Journal of natural products. 2021 11; 84(11):2832-2844. doi: 10.1021/acs.jnatprod.1c00509. [PMID: 34780692]
  • John Paul Sese Tosoc, Olga Macas Nuñeza, Thangirala Sudha, Noureldien H E Darwish, Shaker A Mousa. Anticancer Effects of the Corchorus olitorius Aqueous Extract and Its Bioactive Compounds on Human Cancer Cell Lines. Molecules (Basel, Switzerland). 2021 Oct; 26(19):. doi: 10.3390/molecules26196033. [PMID: 34641577]
  • Arti Nile, Shivraj Hariram Nile, Juhyun Shin, Gyunseok Park, Jae-Wook Oh. Quercetin-3-Glucoside Extracted from Apple Pomace Induces Cell Cycle Arrest and Apoptosis by Increasing Intracellular ROS Levels. International journal of molecular sciences. 2021 Oct; 22(19):. doi: 10.3390/ijms221910749. [PMID: 34639090]
  • Małgorzata Kikowska, Barbara Thiem, Karolina Jafernik, Marta Klimek-Szczykutowicz, Elżbieta Studzińska-Sroka, Halina Ekiert, Agnieszka Szopa. Effect of Elicitation with (+)-Usnic Acid on Accumulation of Phenolic Acids and Flavonoids in Agitated Microshoots of Eryngium alpinum L. Molecules (Basel, Switzerland). 2021 Sep; 26(18):. doi: 10.3390/molecules26185532. [PMID: 34577004]
  • Chan-Su Rha, Cheon-Seok Park, Dae-Ok Kim. Optimized enzymatic synthesis of digestive resistant anomalous isoquercitrin glucosides using amylosucrase and response surface methodology. Applied microbiology and biotechnology. 2021 Sep; 105(18):6931-6941. doi: 10.1007/s00253-021-11532-3. [PMID: 34477942]
  • Xu Pang, Mei Wang, Shuang-Yan Wang, Jie Zhang, Ya-Peng Du, Ye Zhao, Xiao-Hui Zheng, Bai-Ping Ma. Phenolic compounds from the leaves of Crataegus pinnatifida Bge. var. major N.E.Br. And their lipid-lowering effects. Bioorganic & medicinal chemistry letters. 2021 09; 47(?):128211. doi: 10.1016/j.bmcl.2021.128211. [PMID: 34157392]
  • Francesca Guzzo, Rosita Russo, Cinzia Sanna, Odeta Celaj, Alessia Caredda, Angela Corona, Enzo Tramontano, Antonio Fiorentino, Francesca Esposito, Brigida D'Abrosca. Chemical Characterization and Anti-HIV-1 Activity Assessment of Iridoids and Flavonols from Scrophularia trifoliata. Molecules (Basel, Switzerland). 2021 Aug; 26(16):. doi: 10.3390/molecules26164777. [PMID: 34443358]
  • Cong Liu, Wenjuan Wang, Hao Li, Jiangang Liu, Peng Zhang, Yong Cheng, Xiaoyan Qin, Yang Hu, Yun Wei. The neuroprotective effects of isoquercitrin purified from apple pomace by high-speed countercurrent chromatography in the MPTP acute mouse model of Parkinson's disease. Food & function. 2021 Jul; 12(13):6091-6101. doi: 10.1039/d1fo00843a. [PMID: 34047315]
  • Aphichat Trakooncharoenvit, Hiroshi Hara, Tohru Hira. Combination of α-Glycosyl-Isoquercitrin and Soybean Fiber Promotes Quercetin Bioavailability and Glucagon-like Peptide-1 Secretion and Improves Glucose Homeostasis in Rats Fed a High-Fat High-Sucrose Diet. Journal of agricultural and food chemistry. 2021 Jun; 69(21):5907-5916. doi: 10.1021/acs.jafc.1c01388. [PMID: 34008400]
  • Mahendra P Kapoor, Masamitsu Moriwaki, Derek Timm, Hiroshi Yamagata, Go Maruyama, Yoshito Nisihara, Tomomi Nakazawa, Shinro Takata, Daichi Nakamura. 13-Weeks subchronic toxicity of isoquercitrin-γ-cyclodextrin (IQC-γCD) molecular inclusion complex in Sprague-Dawley rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Jun; 152(?):112217. doi: 10.1016/j.fct.2021.112217. [PMID: 33865935]
  • Edward Owen Norman, Hayden Tuohey, David Pizzi, Milane Saidah, Rachael Bell, Robert Brkljača, Jonathan M White, Robin B Gasser, Aya C Taki, Sylvia Urban. Phytochemical Profiling and Biological Activity of the Australian Carnivorous Plant, Drosera magna. Journal of natural products. 2021 04; 84(4):964-971. doi: 10.1021/acs.jnatprod.0c00869. [PMID: 33631073]
