NCBI Taxonomy: 85232

Morus nigra (ncbi_taxid: 85232)

found 88 associated metabolites at species taxonomy rank level.

Ancestor: Morus

Child Taxonomies: none taxonomy data.

Neochlorogenic acid

(1R,3R,4S,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylic acid

C16H18O9 (354.0950778)


Constituent of coffee and many other plants. First isolated from peaches (Prunus persica). trans-Neochlorogenic acid is found in coffee and coffee products, fruits, and pear. [Raw Data] CBA73_Neochlorogenic-_neg_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_20eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_40eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_20eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_40eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_30eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_30eV.txt Neochlorogenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=906-33-2 (retrieved 2024-07-17) (CAS RN: 906-33-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.

   

Kaempferol_3-O-rutinoside

5,7-Dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C27H30O15 (594.158463)


Kaempferol-3-rutinoside is a kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. It has a role as a metabolite, a radical scavenger and a plant metabolite. It is a rutinoside, a trihydroxyflavone, a disaccharide derivative and a kaempferol O-glucoside. Nicotiflorin is a natural product found in Visnea mocanera, Eupatorium cannabinum, and other organisms with data available. See also: Cocoa (part of). A kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Isoquercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-). Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others. Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available. Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation. Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells [Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Aromadendrin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(4-hydroxyphenyl)-, (2R-trans)-

C15H12O6 (288.0633852)


(+)-dihydrokaempferol is a tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. It has a role as a metabolite. It is a tetrahydroxyflavanone, a member of dihydroflavonols, a secondary alpha-hydroxy ketone and a member of 4-hydroxyflavanones. It is functionally related to a kaempferol. It is a conjugate acid of a (+)-dihydrokaempferol 7-oxoanion. Aromadendrin is a natural product found in Smilax corbularia, Ventilago leiocarpa, and other organisms with data available. See also: Acai fruit pulp (part of). Isolated from Citrus subspecies and many other plants. Aromadendrin is found in many foods, some of which are thistle, coriander, adzuki bean, and almond. Aromadendrin is found in citrus. Aromadendrin is isolated from Citrus species and many other plant A tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. Dihydrokaempferol is isolated from Bauhinia championii (Benth). Dihydrokaempferol induces apoptosis and inhibits Bcl-2 and Bcl-xL expression. Dihydrokaempferol is a good candidate for new antiarthritic agents[1]. Dihydrokaempferol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=480-20-6 (retrieved 2024-09-18) (CAS RN: 480-20-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cyclomorusin

11,19-dihydroxy-7,7-dimethyl-15-(2-methylprop-1-enyl)-2,8,16-trioxapentacyclo[12.8.0.0^{3,12.0^{4,9.0^{17,22]docosa-1(14),3(12),4(9),5,10,17(22),18,20-octaen-13-one

C25H22O6 (418.1416312)


Cyclomorusin A is an extended flavonoid that is cyclomulberrin in which the hydroxy group at position 10 has undergone oxidative cyclisation to position 3 of the 3-methylbut-2-en-1-yl substituent, with migration of the double bond into conjugation with the aromatic ring. It is a moderate inhibitor of acetylcholinesterase (IC50 = 16.2 - 36.6 muM), and a strong inhibitor of platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) induced platelet aggregation. It has a role as a plant metabolite, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a platelet aggregation inhibitor and an EC 1.14.18.1 (tyrosinase) inhibitor. It is an extended flavonoid, an organic heteropentacyclic compound, a cyclic ketone and a polyphenol. It is functionally related to a cyclomulberrin. Cyclomorusin is a natural product found in Artocarpus altilis, Morus lhou, and other organisms with data available. An extended flavonoid that is cyclomulberrin in which the hydroxy group at position 10 has undergone oxidative cyclisation to position 3 of the 3-methylbut-2-en-1-yl substituent, with migration of the double bond into conjugation with the aromatic ring. It is a moderate inhibitor of acetylcholinesterase (IC50 = 16.2 - 36.6 muM), and a strong inhibitor of platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) induced platelet aggregation. Isolated from the root bark of Morus alba (white mulberry)and is also from Artocarpus altilis (breadfruit). Cyclomorusin is found in breadfruit and fruits. Cyclomorusin is found in breadfruit. Cyclomorusin is isolated from the root bark of Morus alba (white mulberry). Also from Artocarpus altilis (breadfruit

   

Albanol A

Mulberrofuran G

C34H26O8 (562.1627596000001)


Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2]. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2]. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2].

