NCBI Taxonomy: 88845

Allium victorialis (ncbi_taxid: 88845)

found 92 associated metabolites at species taxonomy rank level.

Ancestor: Allium

Child Taxonomies: Allium victorialis var. platyphyllum

Kaempferol_3-O-rutinoside

5,7-Dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C27H30O15 (594.1585)


Kaempferol-3-rutinoside is a kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. It has a role as a metabolite, a radical scavenger and a plant metabolite. It is a rutinoside, a trihydroxyflavone, a disaccharide derivative and a kaempferol O-glucoside. Nicotiflorin is a natural product found in Visnea mocanera, Eupatorium cannabinum, and other organisms with data available. See also: Cocoa (part of). A kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Isoquercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-). Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others. Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available. Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation. Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells [Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Alliin

2-Amino-3-(prop-2-ene-1-sulphinyl)propanoic acid

C6H11NO3S (177.046)


Alliin /ˈæli.ɪn/ is a sulfoxide that is a natural constituent of fresh garlic.[1] It is a derivative of the amino acid cysteine. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin and other thiosulfinates in garlic are unstable and form a number of other compounds, such as diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DAT), dithiins and ajoene.[2] Garlic powder is not a source of alliin, nor is fresh garlic upon maceration, since the enzymatic conversion to allicin takes place in the order of seconds. Alliin was the first natural product found to have both carbon- and sulfur-centered stereochemistry.[3] Constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). (R)C(S)S-Alliin is found in garden onion, garlic, and onion-family vegetables. (R)C(S)S-Alliin is found in garden onion. (R)C(S)S-Alliin is a constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Dimethyl trisulfide

FLAMMABLE LIQUID, N.O.S. (DIMETHYL TRISULPHIDE)

C2H6S3 (125.9632)


Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide. It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion. Dimethyl trisulfide has been found in volatiles emitted from cooked onion, leek and other Allium species, from broccoli and cabbage, as well as from Limburger cheese, and is involved in the unpalatable aroma of aged beer and stale Japanese sake. It is a decomposition product from bacterial decomposition, including from the early stages of human decomposition, and is a major attractant for blowflies looking for hosts. Dimethyl trisulfide along with dimethyl sulfide and dimethyl disulfide have been confirmed as volatile compounds given off by the fly-attracting plant known as dead-horse arum (Helicodiceros muscivorus). These flies are attracted to the odor of fetid meat and help pollinate this plant. DMTS contributes to the foul odor given off by the fungus Phallus impudicus, also known as the common stinkhorn. DMTS causes the characteristic malodorous smell of a fungating lesion, e.g., from cancer wounds, and contributes to the odor of human feces. Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097) (Wikipedia). Found in essential oil of hop (Humulus lupulus), garlic (Allium sativum), shallot (Allium cepa) and ramsons (Allium ursinum)and is also found in pineapple, raw cabbage, kohrabi, roasted filberts, roasted peanuts, edible mushrooms, brussel sprouts, fermented radish, Chinese cabbage, parsnips, scallop and squid. The major off-flavour principle of overcooked brassicas. Flavouring ingredient. Dimethyl trisulfide is an organic trisulfide. Dimethyl trisulfide is a natural product found in Psidium guajava, Allium chinense, and other organisms with data available. dimethyltrisulfide is a metabolite found in or produced by Saccharomyces cerevisiae. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].

   

Allicin

Diallyldisulfid-S-oxid, 3-prop-2-enylsulfinylsulfanylprop-1-ene

C6H10OS2 (162.0173)


Allicin is found in garden onion. Allicin is isolated from garlic (Allium sativum). Nutriceutical Allicin is an organic compound obtained from garlic. It is also obtainable from onions, and other species in the family Alliaceae. It was first isolated and studied in the laboratory by Chester J. Cavallito in 1944. This colourless liquid has a distinctively pungent smell. This compound exhibits antibacterial and anti-fungal properties. Allicin is garlics defence mechanism against attacks by pests Allicin is a sulfoxide and a botanical anti-fungal agent. It has a role as an antibacterial agent. Allicin has been used in trials studying the treatment of Follicular Lymphoma. Allicin is a natural product found in Allium chinense, Allium nutans, and other organisms with data available. See also: Garlic (part of). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants Isolated from garlic (Allium sativum). Nutriceutical D009676 - Noxae > D000963 - Antimetabolites D000890 - Anti-Infective Agents D007004 - Hypoglycemic Agents Allicin (diallyl thiosulfinate) is isolated from garlic including Diallyl monosulfide, Diallyl disulfide, Diallyl trisulfide, Diallyl tetrasulfide, and Methyl allyl disulphide etc. They accounts for 98\\% of the extract. Allicin (diallyl thiosulfinate) has highly potent antimicrobial activity, and inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains[1][2]. Allicin (diallyl thiosulfinate) is isolated from garlic including Diallyl monosulfide, Diallyl disulfide, Diallyl trisulfide, Diallyl tetrasulfide, and Methyl allyl disulphide etc. They accounts for 98\% of the extract. Allicin (diallyl thiosulfinate) has highly potent antimicrobial activity, and inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains[1][2].