  • Gabriela Belen Martínez-Hernández, Enrique Jiménez-Ferrer, Rubén Román-Ramos, Alejandro Zamilpa, Manasés González-Cortazar, Ismael León-Rivera, Gabriela Vargas-Villa, Maribel Herrera-Ruiz. A mixture of quercetin 4'-O-rhamnoside and isoquercitrin from Tilia americana var. mexicana and its biotransformation products with antidepressant activity in mice. Journal of ethnopharmacology. 2021 Mar; 267(?):113619. doi: 10.1016/j.jep.2020.113619. [PMID: 33248185]
  • Lei Peng, Ming Zhao, Huan Li. Method Development and Validation for Simultaneous Determination of Six Flavonoids in Rat Eyes after Oral Administration of Diospyros kaki Leaves Extract by UPLC-MS/MS. Chemical & pharmaceutical bulletin. 2021 Feb; 69(2):218-221. doi: 10.1248/cpb.c20-00562. [PMID: 33268666]
  • Liyan Shui, Weina Wang, Mingjie Xie, Bingjue Ye, Xian Li, Yanning Liu, Min Zheng. Isoquercitrin induces apoptosis and autophagy in hepatocellular carcinoma cells via AMPK/mTOR/p70S6K signaling pathway. Aging. 2020 11; 12(23):24318-24332. doi: 10.18632/aging.202237. [PMID: 33260158]
  • Yingyi Wang, Jianping Li, Chenkai Chen, Jingbo Lu, Jingao Yu, Xuejun Xu, Yin Peng, Sen Zhang, Shu Jiang, Jianming Guo, Jinao Duan. Targeting the gut microbial metabolic pathway with small molecules decreases uremic toxin production. Gut microbes. 2020 11; 12(1):1-19. doi: 10.1080/19490976.2020.1823800. [PMID: 33016221]
  • Jing Chen, L Lee Hamm, Joshua D Bundy, Damodar R Kumbala, Shirisha Bodana, Sehgal Chandra, Chung-Shiuan Chen, Charlton C Starcke, Yajun Guo, Caroline M Schaefer, Eva Lustigova, Erin Mahone, Aarti M Vadalia, Terra Livingston, Katherine Obst, Jesus Hernandez, Syed Rizwan Bokhari, Myra Kleinpeter, Arnold B Alper, Ivo Lukitsch, Hua He, David C Nieman, Jiang He. Combination Treatment with Sodium Nitrite and Isoquercetin on Endothelial Dysfunction among Patients with CKD: A Randomized Phase 2 Pilot Trial. Clinical journal of the American Society of Nephrology : CJASN. 2020 11; 15(11):1566-1575. doi: 10.2215/cjn.02020220. [PMID: 33023894]
  • Fabiana Maia Santos, Camila Adão Malafaia, Daniel Luiz Reis Simas, Aline Barreto Paulino, Michelle F Muzitano, Naomi K Simas, Elaine A Cruz Da-Rocha, Ana Claudia F Amaral, Ivana C R Leal. Phenolic compounds from Tocoyena bullata mart (Rubiaceae) with inhibitory activity in mast cells degranulation. Natural product research. 2020 Nov; 34(22):3295-3298. doi: 10.1080/14786419.2018.1560281. [PMID: 30663374]
  • Mariem Haj Romdhane, Hassiba Chahdoura, Lillian Barros, Maria Inês Dias, Rúbia Carvalho Gomes Corrêa, Patricia Morales, Maria Flamini Hatem Ciudad-Mulero, Guido C F R Flamini, Hatem Majdoub, Isabel C F R Ferreira. Chemical Composition, Nutritional Value, and Biological Evaluation of Tunisian Okra Pods (Abelmoschus esculentus L. Moench). Molecules (Basel, Switzerland). 2020 Oct; 25(20):. doi: 10.3390/molecules25204739. [PMID: 33076530]
  • Diana Rey, Thaís Alves Fernandes, Paola Miranda Sulis, Renata Gonçalves, Michelle Sepúlveda R, Marisa Jádna Silva Frederico, Marcela Aragon, Luís Fernando Ospina, Geison M Costa, Fátima Regina Mena Barreto Silva. Cellular target of isoquercetin from Passiflora ligularis Juss for glucose uptake in rat soleus muscle. Chemico-biological interactions. 2020 Oct; 330(?):109198. doi: 10.1016/j.cbi.2020.109198. [PMID: 32692981]
  • Minsu Kim, Seowoo Im, Yoon Keun Cho, Cheoljun Choi, Yeonho Son, Doyoung Kwon, Young-Suk Jung, Yun-Hee Lee. Anti-Obesity Effects of Soybean Embryo Extract and Enzymatically-Modified Isoquercitrin. Biomolecules. 2020 09; 10(10):. doi: 10.3390/biom10101394. [PMID: 33008006]