   

Mulberrofuran C

[(1S,2R,6R)-2-[2,6-dihydroxy-4-(6-hydroxy-1-benzofuran-2-yl)phenyl]-6-(2,4-dihydroxyphenyl)-4-methyl-1-cyclohex-3-enyl]-(2,4-dihydroxyphenyl)methanone

C34H28O9 (580.1733238)


   

Albanin F

8-[6-(2,4-dihydroxybenzoyl)-5-(2,4-dihydroxyphenyl)-3-methylcyclohex-2-en-1-yl]-2-(2,4-dihydroxyphenyl)-5,7-dihydroxy-3-(3-methylbut-2-en-1-yl)-4H-chromen-4-one

C40H36O11 (692.2257506)


Albanin F is found in fruits. Albanin F is a constituent of white mulberry bark (Morus alba) (famine food) Kuwanon G is a flavonoid isolated from Morus alba, acts as a bombesin receptor antagonist, with potential antimicrobial activity[1][2]. Kuwanon G is a flavonoid isolated from Morus alba, acts as a bombesin receptor antagonist, with potential antimicrobial activity[1][2].

   

Albanin G

8-{6-[2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)benzoyl]-5-(2,4-dihydroxyphenyl)-3-methylcyclohex-2-en-1-yl}-2-(2,4-dihydroxyphenyl)-5,7-dihydroxy-3-(3-methylbut-2-en-1-yl)-4H-chromen-4-one

C45H44O11 (760.2883474)


Albanin G is found in fruits. Albanin G is a constituent of white mulberry (Morus alba) Kuwanon H is a flavonoid isolated from Morus alba, which acts as a potent non-peptide bombesin receptor antagonist. Kuwanon H selectively inhibits binding of gastrin releasing peptide CRP to GRP-preferring recepotr, with a Ki value of 290 nM in cells[1]. Kuwanon H is a flavonoid isolated from Morus alba, which acts as a potent non-peptide bombesin receptor antagonist. Kuwanon H selectively inhibits binding of gastrin releasing peptide CRP to GRP-preferring recepotr, with a Ki value of 290 nM in cells[1].

   

Morusin

4H,8H-BENZO(1,2-B:3,4-B)DIPYRAN-4-ONE, 2-(2,4-DIHYDROXYPHENYL)-5-HYDROXY-8,8-DIMETHYL-3-(3-METHYL-2-BUTEN-1-YL)-

C25H24O6 (420.1572804)


Morusin is an extended flavonoid that is flavone substituted by hydroxy groups at positions 5, 2 and 4, a prenyl group at position 3 and a 2,2-dimethyl pyran group across positions 7 and 8. It has a role as a plant metabolite and an antineoplastic agent. It is a trihydroxyflavone and an extended flavonoid. Morusin is a natural product found in Morus alba var. multicaulis, Broussonetia papyrifera, and other organisms with data available. An extended flavonoid that is flavone substituted by hydroxy groups at positions 5, 2 and 4, a prenyl group at position 3 and a 2,2-dimethyl pyran group across positions 7 and 8. Morusin is found in fruits. Morusin is a constituent of the root bark of Morus alba (mulberry) and other Morus species Constituent of the root bark of Morus alba (mulberry) and other Morus subspecies Morusin is found in fruits. Morusin is a prenylated flavonoid isolated from Morus alba Linn. with various biological activities, such as antitumor, antioxidant, and anti-bacteria property. Morusin could inhibit NF-κB and STAT3 activity. Morusin is a prenylated flavonoid isolated from Morus alba Linn. with various biological activities, such as antitumor, antioxidant, and anti-bacteria property. Morusin could inhibit NF-κB and STAT3 activity.

