NCBI Taxonomy: 296034

Phyllanthus niruri (ncbi_taxid: 296034)

found 124 associated metabolites at species taxonomy rank level.

Ancestor: Phyllanthus

Child Taxonomies: Phyllanthus niruri subsp. lathyroides

Epicatechin

2-(3,4-dihydroxyphenyl)-2,3,4-trihydro-3,5,7-trihydroxychromene;L-Epicatechin

C15H14O6 (290.0790344)


Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position. Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids . (-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin. Epicatechin has been used in trials studying the treatment of Pre-diabetes. (-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ... A catechin with (2R,3R)-configuration. [Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.

   

Catechin

(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Geraniin

.beta.-D-Glucopyranose, cyclic 2.fwdarw.7:4.fwdarw.5-(3,6-dihydro-2,9,10,11,11-pentahydroxy-3-oxo-2,6-methano-2H-1-benzoxocin-5,7-dicarboxylate)cyclic 3,6-(4,4,5,5,6,6-hexahydroxy[1,1-biphenyl]-2,2-dicarboxylate) 1-(3,4,5-trihydroxybenzoate), stereoisomer

C41H28O27 (952.0817938)


Geraniin is a tannin. Geraniin is a natural product found in Euphorbia makinoi, Macaranga tanarius, and other organisms with data available. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM.

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215226)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Isoquercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-). Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others. Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available. Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation. Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells [Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Epigallocatechin gallate

Benzoic acid, 3,4,5-trihydroxy-, 3,4-dihydro-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3-yl ester, (2R-cis)-

C22H18O11 (458.0849078)


Epigallocatechin gallate (EGCG) is the principal catechin in tea from Camellia sinensis, the most consumed beverage worldwide (after water). Depending on brew time and temperature, a single cup of green tea may contain 100-200 mg EGCG. To control the dose of EGCG administered in experimental studies, green tea solids (GTS) or capsules of green tea extract standardized to EGCG content are often employed. However, there is considerable variability in the EGCG content of commercially available dietary supplements, ranging from 12-143\\\\\\\\% of the tablet or capsule weight. While standardizing tea preparations to EGCG or using highly purified EGCG for research presents an important strategy for the conduct of precise studies as well as the ability to replicate experiments, it is worth noting this approach limits the potential contributions and possible synergy with other bioactive tea ingredients, including caffeine and other flavonoids. Human studies of the bioavailability of green tea catechins reveal these compounds to be poorly absorbed, with <0.1\\\\\\\\% of ingested catechins appearing in blood. Most ingested EGCG is rapidly cleared from blood with an elimination half-life of {approx}3 h and preferentially excreted via bile to the colon. The growing interest in the role of EGCG in health promotion and disease prevention is reflected by an exponential growth of research publications in this field. (J Am Coll Nutr. 2007 Aug;26(4):362S-365S). (-)-epigallocatechin 3-gallate is a gallate ester obtained by the formal condensation of gallic acid with the (3R)-hydroxy group of (-)-epigallocatechin. It has a role as an antineoplastic agent, an antioxidant, a Hsp90 inhibitor, a neuroprotective agent, a plant metabolite, a geroprotector and an apoptosis inducer. It is a gallate ester, a polyphenol and a member of flavans. It is functionally related to a (-)-epigallocatechin. Epigallocatechin gallate has been investigated for the treatment of Hypertension and Diabetic Nephropathy. (-)-Epigallocatechin gallate is a natural product found in Limoniastrum guyonianum, Scurrula atropurpurea, and other organisms with data available. Epigallocatechin Gallate is a phenolic antioxidant found in a number of plants such as green and black tea. It inhibits cellular oxidation and prevents free radical damage to cells. It is under study as a potential cancer chemopreventive agent. (NCI) A gallate ester obtained by the formal condensation of gallic acid with the (3R)-hydroxy group of (-)-epigallocatechin. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2759; ORIGINAL_PRECURSOR_SCAN_NO 2758 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2748; ORIGINAL_PRECURSOR_SCAN_NO 2746 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2762; ORIGINAL_PRECURSOR_SCAN_NO 2760 ORIGINAL_ACQUISITION_NO 2759; CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 2758 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2759; ORIGINAL_PRECURSOR_SCAN_NO 2756 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5920; ORIGINAL_PRECURSOR_SCAN_NO 5917 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5910; ORIGINAL_PRECURSOR_SCAN_NO 5905 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2828; ORIGINAL_PRECURSOR_SCAN_NO 2826 ORIGINAL_PRECURSOR_SCAN_NO 2760; CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2762 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5924; ORIGINAL_PRECURSOR_SCAN_NO 5919 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2754; ORIGINAL_PRECURSOR_SCAN_NO 2752 CONFIDENCE standard compound; INTERNAL_ID 179 Annotation level-1 (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].