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Diallyl Disulfide

3-(prop-2-enyldisulfanyl)prop-1-ene

C6H10S2 (146.0224)


Di-2-propenyl disulfide, also known as allyl disulfide or 3,3-disulfanediylbis(prop-1-ene), belongs to the class of organic compounds known as allyl sulfur compounds. Allyl sulfur compounds are compounds containing an allylsulfur group, with the general structure H2C(=CH2)CS. Di-2-propenyl disulfide is possibly neutral. An organic disulfide where the organic group specified is allyl. Di-2-propenyl disulfide has been detected, but not quantified, in soft-necked garlics. This could make di-2-propenyl disulfide a potential biomarker for the consumption of these foods. 1,2-(2-propenyl)-disulfane, also known as allyl disulfide or 3,3-disulfanediylbis(prop-1-ene), is a member of the class of compounds known as allyl sulfur compounds. Allyl sulfur compounds are compounds containing an allylsulfur group, with the general structure H2C(=CH2)CS. 1,2-(2-propenyl)-disulfane can be found in soft-necked garlic, which makes 1,2-(2-propenyl)-disulfane a potential biomarker for the consumption of this food product. Diallyl disulfide is an organic disulfide where the organic group specified is allyl. It has been isolated from garlic and other species of the genus Allium. It has a role as an antineoplastic agent, an antifungal agent and a plant metabolite. Diallyl disulfide is a natural product found in Allium vineale, Allium chinense, and other organisms with data available. An organic disulfide where the organic group specified is allyl. It has been isolated from garlic and other species of the genus Allium. D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D000970 - Antineoplastic Agents Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1]. Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Cyanidin 3-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

[C21H21O11]+ (449.1084)


Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-​glucoside is a product of cyanidin 3-​sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Acquisition and generation of the data is financially supported in part by CREST/JST. Found in many plants and fruits, e.g. cherries, olives and grapes

   

Dimethyldisulfide

(Methyldisulfanyl)methane

C2H6S2 (93.9911)


Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097). Isolated from garlic oil (Allium sativum), also in onion (Allium cepa), ramsons (Allium ursinum), morello cherry, melon, pineapple, strawberry, wheat bread, cocoa, roasted barley, roasted filberts, roasted peanuts, crispbread, American potato chips, soybean and other foodstuffs. Flavouring ingredient.

   

Methyl 2-propenyl disulfide

3-(Methyldisulphanyl)-1-propene

C4H8S2 (120.0067)


Constituent of the essential oils of Allium subspecies Flavouring ingredient. Methyl 2-propenyl disulfide is found in many foods, some of which are garden onion, allium (onion), chives, and soft-necked garlic. Methyl 2-propenyl disulfide is found in allium (onion). Methyl 2-propenyl disulfide is a constituent of the essential oils of Allium species Methyl 2-propenyl disulfide is a flavouring ingredient.

   

Kaempferol_7-O-glucoside

3,5-Dihydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Kaempferol 7-O-beta-D-glucopyranoside is a kaempferol O-glucoside that is kaempferol attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a radical scavenger and a plant metabolite. It is a beta-D-glucoside, a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a member of flavonols. It is functionally related to a beta-D-glucose. kaempferol 7-O-glucoside is a natural product found in Lotus ucrainicus, Aconitum variegatum, and other organisms with data available. See also: Ginkgo (part of). A kaempferol O-glucoside that is kaempferol attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage.