   

Neochlorogenic_acid

CYCLOHEXANECARBOXYLIC ACID, 3-((3-(3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPENYL)OXY)-1,4,5-TRIHYDROXY-, (1R-(1.ALPHA.,3.ALPHA.(E),4.ALPHA.,5.BETA.))-

C16H18O9 (354.0950778)


Trans-5-O-caffeoyl-D-quinic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. It has a role as a plant metabolite. It is a cyclitol carboxylic acid and a cinnamate ester. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a trans-5-O-caffeoyl-D-quinate. Neochlorogenic acid is a natural product found in Eupatorium perfoliatum, Centaurea bracteata, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (has part); Moringa oleifera leaf (part of). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.

   

Moracin M

InChI=1/C14H10O4/c15-10-2-1-8-5-13(18-14(8)7-10)9-3-11(16)6-12(17)4-9/h1-7,15-17

C14H10O4 (242.057906)


Moracin M is a member of benzofurans. Moracin M is a natural product found in Morus insignis, Morus mesozygia, and other organisms with data available. Moracin M is found in fruits. Moracin M is isolated from Morus alba (white mulberry) infected with Fusarium solani. Isolated from Morus alba (white mulberry) infected with Fusarium solani. Moracin M is found in fruits. Moracin M, a phenolic component in the skin of Morus alba Linn., is a potent phosphodiesterase-4 (PDE4) inhibitor with IC50 values of 2.9, 4.5, >40, and >100 μM for PDE4D2, PDE4B2, PDE5A1, and PDE9A2, respectively. Moracin M has anti-inflammatory activity[1]. Moracin M, a phenolic component in the skin of Morus alba Linn., is a potent phosphodiesterase-4 (PDE4) inhibitor with IC50 values of 2.9, 4.5, >40, and >100 μM for PDE4D2, PDE4B2, PDE5A1, and PDE9A2, respectively. Moracin M has anti-inflammatory activity[1].

   

Norartocarpetin

2-(2,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one, 9CI

C15H10O6 (286.047736)


Norartocarpetin is a member of flavones. Norartocarpetin is a natural product found in Dalbergia sissoo, Ficus formosana, and other organisms with data available. Norartocarpetin is found in fruits. Norartocarpetin is a constituent of the heartwood of Artocarpus heterophyllus (jackfruit) Constituent of the heartwood of Artocarpus heterophyllus (jackfruit). Norartocarpetin is found in jackfruit and fruits. Norartocarpetin is a tyrosinase inhibitor. Norartocarpetin has strong tyrosinase inhibitory activity with an IC50 value of 0.47 μM. Norartocarpetin as an antibrowning agent can be used for the research of food systems. Norartocarpetin also has a significant anticancer activity in lung carcinoma cells (NCI-H460) with an IC50 value of 22 μM. Norartocarpetin has antiproliferative effects are mediated via targeting Ras/Raf/MAPK signalling pathway, mitochondrial mediated apoptosis, S-phase cell cycle arrest and suppression of cell migration and invasion in human lung carcinoma cells[1][2]. Norartocarpetin is a tyrosinase inhibitor. Norartocarpetin has strong tyrosinase inhibitory activity with an IC50 value of 0.47 μM. Norartocarpetin as an antibrowning agent can be used for the research of food systems. Norartocarpetin also has a significant anticancer activity in lung carcinoma cells (NCI-H460) with an IC50 value of 22 μM. Norartocarpetin has antiproliferative effects are mediated via targeting Ras/Raf/MAPK signalling pathway, mitochondrial mediated apoptosis, S-phase cell cycle arrest and suppression of cell migration and invasion in human lung carcinoma cells[1][2].

   

Albanin A

2-(2,4-Dihydroxyphenyl)-5,7-dihydroxy-3-(3-methyl-2-butenyl)-4H-1-benzopyran-4-one, 9CI

C20H18O6 (354.1103328)


Albanin A is a member of flavones. Albanin A is a natural product found in Artocarpus gomezianus, Brosimum lactescens, and other organisms with data available. Albanin A is found in fruits. Albanin A is isolated from Morus alba (white mulberry) infected with Fusarium solani. Isolated from Morus alba (white mulberry) infected with Fusarium solani. Albanin A is found in fruits.