  • Tlou Grace Manyelo, Nthabiseng Amenda Sebola, Zahra Mohammed Hassan, Monnye Mabelebele. Characterization of the Phenolic Compounds in Different Plant Parts of Amaranthus cruentus Grown under Cultivated Conditions. Molecules (Basel, Switzerland). 2020 Sep; 25(18):. doi: 10.3390/molecules25184273. [PMID: 32961894]
  • Lei Chen, Peimin Feng, Anjiao Peng, Xiangmiao Qiu, Wanling Lai, Lin Zhang, Wanling Li. Protective effects of isoquercitrin on streptozotocin-induced neurotoxicity. Journal of cellular and molecular medicine. 2020 09; 24(18):10458-10467. doi: 10.1111/jcmm.15658. [PMID: 32738031]
  • James J DiNicolantonio, Mark F McCarty. Targeting Casein kinase 2 with quercetin or enzymatically modified isoquercitrin as a strategy for boosting the type 1 interferon response to viruses and promoting cardiovascular health. Medical hypotheses. 2020 Sep; 142(?):109800. doi: 10.1016/j.mehy.2020.109800. [PMID: 32388479]
  • Sakina Bouderias, Péter Teszlák, Gábor Jakab, László Kőrösi. Age- and season-dependent pattern of flavonol glycosides in Cabernet Sauvignon grapevine leaves. Scientific reports. 2020 08; 10(1):14241. doi: 10.1038/s41598-020-70706-7. [PMID: 32859977]
  • Jae Sik Yu, Minji Park, Changhyun Pang, Luay Rashan, Won Hee Jung, Ki Hyun Kim. Antifungal Phenols from Woodfordia uniflora Collected in Oman. Journal of natural products. 2020 07; 83(7):2261-2268. doi: 10.1021/acs.jnatprod.0c00395. [PMID: 32639158]
  • Cezara Zagrean-Tuza, Augustin C Mot, Tomasz Chmiel, Attila Bende, Ioan Turcu. Sugar matters: sugar moieties as reactivity-tuning factors in quercetin O-glycosides. Food & function. 2020 Jun; 11(6):5293-5307. doi: 10.1039/d0fo00319k. [PMID: 32458896]
  • Jânio Sousa Santos, Graziela Bragueto Escher, Mariana Vieira do Carmo, Luciana Azevedo, Mariza Boscacci Marques, Heitor Daguer, Luciano Molognoni, Maria Inés Genovese, Mingchun Wen, Liang Zhang, Won Young Oh, Fereidoon Shahidi, Daniel Granato. A new analytical concept based on chemistry and toxicology for herbal extracts analysis: From phenolic composition to bioactivity. Food research international (Ottawa, Ont.). 2020 06; 132(?):109090. doi: 10.1016/j.foodres.2020.109090. [PMID: 32331681]
  • Chae Hyun Kim, Jung-Eun Kim, Yoon-Jae Song. Antiviral Activities of Quercetin and Isoquercitrin Against Human Herpesviruses. Molecules (Basel, Switzerland). 2020 May; 25(10):. doi: 10.3390/molecules25102379. [PMID: 32443914]
  • Ji Hyun Kim, Sanghyun Lee, Eun Ju Cho. The Protective Effects of Acer okamotoanum and Isoquercitrin on Obesity and Amyloidosis in a Mouse Model. Nutrients. 2020 May; 12(5):. doi: 10.3390/nu12051353. [PMID: 32397362]
  • Wei Zhang, Zhi-Tian Fu, Yao Xie, Zhi-Wen Duan, Yu Wang, Rong-Hua Fan. High resolution UPLC-MS/MS method for simultaneous separation and determination of six flavonoids from semen cuscutae extract in rat plasma: application to comparative pharmacokinetic studies in normal and kidney-deficient rats. Natural product research. 2020 May; 34(10):1446-1451. doi: 10.1080/14786419.2018.1511556. [PMID: 30375249]
  • Sudong Liang, Zhen Xu, Yashi Ruan, Tianli Niu, Wei Guo, Wei Jiang, Jianquan Hou. Isoquercitrin Attenuates Renal Ischemia/Reperfusion Injury Through Antioxidation, Anti-inflammation, and Antiapoptosis in Mice. Transplantation proceedings. 2020 Apr; 52(3):1014-1019. doi: 10.1016/j.transproceed.2019.12.038. [PMID: 32115238]
  • Claudio Frezza, Daniela De Vita, Giulia Spinaci, Marco Sarandrea, Alessandro Venditti, Armandodoriano Bianco. Secondary metabolites of Tilia tomentosa Moench inflorescences collected in Central Italy: chemotaxonomy relevance and phytochemical rationale of traditional use. Natural product research. 2020 Apr; 34(8):1167-1174. doi: 10.1080/14786419.2018.1550487. [PMID: 30638062]