   

Quercetin

4H-1-Benzopyran-4-one,2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-, zirconium(2+) salt (1:1)

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

1-Triacontanol

1-triacontanol, aluminum salt

C30H62O (438.48004019999996)


Triacontan-1-ol, also known as myricyl alcohol or triacontanyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, triacontan-1-ol is considered to be a fatty alcohol lipid molecule. Triacontan-1-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Triacontan-1-ol can be found in a number of food items such as coriander, common grape, tea, and cabbage, which makes triacontan-1-ol a potential biomarker for the consumption of these food products.

   

Quercetin 3-lathyroside

3-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5R)-3,4,5-trihydroxytetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-chromen-4-one

C26H28O16 (596.1377288)


Quercetin 3-O-[beta-D-xylosyl-(1->2)-beta-D-glucoside] is a quercetin O-glucoside that is quercetin attached to a beta-D-sambubiosyl residue at position 3 via a glycosidc linkage. It has a role as an antioxidant and a plant metabolite. It is a quercetin O-glucoside, a disaccharide derivative and a tetrahydroxyflavone. Quercetin 3-sambubioside is a natural product found in Lathyrus chloranthus, Euphorbia prostrata, and other organisms with data available. Isolated from horseradish (Armoracia rusticana) leaves. Quercetin 3-lathyroside is found in horseradish and brassicas. Quercetin 3-sambubioside is found in fruits. Quercetin 3-sambubioside is isolated from Actinidia arguta (tara vine).

   

Ellagic acid

6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0^{4,16}.0^{11,15}]hexadeca-1(14),4(16),5,7,11(15),12-hexaene-3,10-dione

C14H6O8 (302.0062676)


Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

(+)-Gallocatechin

(2R,3S)-3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3,5,7-triol

C15H14O7 (306.0739494)


Widespread in plants; found especies in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. Gallocatechin is found in many foods, some of which are broad bean, broccoli, quince, and common grape. (+)-Gallocatechin is found in adzuki bean. (+)-Gallocatechin is widespread in plants; found especially in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

Corilagin

(1S,19R,21S,22R,23R)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0^{4,9}.0^{10,15}]tricosa-4,6,8,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806112)


Corilagin is a member of the class of compounds known as ellagitannins, a class of hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models: (1) a structure containing galloyl units (in some cases, shikimic acid units) linked to diverse polyol carbohydrate, catechin, or triterpenoid units, or (2) a structure containing at least two galloyl units C-C coupled to each other and not containing a glycosidically linked catechin unit. Corilagin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Corilagin can be found in pomegranate, which makes corilagin a potential biomarker for the consumption of this food product. Corilagin was first isolated in 1951 from Dividivi extract and from Caesalpinia coriaria, hence the name of the molecule. It can also be found in Alchornea glandulosa and in the leaves of Punica granatum (pomegranate) (Wikipedia). Corilagin has been shown to exhibit thrombolytic function (PMID: 14750026). Corilagin is an ellagitannin with a hexahydroxydiphenoyl group bridging over the 3-O and 6-O of the glucose core. It has a role as an antihypertensive agent, an EC 3.4.15.1 (peptidyl-dipeptidase A) inhibitor, a non-steroidal anti-inflammatory drug and an antioxidant. It is an ellagitannin and a gallate ester. Corilagin is a natural product found in Euphorbia fischeriana, Euphorbia hyssopifolia, and other organisms with data available. Corilagin is a gallotannin. It can be found in Alchornea glandulosa. [Wikipedia] Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3]. Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Galloyl glucose

(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 3,4,5-trihydroxybenzoate

C13H16O10 (332.0743436)