   

Moracin O

5-[11-(2-hydroxypropan-2-yl)-4,12-dioxatricyclo[7.3.0.0^{3,7}]dodeca-1(9),2,5,7-tetraen-5-yl]benzene-1,3-diol

C19H18O5 (326.1154178)


Moracin O is a member of benzofurans. Moracin O is a natural product found in Morus cathayana, Morus lhou, and Morus alba with data available. Moracin O is found in fruits. Moracin O is a constituent of Morus alba (white mulberry). Constituent of Morus alba (white mulberry). Moracin O is found in fruits. Moracin O is a 2-arylbenzofuran isolated from the Morus alba Linn. . Moracin O exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin O reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin O has neuroprotective and anti-inflammatory effects[1][2][3]. Moracin O is a 2-arylbenzofuran isolated from the Morus alba Linn. . Moracin O exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin O reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin O has neuroprotective and anti-inflammatory effects[1][2][3]. Moracin O is a 2-arylbenzofuran isolated from the Morus alba Linn. . Moracin O exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin O reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin O has neuroprotective and anti-inflammatory effects[1][2][3].

   

Moracin C

1,3-Benzenediol, 5-(6-hydroxy-2-benzofuranyl)-2-(3-methyl-2-butenyl)- (9CI); 5-(6-Hydroxy-2-benzofuranyl)-2-(3-methyl-2-buten-1-yl)-1,3-benzenediol

C19H18O4 (310.1205028)


Moracin C is a member of benzofurans. Moracin C is a natural product found in Morus mesozygia, Morus alba var. multicaulis, and other organisms with data available. Isolated from Morus alba (white mulberry) infected with Fusarium solani. Moracin C is found in mulberry and fruits. Moracin C is found in fruits. Moracin C is isolated from Morus alba (white mulberry) infected with Fusarium solani. Moracin C, a natural product, is an anti-inflammatory agent. Moracin C inhibits LPS-activated reactive oxygen species (ROS) and nitric oxide (NO) release from cells[1]. Moracin C, a natural product, is an anti-inflammatory agent. Moracin C inhibits LPS-activated reactive oxygen species (ROS) and nitric oxide (NO) release from cells[1].

   

Morachalcone A

2-Propen-1-one, 1-[2,4-dihydroxy-3-(3-methyl-2-butenyl)phenyl]-3-(2,4-dihydroxyphenyl)-, (E)-; (2E)-1-[2,4-Dihydroxy-3-(3-methyl-2-buten-1-yl)phenyl]-3-(2,4-dihydroxyphenyl)-2-propen-1-one

C20H20O5 (340.13106700000003)


Morachalcone A is found in breadfruit. Morachalcone A is a constituent of Morus alba (white mulberry). Constituent of Morus alba (white mulberry). Morachalcone A is found in breadfruit and fruits.

   

Kuwanon E

2-{5-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxyphenyl}-5,7-dihydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C25H28O6 (424.1885788)


Kuwanon E is found in fruits. Kuwanon E is a constituent of Morus alba (white mulberry)

   

Moracin N

5-[6-hydroxy-5-(3-methylbut-2-en-1-yl)-1-benzofuran-2-yl]benzene-1,3-diol

C19H18O4 (310.1205028)


Moracin N is found in fruits. Moracin N is a constituent of the leaves of Morus alba (white mulberry) (famine food). Constituent of the leaves of Morus alba (white mulberry) (famine food). Moracin N is found in mulberry and fruits.

   

cis-Mulberroside A

2-{3-hydroxy-4-[(Z)-2-(3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H32O14 (568.1791972)


cis-Mulberroside A is found in fruits. cis-Mulberroside A is a constituent of Morus alba (white mulberry)

   

(E)-Oxyresveratrol 3'-O-b-D-glucoside

2-{3-[(Z)-2-(2,4-dihydroxyphenyl)ethenyl]-5-hydroxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O9 (406.1263762)


(E)-Oxyresveratrol 3-O-b-D-glucoside is found in fruits. (E)-Oxyresveratrol 3-O-b-D-glucoside is isolated from Morus alba (white mulberry). Isolated from Morus alba (white mulberry). (E)-Oxyresveratrol 3-O-b-D-glucoside is found in fruits.