  • Ding-Tao Wu, Xi-Rui Nie, Dan-Dan Shen, Hong-Yi Li, Li Zhao, Qing Zhang, De-Rong Lin, Wen Qin. Phenolic Compounds, Antioxidant Activities, and Inhibitory Effects on Digestive Enzymes of Different Cultivars of Okra (Abelmoschus esculentus). Molecules (Basel, Switzerland). 2020 Mar; 25(6):. doi: 10.3390/molecules25061276. [PMID: 32168896]
  • Fatma Tuğçe Gürağaç Dereli, Mert Ilhan, Esra Küpeli Akkol. Identification of the main active antidepressant constituents in a traditional Turkish medicinal plant, Centaurea kurdica Reichardt. Journal of ethnopharmacology. 2020 Mar; 249(?):112373. doi: 10.1016/j.jep.2019.112373. [PMID: 31689479]
  • Luana Izzo, Luigi Castaldo, Alfonso Narváez, Giulia Graziani, Anna Gaspari, Yelko Rodríguez-Carrasco, Alberto Ritieni. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules (Basel, Switzerland). 2020 Jan; 25(3):. doi: 10.3390/molecules25030631. [PMID: 32024009]
  • Nicola P Bondonno, Catherine P Bondonno, Natalie C Ward, Richard J Woodman, Jonathan M Hodgson, Kevin D Croft. Enzymatically modified isoquercitrin improves endothelial function in volunteers at risk of cardiovascular disease. The British journal of nutrition. 2020 01; 123(2):182-189. doi: 10.1017/s0007114519002137. [PMID: 31870463]
  • Shivraj Hariram Nile, Doo Hwan Kim, Arti Nile, Gyun Seok Park, Enkhtaivan Gansukh, Guoyin Kai. Probing the effect of quercetin 3-glucoside from Dianthus superbus L against influenza virus infection- In vitro and in silico biochemical and toxicological screening. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2020 Jan; 135(?):110985. doi: 10.1016/j.fct.2019.110985. [PMID: 31765700]
  • Muthukumaran Jayachandran, Tongze Zhang, Ziyuan Wu, Yinhua Liu, Baojun Xu. Isoquercetin regulates SREBP-1C via AMPK pathway in skeletal muscle to exert antihyperlipidemic and anti-inflammatory effects in STZ induced diabetic rats. Molecular biology reports. 2020 Jan; 47(1):593-602. doi: 10.1007/s11033-019-05166-y. [PMID: 31677037]
  • Weijie You, Wei Zheng, Sandra Weiss, Katrin F Chua, Clemens Steegborn. Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives. Scientific reports. 2019 12; 9(1):19176. doi: 10.1038/s41598-019-55654-1. [PMID: 31844103]
  • Ahmed Abdelmoniem Mousa, Hala Ali Ibrahim El-Gansh, Mabrouk Attia Abd Eldaim, Mostafa Abd El-Gaber Mohamed, Azza Hassan Morsi, Hesham Saad El Sabagh. Protective effect of Moringa oleifera leaves ethanolic extract against thioacetamide-induced hepatotoxicity in rats via modulation of cellular antioxidant, apoptotic and inflammatory markers. Environmental science and pollution research international. 2019 Nov; 26(31):32488-32504. doi: 10.1007/s11356-019-06368-4. [PMID: 31617137]
  • Zhi-Gang Wu, Wei Wei, Hai-Yan Xu, Lin-Lin Zheng, Chao-Mei Ma, Ying-Chun Wang. Constituents from the Leaves of Tetraena mongolica and Their Protective Activity in HEK 293t Cells Damaged by CdCl2. Journal of natural products. 2019 10; 82(10):2707-2712. doi: 10.1021/acs.jnatprod.9b00212. [PMID: 31593459]
  • Ji Hyun Kim, Sanghyun Lee, Eun Ju Cho. Acer okamotoanum and isoquercitrin improve cognitive function via attenuation of oxidative stress in high fat diet- and amyloid beta-induced mice. Food & function. 2019 Oct; 10(10):6803-6814. doi: 10.1039/c9fo01694e. [PMID: 31577306]
  • Katarzyna Szewczyk, Serhat Sezai Cicek, Christian Zidorn, Sebastian Granica. Phenolic constituents of the aerial parts of Impatiens glandulifera Royle (Balsaminaceae) and their antioxidant activities. Natural product research. 2019 Oct; 33(19):2851-2855. doi: 10.1080/14786419.2018.1499644. [PMID: 30175924]