   

Alliin

(2R)-2-Amino-3-(prop-2-ene-1-sulphinyl)propanoic acid

C6H11NO3S (177.046)


Alliin, also known as (S)-S-allyl-L-cysteine sulfoxide or (S)-3-(allylsulphinyl)-L-alanine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Alliin is soluble (in water) and a moderately acidic compound (based on its pKa). Alliin can be found in a number of food items such as red rice, mandarin orange (clementine, tangerine), ceylon cinnamon, and olive, which makes alliin a potential biomarker for the consumption of these food products. Garlic has been used since antiquity as a therapeutic remedy for certain conditions now associated with oxygen toxicity, and, when this was investigated, garlic did indeed show strong antioxidant and hydroxyl radical-scavenging properties, it is presumed owing to the alliin contained within. Alliin has also been found to affect immune responses in blood . 3-(Allylsulphinyl)-L-alanine is a L-alpha-amino acid. Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Alliin is the main active component of garlic. (±)-Alliin is a putative inhibitor of the main protease of SARS-CoV-2 (Mpro)[1]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].

   

3-(Methylthio)-1-propene

3-(Methylsulphanyl)prop-1-ene

C4H8S (88.0347)


3-(Methylthio)-1-propene is found in garden onion. 3-(Methylthio)-1-propene is a constituent of garlic volatiles. It is a potential nutraceutical. It can also be found in Williopsis (PMID: 22370952). Constituent of garlic volatiles. Potential nutriceutical. 3-(Methylthio)-1-propene is found in many foods, some of which are onion-family vegetables, soft-necked garlic, ginger, and garden onion. 3-(Methylthio)-1-propene is an organic sulfide. Allyl methyl sulfide is a natural product found in Allium chinense, Dactylanthus taylorii, and other organisms with data available. Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1]. Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1].

   

Methyl 2-propenyl trisulfide

1-Methyl-3-(prop-2-en-1-yl)trisulphane

C4H8S3 (151.9788)


Constituent of Allium sativum (garlic oil) and other Allium subspecies Methyl 2-propenyl trisulfide is found in garlic, soft-necked garlic, and onion-family vegetables. Methyl 2-propenyl trisulfide is found in onion-family vegetables. Methyl 2-propenyl trisulfide is a constituent of Allium sativum (garlic oil) and other Allium species Allyl methyl trisulfide is a natural product found in Allium chinense, Mansoa alliacea, and other organisms with data available.

   

Quercetin 3,4'-diglucoside

5,7-dihydroxy-2-(3-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O17 (626.1483)


Isolated from Allium cepa (yellow onion) and other plant subspecies [CCD]. Quercetin 3,4-diglucoside is found in many foods, some of which are garden onion, shallot, onion-family vegetables, and grape. Quercetin 3,4-diglucoside is found in garden onion. Quercetin 3,4-diglucoside is isolated from Allium cepa (yellow onion) and other plant species [CCD].

   

Allitridin

Prop-2-enyl prop-2-enylthio disulfide

C6H10S3 (177.9945)


Volatile component from onion (Allium sativum), garlic (Allium sativum) and other commercial garlics. Potential nutriceutical. Allitridin is found in many foods, some of which are onion-family vegetables, garden onion, soft-necked garlic, and garlic. Allitridin is found in garden onion. Allitridin is a volatile component from onion (Allium sativum), garlic (Allium sativum) and other commercial garlics. Potential nutriceutica D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D020011 - Protective Agents > D000975 - Antioxidants D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D000963 - Antimetabolites D016573 - Agrochemicals Diallyl Trisulfide is isolated from Garlic. Diallyl Trisulfide suppresses the growth of Penicillium expansum (MFC99 value: ≤ 90 μg/mL) and promotes apoptosis via production of reactive oxygen species (ROS) and disintegration of cellular ultrastructure. Anticancer effect[1]. Diallyl Trisulfide is isolated from Garlic. Diallyl Trisulfide suppresses the growth of Penicillium expansum (MFC99 value: ≤ 90 μg/mL) and promotes apoptosis via production of reactive oxygen species (ROS) and disintegration of cellular ultrastructure. Anticancer effect[1].

   

Cyanidin 3-(6'-malonylglucoside)

3-[(6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl)oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-1λ⁴-chromen-1-ylium

C24H23O14+ (535.1088)


Isolated from red chicory leaves (Cichorium intybus). Cyanidin 3-(6-malonylglucoside) is found in many foods, some of which are lettuce, passion fruit, romaine lettuce, and sweet orange. Cyanidin 3-(6-malonylglucoside) is found in chicory. Cyanidin 3-(6-malonylglucoside) is isolated from red chicory leaves (Cichorium intybus).