   

Albanin E

2-(2,4-Dihydroxyphenyl)-6-(3,7-dimethyl-2,6-octadienyl)-5,7-dihydroxy-4H-1-benzopyran-4-one, 9ci

C25H26O6 (422.17292960000003)


Albanin E is found in fruits. Albanin E is isolated from Morus alba (white mulberry). Isolated from Morus alba (white mulberry). Albanin E is found in fruits.

   

Mulberroside A

2-{3-hydroxy-4-[2-(3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H32O14 (568.1791972)


   

2,4,2,4-Tetrahydroxychalcone

2,4,2,4-Tetrahydroxychalcone

C15H12O5 (272.0684702)


   

Hirsutrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.09547200000003)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Morachalcone A

(E) -1- [ 2,4-Dihydroxy-3- (3-methyl-2-butenyl) phenyl ] -3- (2,4-dihydroxyphenyl) -2-propene-1-one

C20H20O5 (340.13106700000003)


   

Morusin

2- (2,4-Dihydroxyphenyl) -5-hydroxy-8,8-dimethyl-3- (3-methyl-2-butenyl) -4H,8H-benzo [ 1,2-b:3,4-b ] dipyran-4-one

C25H24O6 (420.1572804)


Morusin is a prenylated flavonoid isolated from Morus alba Linn. with various biological activities, such as antitumor, antioxidant, and anti-bacteria property. Morusin could inhibit NF-κB and STAT3 activity. Morusin is a prenylated flavonoid isolated from Morus alba Linn. with various biological activities, such as antitumor, antioxidant, and anti-bacteria property. Morusin could inhibit NF-κB and STAT3 activity.

   

Isoquercetin

3,3,4,5,7-Pentahydroxyflavone 3-β-glucoside

C21H20O12 (464.09547200000003)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   
   

5,7-Dihydroxycoumarin 7-O-β-D-glucopyranoside

5,7-Dihydroxycoumarin 7-O-|A-D-glucopyranoside

C15H16O9 (340.0794286)


5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one is a natural product found in Morus alba var. multicaulis, Morus alba, and Morus nigra with data available.

   

Mulberrofuran_G

3aH-Benzo[3,4][2]benzopyrano[1,8-bc][1]-benzopyran-4,11-diol, 8a-(2,4-dihydroxphenyl)-1,8a,13b,13c-tetrahydro-6-(6-hydroxy-2-benzofuranyl)-2-methyl-, (3a,S,8aS,13bS,13cR)-

C34H26O8 (562.1627596000001)


1-(2,4-Dihydroxyphenyl)-17-(6-hydroxy-1-benzofuran-2-yl)-11-methyl-2,20-dioxapentacyclo[11.7.1.03,8.09,21.014,19]henicosa-3(8),4,6,11,14,16,18-heptaene-5,15-diol is a natural product found in Morus lhou, Morus alba, and Broussonetia with data available. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2]. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2]. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2].

   

Oxyresveratrol 2-O-β-D-glucopyranoside

(2S,3R,4S,5S,6R)-2-[2-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]-5-hydroxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O9 (406.1263762)


Oxyresveratrol 2-O-beta-D-glucopyranoside is a natural product found in Schoenocaulon officinale, Morus alba, and Morus nigra with data available. Oxyresveratrol 2-O-β-D-glucopyranoside is a phenolic compound isolated from Morus nigra root and is an effective tyrosinase inhibitor with an IC50 of 29.75 μM[1].

   

Kaempferol-3-rutinoside

Kaempferol-7-O-neohesperidoside

C27H30O15 (594.158463)


Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.