Galloyl glucose, also known as 1-galloyl-beta-D-glucose or beta-glucogallin, is a member of the class of compounds known as tannins. Tannins are naturally occurring polyphenols which be categorized into four main classes: hydrolyzable tannin (based on ellagic acid or gallic acid), condensed tannins (made of oligomeric or polymeric proanthocyanidins), complex tannins (made of a catechin bound to a gallotannin or elagitannin), and phlorotannins (oligomers of phloroglucinol). Galloyl glucose is soluble (in water) and a very weakly acidic compound (based on its pKa). Galloyl glucose can be found in a number of food items such as pomegranate, strawberry, redcurrant, and rubus (blackberry, raspberry), which makes galloyl glucose a potential biomarker for the consumption of these food products. Galloyl glucose is formed by a gallate 1-beta-glucosyltransferase (UDP-glucose: gallate glucosyltransferase), an enzyme performing the esterification of two substrates, UDP-glucose and gallate to yield two products, UDP and glucogallin. This enzyme can be found in oak leaf preparations .

   

Securinine

6,10-METHANOPYRIDO(1,2-A)AZEPINE-.GAMMA.9(6H),.ALPHA.-ACETIC ACID,1,2,3,4,10,10A-HEXAHYDRO-10-HYDROXY-, .GAMMA.-LACTONE

C13H15NO2 (217.110273)


Securinine is a member of indolizines. Securinine is a natural product found in Flueggea suffruticosa, Flueggea virosa, and other organisms with data available. See also: Phyllanthus amarus top (part of). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. Allosecurinine (Phyllochrysine) is a Securinega alkaloid isolated from Phyllanthus glaucus [1].

   

Phyllanthin

4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene

C24H34O6 (418.2355264)


Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].

   

kaempferol 3-rhamnoside-7-glucoside

(3R-trans)-3,4-bis(1,3-benzodioxol-5-ylmethyl)dihydrofuran-2(3H)-one

C20H18O6 (354.1103328)


Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1]. Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1].

   

(-)-Epigallocatechin

(2R,3R)-3,4-Dihydro-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3,5,7-triol

C15H14O7 (306.0739494)


Widespread in plants; broad beans are an especies good source; present in green and black tea. Potential nutriceutical. Epigallocatechin is found in many foods, some of which are common hazelnut, quince, cucumber, and green bell pepper. (-)-Epigallocatechin is found in almond. (-)-Epigallocatechin is widespread in plants; broad beans are an especially good source; present in green and black tea. Potential nutriceutica CONFIDENCE standard compound; ML_ID 1 (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils.

   

(-)-Epicatechin 3-O-gallate

Benzoic acid, 3,4,5-trihydroxy-, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-5,7-dihydroxy-2H-1-benzopyran-3-yl ester, (2R-cis)-

C22H18O10 (442.0899928)


(-)-epicatechin-3-O-gallate is a gallate ester obtained by formal condensation of the carboxy group of gallic acid with the (3R)-hydroxy group of epicatechin. A natural product found in Parapiptadenia rigida. It has a role as a metabolite, an EC 3.2.1.1 (alpha-amylase) inhibitor and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a catechin, a gallate ester and a polyphenol. It is functionally related to a (-)-epicatechin and a gallic acid. (-)-Epicatechin gallate is a natural product found in Scurrula atropurpurea, Acacia omalophylla, and other organisms with data available. Isolated from tea and numerous other plant subspecies inc. rhubarb and grapes. Epicatechin 3-gallate is found in many foods, some of which are cucumber, muskmelon, black raspberry, and cashew nut. A gallate ester obtained by formal condensation of the carboxy group of gallic acid with the (3R)-hydroxy group of epicatechin. A natural product found in Parapiptadenia rigida. (-)-Epicatechin 3-O-gallate is found in almond. (-)-Epicatechin 3-O-gallate is isolated from tea and numerous other plant species including rhubarb and grapes. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors D020011 - Protective Agents > D000975 - Antioxidants D000970 - Antineoplastic Agents (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM. (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM. (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM. (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM.