  • Fan Yang, Yingxue Qi, Wei Liu, Jia Li, Daijie Wang, Lei Fang, Yongqing Zhang. Separation of Five Flavonoids from Aerial Parts of Salvia Miltiorrhiza Bunge Using HSCCC and Their Antioxidant Activities. Molecules (Basel, Switzerland). 2019 Sep; 24(19):. doi: 10.3390/molecules24193448. [PMID: 31547535]
  • Gokhan Zengin, Mehmet Yavuz Paksoy, Muhammad Zakariyyah Aumeeruddy, Jasmina Glamocilja, Marina Sokovic, Alina Diuzheva, József Jekő, Zoltán Cziáky, Maria João Rodrigues, Luisa Custodio, Mohamad Fawzi Mahomoodally. New insights into the chemical profiling, cytotoxicity and bioactivity of four Bunium species. Food research international (Ottawa, Ont.). 2019 09; 123(?):414-424. doi: 10.1016/j.foodres.2019.05.013. [PMID: 31284993]
  • Tizian Klingel, Martina Hadamjetz, Anja Fischer, Daniel Wefers. Glucosylation of flavonoids and flavonoid glycosides by mutant dextransucrase from Lactobacillus reuteri TMW 1.106. Carbohydrate research. 2019 Sep; 483(?):107741. doi: 10.1016/j.carres.2019.107741. [PMID: 31325545]
  • Hao Jiang, Yasukiyo Yoshioka, Sihao Yuan, Yuko Horiuchi, Yoko Yamashita, Kevin D Croft, Hitoshi Ashida. Enzymatically modified isoquercitrin promotes energy metabolism through activating AMPKα in male C57BL/6 mice. Food & function. 2019 Aug; 10(8):5188-5202. doi: 10.1039/c9fo01008d. [PMID: 31380532]
  • Sachiko Sugimoto, Yoshi Yamano, Samar Y Desoukey, Kazuaki Katakawa, Amira S Wanas, Hideaki Otsuka, Katsuyoshi Matsunami. Isolation of Sesquiterpene-Amino Acid Conjugates, Onopornoids A-D, and a Flavonoid Glucoside from Onopordum alexandrinum. Journal of natural products. 2019 06; 82(6):1471-1477. doi: 10.1021/acs.jnatprod.8b00948. [PMID: 31199638]
  • Marcela Martínez-Busi, Florencia Arredondo, David González, Carolina Echeverry, Mauricio A Vega-Teijido, Diego Carvalho, Alejandra Rodríguez-Haralambides, Felicia Rivera, Federico Dajas, Juan A Abin-Carriquiry. Purification, structural elucidation, antioxidant capacity and neuroprotective potential of the main polyphenolic compounds contained in Achyrocline satureioides (Lam) D.C. (Compositae). Bioorganic & medicinal chemistry. 2019 06; 27(12):2579-2591. doi: 10.1016/j.bmc.2019.03.047. [PMID: 30935792]
  • Yumi Kitahiro, Hiroshi Ikeda, Hyoung-Tak Im, Eiichi Kodaira, Makio Shibano. Phytochemical characterization of Rosa multiflora Thunb. (Rosaceae) in Japan and South Korea, with a focus on the bioactive flavonol glycoside 'multiflorin A'. Journal of natural medicines. 2019 Jun; 73(3):555-565. doi: 10.1007/s11418-019-01302-x. [PMID: 30949951]
  • Fang Dong, Jianhui Hu, Yuanzhi Shi, Meiya Liu, Qunfeng Zhang, Jianyun Ruan. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis). Plant physiology and biochemistry : PPB. 2019 May; 138(?):48-57. doi: 10.1016/j.plaphy.2019.02.017. [PMID: 30849677]
  • Wanling Cai, Mengyu Guo, Xiulan Weng, Wei Zhang, Zuliang Chen. Adsorption of doxorubicin hydrochloride on glutaric anhydride functionalized Fe3O4@SiO2 magnetic nanoparticles. Materials science & engineering. C, Materials for biological applications. 2019 May; 98(?):65-73. doi: 10.1016/j.msec.2018.12.145. [PMID: 30813069]
  • Muthukumaran Jayachandran, Ziyuan Wu, Kumar Ganesan, Sumbul Khalid, S M Chung, Baojun Xu. Isoquercetin upregulates antioxidant genes, suppresses inflammatory cytokines and regulates AMPK pathway in streptozotocin-induced diabetic rats. Chemico-biological interactions. 2019 Apr; 303(?):62-69. doi: 10.1016/j.cbi.2019.02.017. [PMID: 30817903]