   

Albafuran C

4-{5-[2-(3,5-dihydroxyphenyl)-6-hydroxy-1-benzofuran-5-yl]-6-[(2,4-dihydroxyphenyl)carbonyl]-3-methylcyclohex-3-en-1-yl}benzene-1,3-diol

C34H28O9 (580.1733238)


   

Moracin M

InChI=1\C14H10O4\c15-10-2-1-8-5-13(18-14(8)7-10)9-3-11(16)6-12(17)4-9\h1-7,15-17

C14H10O4 (242.057906)


Moracin M, a phenolic component in the skin of Morus alba Linn., is a potent phosphodiesterase-4 (PDE4) inhibitor with IC50 values of 2.9, 4.5, >40, and >100 μM for PDE4D2, PDE4B2, PDE5A1, and PDE9A2, respectively. Moracin M has anti-inflammatory activity[1]. Moracin M, a phenolic component in the skin of Morus alba Linn., is a potent phosphodiesterase-4 (PDE4) inhibitor with IC50 values of 2.9, 4.5, >40, and >100 μM for PDE4D2, PDE4B2, PDE5A1, and PDE9A2, respectively. Moracin M has anti-inflammatory activity[1].

   

Moracin C

5-(6-hydroxy-1-benzofuran-2-yl)-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol

C19H18O4 (310.1205028)


Moracin C, a natural product, is an anti-inflammatory agent. Moracin C inhibits LPS-activated reactive oxygen species (ROS) and nitric oxide (NO) release from cells[1]. Moracin C, a natural product, is an anti-inflammatory agent. Moracin C inhibits LPS-activated reactive oxygen species (ROS) and nitric oxide (NO) release from cells[1].

   

Moracin O

5-[11-(2-hydroxypropan-2-yl)-4,12-dioxatricyclo[7.3.0.0^{3,7}]dodeca-1(9),2,5,7-tetraen-5-yl]benzene-1,3-diol

C19H18O5 (326.1154178)


Moracin O is a 2-arylbenzofuran isolated from the Morus alba Linn. . Moracin O exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin O reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin O has neuroprotective and anti-inflammatory effects[1][2][3]. Moracin O is a 2-arylbenzofuran isolated from the Morus alba Linn. . Moracin O exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin O reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin O has neuroprotective and anti-inflammatory effects[1][2][3]. Moracin O is a 2-arylbenzofuran isolated from the Morus alba Linn. . Moracin O exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin O reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin O has neuroprotective and anti-inflammatory effects[1][2][3].

   

moracin N

5-[6-hydroxy-5-(3-methylbut-2-en-1-yl)-1-benzofuran-2-yl]benzene-1,3-diol

C19H18O4 (310.1205028)


   

520-30-9

4H-1-Benzopyran-4-one, 2-(2,4-dihydroxyphenyl)-5,7-dihydroxy-

C15H10O6 (286.047736)


Norartocarpetin is a tyrosinase inhibitor. Norartocarpetin has strong tyrosinase inhibitory activity with an IC50 value of 0.47 μM. Norartocarpetin as an antibrowning agent can be used for the research of food systems. Norartocarpetin also has a significant anticancer activity in lung carcinoma cells (NCI-H460) with an IC50 value of 22 μM. Norartocarpetin has antiproliferative effects are mediated via targeting Ras/Raf/MAPK signalling pathway, mitochondrial mediated apoptosis, S-phase cell cycle arrest and suppression of cell migration and invasion in human lung carcinoma cells[1][2]. Norartocarpetin is a tyrosinase inhibitor. Norartocarpetin has strong tyrosinase inhibitory activity with an IC50 value of 0.47 μM. Norartocarpetin as an antibrowning agent can be used for the research of food systems. Norartocarpetin also has a significant anticancer activity in lung carcinoma cells (NCI-H460) with an IC50 value of 22 μM. Norartocarpetin has antiproliferative effects are mediated via targeting Ras/Raf/MAPK signalling pathway, mitochondrial mediated apoptosis, S-phase cell cycle arrest and suppression of cell migration and invasion in human lung carcinoma cells[1][2].

   

Vitamin P

Quercetin 3-O-rutinoside

C27H30O16 (610.153378)