   

Dimethyl tetrasulfide

1,4-Dimethyltetrasulfane

C2H6S4 (157.9352)


Constituent of various Allium subspecies and Lentinus species Dimethyl tetrasulfide is found in many foods, some of which are mushrooms, soft-necked garlic, garden onion, and shiitake. Dimethyl tetrasulfide is found in garden onion. Dimethyl tetrasulfide is a constituent of various Allium species and Lentinus sp.

   

Ethiin

2-Amino-3-(ethanesulphinyl)propanoic acid

C5H11NO3S (165.046)


Constituent of numerous Allium subspecies Ethiin is found in many foods, some of which are sour cherry, wax gourd, arrowroot, and silver linden. Ethiin is found in onion-family vegetables. Ethiin is a constituent of numerous Allium species.

   

Cyanidin 3-(3'-malonyl-glucoside)

3-({4-[(2-carboxyacetyl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl}oxy)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-1λ⁴-chromen-1-ylium

C24H23O14+ (535.1088)


Cyanidin 3-(3-malonyl-glucoside) is found in onion-family vegetables. Cyanidin 3-(3-malonyl-glucoside) is a constituent of caucus (Allium victorialis). Constituent of caucus (Allium victorialis). Cyanidin 3-(3-malonyl-glucoside) is found in onion-family vegetables.

   

Kaempferol 7-O-glucoside

3,5-dihydroxy-2-(4-hydroxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O11 (448.1006)


   

beta-Amyrin

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Beta-amryin, also known as B-amryin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amryin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amryin can be found in pigeon pea, which makes beta-amryin a potential biomarker for the consumption of this food product.

   

beta-Amyrin acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


Beta-amyrin acetate, also known as B-amyrin acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrin acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Beta-amyrin acetate can be found in burdock and guava, which makes beta-amyrin acetate a potential biomarker for the consumption of these food products. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Kaempferol 3,7,4'-O-triglucoside

5-hydroxy-3,7-bis({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-2-(4-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4H-chromen-4-one

C33H40O21 (772.2062)


Kaempferol 3,7,4-o-triglucoside is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 3,7,4-o-triglucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3,7,4-o-triglucoside can be found in saffron, which makes kaempferol 3,7,4-o-triglucoside a potential biomarker for the consumption of this food product.

   

S-Propylcysteine sulphoxide

(2R)-2-amino-3-(propane-1-sulfinyl)propanoic acid

C6H13NO3S (179.0616)


S-propylcysteine sulphoxide, also known as pcso, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. S-propylcysteine sulphoxide is soluble (in water) and a moderately acidic compound (based on its pKa). S-propylcysteine sulphoxide can be found in soft-necked garlic, which makes S-propylcysteine sulphoxide a potential biomarker for the consumption of this food product.

   

Kaempferol 3-rhamno-glucoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O15 (594.1585)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Methylpropenyl trisulfide

1-methyl-3-[(1E)-prop-1-en-1-yl]trisulfane

C4H8S3 (151.9788)


Methylpropenyl trisulfide is a member of the class of compounds known as organic trisulfides. Organic trisulfides are organosulfur compounds with the general formula RSSSR (R,R=alkyl, aryl). Methylpropenyl trisulfide can be found in garden onion, which makes methylpropenyl trisulfide a potential biomarker for the consumption of this food product.

   

Kaempferol 7-glucoside

3,5-dihydroxy-2-(4-hydroxyphenyl)-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O11 (448.1006)


Kaempferol 7-glucoside is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 7-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 7-glucoside can be found in a number of food items such as flaxseed, ginkgo nuts, white cabbage, and saffron, which makes kaempferol 7-glucoside a potential biomarker for the consumption of these food products.