   

(?)-GC

(2S,3R)-2-(3,4,5-Trihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol

C15H14O7 (306.0739494)


(-)-gallocatechin is a a gallocatechin that has (2S,3R)-configuration. It has a role as an antioxidant, a radical scavenger and a metabolite. It is an enantiomer of a (+)-gallocatechin. (-)-Gallocatechin is a natural product found in Annona muricata, Senegalia catechu, and other organisms with data available. A a gallocatechin that has (2S,3R)-configuration. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3].

   

Ethyl gallate

2-([(4-CHLOROPHENYL)SULFONYL]AMINO)PROPANOICACID

C9H10O5 (198.052821)


Ethyl gallate is a gallate ester obtained by the formal condensation of gallic acid with ethanol. It has a role as a plant metabolite. Ethyl gallate is a natural product found in Limonium axillare, Dimocarpus longan, and other organisms with data available. Ethyl gallate occurs, inter alia, in Indian gooseberry (Phyllanthus emblica). Ethyl gallate is found in many foods, some of which include grape wine, fruits, guava, and vinegar. Occurs, inter alia, in Indian gooseberry (Phyllanthus emblica). Ethyl gallate is found in many foods, some of which are grape wine, fruits, guava, and vinegar. A gallate ester obtained by the formal condensation of gallic acid with ethanol. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide.

   

1-Triacontanol

1-Triacontanol 100 microg/mL in Methyl-tert-butyl ether

C30H62O (438.48004019999996)


Triacontan-1-ol is an ultra-long-chain primary fatty alcohol that is triacontane in which one of the terminal methyl hydrogens is replaced by a hydroxy group. It is a fatty alcohol 30:0 and an ultra-long-chain primary fatty alcohol. 1-Triacontanol is a natural product found in Haplophyllum bucharicum, Euphorbia dracunculoides, and other organisms with data available. See also: Saw Palmetto (part of); Iris versicolor root (part of).

   

beta-Glucogallin

3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl 3,4,5-trihydroxybenzoic acid

C13H16O10 (332.0743436)


beta-Glucogallin is found in green vegetables. beta-Glucogallin is isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus species. Isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus subspecies 1-Glucosyl gallate is found in tea and green vegetables.

   

Triacontanal

triacontanal

C30H60O (436.464391)


Isolated from wine grapes (Vitis vinifera), from Brassica oleracea leaves and from apple cuticle wax. Triacontanal is found in many foods, some of which are alcoholic beverages, fruits, chives, and brassicas. Triacontanal is found in alcoholic beverages. Triacontanal is isolated from wine grapes (Vitis vinifera), from Brassica oleracea leaves and from apple cuticle wax.

   

Phyllanthin

4-{3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl}-1,2-dimethoxybenzene

C24H34O6 (418.2355264)


   

(+)-Gallocatechin

4-{1-Butyl-9-[1-(4,6-dimethyl-pyrimidine-5-carbonyl)-4-methyl-piperidin-4-yl]-2-oxo-3,0-diaza-spiro[5.5]undec-3-ylmethyl}-piperidine-1-carboxylic acid methyl ester

C15H14O7 (306.0739494)


Gallocatechin is a catechin that is a flavan substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7 (the trans isomer). It is isolated from Acacia mearnsii. It has a role as a metabolite. It is a catechin and a flavan-3,3,4,5,5,7-hexol. (+)-Gallocatechin is a natural product found in Saxifraga cuneifolia, Quercus dentata, and other organisms with data available. See also: Cianidanol (related); Crofelemer (monomer of); Green tea leaf (part of). Widespread in plants; found especies in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. Gallocatechin is found in many foods, some of which are broad bean, broccoli, quince, and common grape. (+)-Gallocatechin is found in adzuki bean. (+)-Gallocatechin is widespread in plants; found especially in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. A gallocatechin that has (2R,3S)-configuration. It is found in green tea and bananas. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

(-)-Epigallocatechin

(-)-epigallocatechol;3,3?,4?,5,5?,7-flavanhexol;5,7-triol,3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-2h-1-benzopyran-(2r-cis

C15H14O7 (306.0739494)