  • Magdy Kazzem, Yu-Ting Sun, Mitchell Low, Sai Wang Seto, Dennis Chang, Samiuela Lee, Harsha Suresh, Cheang S Khoo, Alan Bensoussan, Hosen Kiat. Chromatographic Analysis and Anti-Oxidative Property of Naoxinqing Tablet, a Proprietary Preparation of Diospyros Kaki Leaves. Molecules (Basel, Switzerland). 2019 Mar; 24(6):. doi: 10.3390/molecules24061101. [PMID: 30897753]
  • Zhimin Hu, Junbin He, Kuan Chen, Zilong Wang, Jiyang Liu, Xue Qiao, Min Ye. Molecular cloning and biochemical characterization of a new flavonoid glycosyltransferase from the aquatic plant lotus. Biochemical and biophysical research communications. 2019 03; 510(2):315-321. doi: 10.1016/j.bbrc.2019.01.099. [PMID: 30709586]
  • Kyung-Chul Shin, Min-Ju Seo, Deok-Kun Oh, Mi-Na Choi, Dae-Wook Kim, Yeong-Su Kim, Chang-Su Park. Cloning and characterization of α-L-rhamnosidase from Chloroflexus aurantiacus and its application in the production of isoquercitrin from rutin. Biotechnology letters. 2019 Mar; 41(3):419-426. doi: 10.1007/s10529-019-02648-8. [PMID: 30666483]
  • Jeffrey I Zwicker, Benjamin L Schlechter, Jack D Stopa, Howard A Liebman, Anita Aggarwal, Maneka Puligandla, Thomas Caughey, Kenneth A Bauer, Nancy Kuemmerle, Ellice Wong, Ted Wun, Marilyn McLaughlin, Manuel Hidalgo, Donna Neuberg, Bruce Furie, Robert Flaumenhaft. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI insight. 2019 02; 4(4):. doi: 10.1172/jci.insight.125851. [PMID: 30652973]
  • Guohong Qin, Ji Ma, Qiongshan Huang, Hongli Yin, Jichun Han, Maoru Li, Yang Deng, Bing Wang, Waseem Hassan, Jing Shang. Isoquercetin Improves Hepatic Lipid Accumulation by Activating AMPK Pathway and Suppressing TGF-β Signaling on an HFD-Induced Nonalcoholic Fatty Liver Disease Rat Model. International journal of molecular sciences. 2018 Dec; 19(12):. doi: 10.3390/ijms19124126. [PMID: 30572631]
  • Serena Di Francesco, Monica Savio, Nora Bloise, Giovanni Borroni, Lucia Anna Stivala, Riccardo G Borroni. Red grape (Vitis vinifera L.) flavonoids down-regulate collagen type III expression after UV-A in primary human dermal blood endothelial cells. Experimental dermatology. 2018 09; 27(9):973-980. doi: 10.1111/exd.13682. [PMID: 29742305]
  • Wei Zhou, Jinjun Shan, Minxin Meng. A two-step ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry with mass defect filtering method for rapid identification of analogues from known components of different chemical structure types in Fructus Gardeniae-Fructus Forsythiae herb pair extract and in rat's blood. Journal of chromatography. A. 2018 Aug; 1563(?):99-123. doi: 10.1016/j.chroma.2018.05.067. [PMID: 29861306]
  • Xiaoyu Zhang, Xueran Mei, Zhanguo Wang, Jing Wu, Gang Liu, Huiling Hu, Qijuan Li. Chemical Fingerprint and Quantitative Analysis for the Quality Evaluation of Docynia dcne Leaves by High-Performance Liquid Chromatography Coupled with Chemometrics Analysis. Journal of chromatographic science. 2018 Aug; 56(7):575-581. doi: 10.1093/chromsci/bmy007. [PMID: 29800095]
  • Graziela Bragueto Escher, Jânio Sousa Santos, Neiva Deliberali Rosso, Mariza Boscacci Marques, Luciana Azevedo, Mariana Araújo Vieira do Carmo, Heitor Daguer, Luciano Molognoni, Leonardo do Prado-Silva, Anderson S Sant'Ana, Marcia Cristina da Silva, Daniel Granato. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018 Aug; 118(?):439-453. doi: 10.1016/j.fct.2018.05.046. [PMID: 29787846]
  • Da-Wool Jeong, Chi Heung Cho, Jong Suk Lee, Seung Hwan Lee, Taewan Kim, Dae-Ok Kim. Deastringent Peel Extracts of Persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) Protect Neuronal PC-12 and SH-SY5Y Cells against Oxidative Stress. Journal of microbiology and biotechnology. 2018 Jul; 28(7):1094-1104. doi: 10.4014/jmb.1801.01013. [PMID: 29975999]