   

Quercetin 7,4'-O-diglucoside

5,7-dihydroxy-2-(3-hydroxy-4-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O17 (626.1483)


   

11E, 13E-Octadecadienoic acid

3,5-dihydroxy-2-(3-hydroxy-4-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O17 (626.1483)


   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.3861)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Hirsutrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.0955)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Quercetin 7,4-diglucoside

7- (beta-D-Glucopyranosyloxy) -2- [ 4- (beta-D-glucopyranosyloxy) -3-hydroxyphenyl ] -3,5-dihydroxy-4H-1-benzopyran-4-one

C27H30O17 (626.1483)


   

Isoquercetin

3,3,4,5,7-Pentahydroxyflavone 3-β-glucoside

C21H20O12 (464.0955)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Kaempferol-3-rutinoside

Kaempferol-7-O-neohesperidoside

C27H30O15 (594.1585)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Cyanidin 3-glucoside

Cyanidin 3-glucoside

[C21H21O11]+ (449.1084)


   

kaempferol 7-O-glucoside

kaempferol 7-O-β-D-glucopyranoside

C21H20O11 (448.1006)


   

MethyIIn, pyrolyzate

2-amino-3-methanesulfinylpropanoic acid

C4H9NO3S (151.0303)


   

CH3SCH2CH=CH2

3-(Methylsulfanyl)-1-propene

C4H8S (88.0347)


Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1]. Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1].

   

methylallyl trisulfide

1-methyl-3-(prop-2-en-1-yl)trisulfane

C4H8S3 (151.9788)


   

Ethiin

2-amino-3-(ethanesulfinyl)propanoic acid

C5H11NO3S (165.046)


   

Cyanidin 3-malonylglucoside

3-[(6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl)oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-1$l^{4}-chromen-1-ylium

C24H23O14+ (535.1088)


   

Dimethyltetrasulfane

1,4-Dimethyltetrasulfane

C2H6S4 (157.9352)


   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

5756-24-1

methyldisulfanyldisulfanylmethane

C2H6S4 (157.9352)


   

10152-76-8

1-Propene, 3-(methylthio)-

C4H8S (88.0347)


Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1]. Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1].

   

Garlic oil

0-01-00-00441 (Beilstein Handbook Reference)

C6H10S3 (177.9945)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D020011 - Protective Agents > D000975 - Antioxidants D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D000963 - Antimetabolites D016573 - Agrochemicals Diallyl Trisulfide is isolated from Garlic. Diallyl Trisulfide suppresses the growth of Penicillium expansum (MFC99 value: ≤ 90 μg/mL) and promotes apoptosis via production of reactive oxygen species (ROS) and disintegration of cellular ultrastructure. Anticancer effect[1]. Diallyl Trisulfide is isolated from Garlic. Diallyl Trisulfide suppresses the growth of Penicillium expansum (MFC99 value: ≤ 90 μg/mL) and promotes apoptosis via production of reactive oxygen species (ROS) and disintegration of cellular ultrastructure. Anticancer effect[1].

   

WLN: 1SS1

Dimethyl disulfide [UN2381] [Flammable liquid]

C2H6S2 (93.9911)


   

AI3-35128

4-01-00-02098 (Beilstein Handbook Reference)

C6H10S2 (146.0224)


D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D000970 - Antineoplastic Agents Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1]. Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1].

   

AI3-26172

InChI=1\C2H6S3\c1-3-5-4-2\h1-2H

C2H6S3 (125.9632)


Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].

   

3-(Methyldisulfanyl)-1-propene

3-(Methyldisulfanyl)-1-propene

C4H8S2 (120.0067)


   

34135-85-8

3-methylsulfanyldisulfanylprop-1-ene

C4H8S3 (151.9788)


   

Garlicin

Diallyl disulfide

C6H10S2 (146.0224)


Isolated from garlic (Allium sativa). Garlicin is found in onion-family vegetables. Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1]. Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1].

   

Cyanidin 3-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

C21H21O11+ (449.1084)


Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-​glucoside is a product of cyanidin 3-​sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Found in many plants and fruits, e.g. cherries, olives and grapes

   

Dimethyl disulfide

Dimethyl disulfide

C2H6S2 (93.9911)


An organic disulfide that is methane in which one of the hydrogens has been replaced by a methyldisulfanyl group.

   

Methyl allyl disulfide

ALLYL METHYL DISULFIDE

C4H8S2 (120.0067)


An organic disulfide having allyl and methyl as the two organic groups.

   

Kuromanin

(2S,3R,4S,5S,6R)-2-[2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C21H21O11+ (449.1084)


   

alliin

alliin

C6H11NO3S (177.046)


An L-alanine derivative in which one of the methyl hydrogens of L-alanine has been replaced by an (S)-allylsulfinyl group.