  • Mingya Ding, Zhen Li, Xie-An Yu, Dong Zhang, Jin Li, Hui Wang, Jun He, Xiu-Mei Gao, Yan-Xu Chang. A network pharmacology-integrated metabolomics strategy for clarifying the difference between effective compounds of raw and processed Farfarae flos by ultra high-performance liquid chromatography-quadrupole-time of flight mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2018 Jul; 156(?):349-357. doi: 10.1016/j.jpba.2018.05.003. [PMID: 29753281]
  • Si Tan, Jose A Caparros-Martin, Vance B Matthews, Henrietta Koch, Fergal O'Gara, Kevin D Croft, Natalie C Ward. Isoquercetin and inulin synergistically modulate the gut microbiome to prevent development of the metabolic syndrome in mice fed a high fat diet. Scientific reports. 2018 07; 8(1):10100. doi: 10.1038/s41598-018-28521-8. [PMID: 29973701]
  • Pham Thi Nhat Trinh, Nguyen Huu An, Pham Ngoc An, Mai Dinh Tri, Cao Van Du, Phan Nhat Minh, Nguyen Thi Le Thuy, Nguyen Trong Tuan, Vang Thi Kim Thoa, Nguyen Ngoc Tuan, Le Tien Dung. A new benzofuran derivative from the leaves of Ficus pumila L. Natural product research. 2018 Jul; 32(14):1648-1652. doi: 10.1080/14786419.2017.1395427. [PMID: 29072969]
  • Hirotada Murayama, Ayumi Eguchi, Misato Nakamura, Masahi Kawashima, Rei Nagahara, Sayaka Mizukami, Masayuki Kimura, Emi Makino, Naofumi Takahashi, Ryoichi Ohtsuka, Mihoko Koyanagi, Shim-Mo Hayashi, Robert R Maronpot, Makoto Shibutani, Toshinori Yoshida. Spironolactone in Combination with α-glycosyl Isoquercitrin Prevents Steatosis-related Early Hepatocarcinogenesis in Rats through the Observed NADPH Oxidase Modulation. Toxicologic pathology. 2018 07; 46(5):530-539. doi: 10.1177/0192623318778508. [PMID: 29843569]
  • Carmen Steinborn, Olivier Potterat, Ulrich Meyer, Rainer Trittler, Sven Stadlbauer, Roman Huber, Carsten Gründemann. In Vitro Anti-inflammatory Effects of Equisetum arvense Are Not Solely Mediated by Silica. Planta medica. 2018 May; 84(8):519-526. doi: 10.1055/s-0043-123075. [PMID: 29202511]
  • Majambu Mbikay, Janice Mayne, Francine Sirois, Olesya Fedoryak, Angela Raymond, Jennifer Noad, Michel Chrétien. Mice Fed a High-Cholesterol Diet Supplemented with Quercetin-3-Glucoside Show Attenuated Hyperlipidemia and Hyperinsulinemia Associated with Differential Regulation of PCSK9 and LDLR in their Liver and Pancreas. Molecular nutrition & food research. 2018 05; 62(9):e1700729. doi: 10.1002/mnfr.201700729. [PMID: 29396908]
  • Toshiyuki Nakamura, Chinatsu Kinjo, Yoshimasa Nakamura, Yoji Kato, Miyu Nishikawa, Masahiro Hamada, Noriyuki Nakajima, Shinichi Ikushiro, Kaeko Murota. Lymphatic metabolites of quercetin after intestinal administration of quercetin-3-glucoside and its aglycone in rats. Archives of biochemistry and biophysics. 2018 05; 645(?):126-136. doi: 10.1016/j.abb.2018.03.024. [PMID: 29574052]
  • Antonietta Cerulli, Milena Masullo, Angela Mari, Anna Balato, Rosanna Filosa, Serena Lembo, Assunta Napolitano, Sonia Piacente. Phenolics from Castanea sativa leaves and their effects on UVB-induced damage. Natural product research. 2018 May; 32(10):1170-1175. doi: 10.1080/14786419.2017.1331225. [PMID: 28539059]
  • Arnaud Gaudry, Sandra Bos, Wildriss Viranaicken, Marjolaine Roche, Pascale Krejbich-Trotot, Gilles Gadea, Philippe Desprès, Chaker El-Kalamouni. The Flavonoid Isoquercitrin Precludes Initiation of Zika Virus Infection in Human Cells. International journal of molecular sciences. 2018 Apr; 19(4):. doi: 10.3390/ijms19041093. [PMID: 29621184]
  • A Garbetta, L Nicassio, I D'Antuono, A Cardinali, V Linsalata, G Attolico, F Minervini. Influence of in vitro digestion process on polyphenolic profile of skin grape (cv. Italia) and on antioxidant activity in basal or stressed conditions of human intestinal cell line (HT-29). Food research international (Ottawa, Ont.). 2018 04; 106(?):878-884. doi: 10.1016/j.foodres.2018.01.072. [PMID: 29579999]
  • Fangbo Xia, Chenchen Li, Ning Zhao, He Li, Qi Chang, Xinmin Liu, Yonghong Liao, Ruile Pan. Rapid Determination of Active Compounds and Antioxidant Activity of Okra Seeds Using Fourier Transform Near Infrared (FT-NIR) Spectroscopy. Molecules (Basel, Switzerland). 2018 Mar; 23(3):. doi: 10.3390/molecules23030550. [PMID: 29498632]
  • Yunjeong Kim, Kyeong-Ok Chang. Protein disulfide isomerases as potential therapeutic targets for influenza A and B viruses. Virus research. 2018 03; 247(?):26-33. doi: 10.1016/j.virusres.2018.01.010. [PMID: 29382552]
  • JiEun Yun, Eun-Rhan Woo, Dong Gun Lee. Effect of isoquercitrin on membrane dynamics and apoptosis-like death in Escherichia coli. Biochimica et biophysica acta. Biomembranes. 2018 Feb; 1860(2):357-363. doi: 10.1016/j.bbamem.2017.11.008. [PMID: 29155212]
  • Yang Liu, Shengzuo Fang, Wanxia Yang, Xulan Shang, Xiangxiang Fu. Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus. Journal of photochemistry and photobiology. B, Biology. 2018 Feb; 179(?):66-73. doi: 10.1016/j.jphotobiol.2018.01.002. [PMID: 29334625]
  • Rana Adhikary, Sahin Sultana, Biswadev Bishayi. Clitoria ternatea flower petals: Effect on TNFR1 neutralization via downregulation of synovial matrix metalloproteases. Journal of ethnopharmacology. 2018 Jan; 210(?):209-222. doi: 10.1016/j.jep.2017.08.017. [PMID: 28826781]
  • Jun Zhou, Jiang Bing Sun, Qiao Feng Wang. Determination of isoquercitrin in rat plasma by high performance liquid chromatography coupled with a novel synergistic cloud point extraction. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2018 Jan; 1072(?):136-141. doi: 10.1016/j.jchromb.2017.11.014. [PMID: 29153998]
  • Misato Nakamura, Ayumi Eguchi, Mari Inohana, Rei Nagahara, Hirotada Murayama, Masashi Kawashima, Sayaka Mizukami, Mihoko Koyanagi, Shim-Mo Hayashi, Robert R Maronpot, Makoto Shibutani, Toshinori Yoshida. Differential impacts of mineralocorticoid receptor antagonist potassium canrenoate on liver and renal changes in high fat diet-mediated early hepatocarcinogenesis model rats. The Journal of toxicological sciences. 2018; 43(10):611-621. doi: 10.2131/jts.43.611. [PMID: 30298849]
  • Chang Won Lee, Jeong Yeon Seo, Jisun Lee, Ji Won Choi, Sarang Cho, Jae Youn Bae, Jae Kyung Sohng, Sung Oog Kim, Jihoon Kim, Yong Il Park. 3-O-Glucosylation of quercetin enhances inhibitory effects on the adipocyte differentiation and lipogenesis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Nov; 95(?):589-598. doi: 10.1016/j.biopha.2017.08.002. [PMID: 28869898]
  • Ilyas Yildiz, Ozkan Sen, Ramazan Erenler, Ibrahim Demirtas, Lutfi Behcet. Bioactivity-guided isolation of flavonoids from Cynanchum acutum L. subsp. sibiricum (willd.) Rech. f. and investigation of their antiproliferative activity. Natural product research. 2017 Nov; 31(22):2629-2633. doi: 10.1080/14786419.2017.1289201. [PMID: 28278670]
  • Elina Karhu, Janne Isojärvi, Pia Vuorela, Leena Hanski, Adyary Fallarero. Identification of Privileged Antichlamydial Natural Products by a Ligand-Based Strategy. Journal of natural products. 2017 10; 80(10):2602-2608. doi: 10.1021/acs.jnatprod.6b01052. [PMID: 29043803]
  • Ping Wu, Siyuan Liu, Jianyu Su, Jianping Chen, Lin Li, Runguang Zhang, Tianfeng Chen. Apoptosis triggered by isoquercitrin in bladder cancer cells by activating the AMPK-activated protein kinase pathway. Food & function. 2017 Oct; 8(10):3707-3722. doi: 10.1039/c7fo00778g. [PMID: 28948276]