   

5,7-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one

5,7-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one

C27H30O16 (610.1534)


   

(2s,3r,4s,5s,6r)-2-{[5,7-dihydroxy-4-oxo-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-2-{[5,7-dihydroxy-4-oxo-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C37H38O19 (786.2007)


   

alliin

NA

C6H11NO3S (177.046)


{"Ingredient_id": "HBIN015201","Ingredient_name": "alliin","Alias": "NA","Ingredient_formula": "C6H11NO3S","Ingredient_Smile": "C=CCS(=O)CC(C(=O)O)N","Ingredient_weight": "177.22 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT01264","TCMID_id": "921","TCMSP_id": "NA","TCM_ID_id": "7010;9897;15540;15541;21480;21481;21482;21483","PubChem_id": "15558642","DrugBank_id": "NA"}

   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[5-hydroxy-2-(3-hydroxy-4-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-3-yl]oxy}-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[5-hydroxy-2-(3-hydroxy-4-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-3-yl]oxy}-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C43H48O25 (964.2485)


   

(2s,3r,4s,5s,6r)-2-{[5,7-dihydroxy-4-oxo-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-2-{[5,7-dihydroxy-4-oxo-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C36H36O18 (756.1902)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-[(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl)oxy]-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-[(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl)oxy]-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C42H46O23 (918.243)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-[(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl)oxy]-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-[(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl)oxy]-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C43H48O24 (948.2535)


   

(2s)-2-amino-3-(prop-2-ene-1-sulfinyl)propanoic acid

(2s)-2-amino-3-(prop-2-ene-1-sulfinyl)propanoic acid

C6H11NO3S (177.046)


   

5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})chromen-4-one

5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})chromen-4-one

C27H30O16 (610.1534)


   

(2s,3r,4s,5s,6r)-2-{[5,7-dihydroxy-2-(3-hydroxy-4-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4-oxochromen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-2-{[5,7-dihydroxy-2-(3-hydroxy-4-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4-oxochromen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C36H36O19 (772.1851)


   

22-cyclohexyldocosan-1-ol

22-cyclohexyldocosan-1-ol

C28H56O (408.4331)


   

1-(prop-1-en-1-yl)-3-(prop-2-en-1-yl)trisulfane

1-(prop-1-en-1-yl)-3-(prop-2-en-1-yl)trisulfane

C6H10S3 (177.9945)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C37H38O19 (786.2007)


   

(2s,3r,4s,5r,6r)-3,5-dihydroxy-2-[(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl)oxy]-6-(hydroxymethyl)oxan-4-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(2s,3r,4s,5r,6r)-3,5-dihydroxy-2-[(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl)oxy]-6-(hydroxymethyl)oxan-4-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C42H46O23 (918.243)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-[(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl)oxy]-6-(hydroxymethyl)oxan-3-yl (2z)-3-(4-hydroxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-[(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl)oxy]-6-(hydroxymethyl)oxan-3-yl (2z)-3-(4-hydroxyphenyl)prop-2-enoate

C42H46O23 (918.243)


   

3-{[(2s,3r,4r,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-1λ⁴-chromen-1-ylium

3-{[(2s,3r,4r,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-1λ⁴-chromen-1-ylium

[C24H23O14]+ (535.1088)


   

β-sitosteryl acetate

β-sitosteryl acetate

C31H52O2 (456.3967)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-[(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl)oxy]-6-(hydroxymethyl)oxan-3-yl 3-(4-hydroxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-[(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-3-yl)oxy]-6-(hydroxymethyl)oxan-3-yl 3-(4-hydroxyphenyl)prop-2-enoate

C42H46O23 (918.243)


   

(2r)-2-amino-3-(ethanesulfinyl)propanoic acid

(2r)-2-amino-3-(ethanesulfinyl)propanoic acid

C5H11NO3S (165.046)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-3-yl]oxy}-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-3-yl]oxy}-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C36H36O18 (756.1902)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-3-yl]oxy}-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-3-yl]oxy}-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C37H38O19 (786.2007)


   

(2r)-2-amino-3-[(s)-methanesulfinyl]propanoic acid

(2r)-2-amino-3-[(s)-methanesulfinyl]propanoic acid

C4H9NO3S (151.0303)


   

heptacosyl (1s,2s)-2-(3-hydroxy-4-methoxyphenyl)cyclopentane-1-carboxylate

heptacosyl (1s,2s)-2-(3-hydroxy-4-methoxyphenyl)cyclopentane-1-carboxylate

C40H70O4 (614.5274)


   

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

C31H52O2 (456.3967)