(-)-epigallocatechin is a flavan-3,3,4,5,5,7-hexol having (2R,3R)-configuration. It has a role as an antioxidant, a plant metabolite and a food component. It is a flavan-3,3,4,5,5,7-hexol and a catechin. It is an enantiomer of a (+)-epigallocatechin. Epigallocatechin is a natural product found in Salacia chinensis, Quercus glauca, and other organisms with data available. Epigallocatechin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Crofelemer (monomer of). Widespread in plants; broad beans are an especies good source; present in green and black tea. Potential nutriceutical. Epigallocatechin is found in many foods, some of which are common hazelnut, quince, cucumber, and green bell pepper. (-)-Epigallocatechin is found in almond. (-)-Epigallocatechin is widespread in plants; broad beans are an especially good source; present in green and black tea. Potential nutriceutica A flavan-3,3,4,5,5,7-hexol having (2R,3R)-configuration. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils.

   
   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Hirsutrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.09547200000003)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Catechin

(+)-Catechin Hydrate

C15H14O6 (290.0790344)


Annotation level-1 Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

gallocatechol

2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, (2R,3S)-rel-

C15H14O7 (306.0739494)


(-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

Isoquercetin

3,3,4,5,7-Pentahydroxyflavone 3-β-glucoside

C21H20O12 (464.09547200000003)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   
   

Securinin

8H-6,11b-Methanofuro[2,3-c]pyrido[1,2-a]azepin-2(6H)-one,9,10,11,11a-tetrahydro-, (6S,11aS,11bS)-

C13H15NO2 (217.110273)


Virosecurinine is a member of indolizines. Virosecurinine is a natural product found in Flueggea suffruticosa and Phyllanthus niruri with data available. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. Allosecurinine (Phyllochrysine) is a Securinega alkaloid isolated from Phyllanthus glaucus [1].

   

75O1TFF47Z

4-[(2S,3S)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-(methoxymethyl)butyl]-1,2-dimethoxy-benzene

C24H34O6 (418.2355264)


Phyllanthin is a lignan. Phyllanthin is a natural product found in Phyllanthus debilis, Phyllanthus amarus, and other organisms with data available. See also: Phyllanthus amarus top (part of). Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].

   

Ellagic Acid

Ellagic Acid

C14H6O8 (302.0062676)


Origin: Plant, Ellagic acids, Benzopyranoids, Pyrans Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

Epigallocatechin

(-)-Epigallocatechin

C15H14O7 (306.0739494)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 28 INTERNAL_ID 28; CONFIDENCE Reference Standard (Level 1) (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils.

   

triacontanal

triacontanal

C30H60O (436.464391)


A long-chain fatty aldehyde resulting from the formal oxidation of the hydroxy group of triacontan-1-ol.

   

Progallin A

Benzoic acid, 3,4,5-trihydroxy-, ethyl ester

C9H10O5 (198.052821)


Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide.

   

FAL 30:0

triacontanal

C30H60O (436.464391)


   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

KB-53

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-trans)-

C15H14O6 (290.0790344)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215226)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

AI3-20480

Myricyl alcohol (VAN)

C30H62O (438.48004019999996)


   

970-74-1

2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, (2R-cis)- (9CI)

C15H14O7 (306.0739494)


(-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils.

   

E3893_SIAL

Benzoic acid, 3,4,5-trihydroxy-, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-5,7-dihydroxy-2H-1-benzopyran-3-yl ester, (2R-cis)-

C22H18O10 (442.0899928)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors D020011 - Protective Agents > D000975 - Antioxidants D000970 - Antineoplastic Agents (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM. (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM. (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM. (-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM.

   

Teavigo

(-)-Epigallocatechin gallate (85\\% (-)-epigallocatechin gallate, 10\\% (-)-epigallocatechin, 5\\% (-)- epicatechin gallate)

C22H18O11 (458.0849078)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].

   

554-37-0

3,4,5-trihydroxybenzoic acid [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl] ester

C13H16O10 (332.0743436)


   

83048-35-5

3-[[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4S,5R)-3,4,5-trihydroxy-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone

C26H28O16 (596.1377288)


   

1,2,4,6-Tetragalloylglucose

1,2,4,6-Tetragalloylglucose

C34H28O22 (788.1072188)


   

Quercetin 3-sambubioside

3-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5R)-3,4,5-trihydroxytetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-chromen-4-one

C26H28O16 (596.1377288)


Quercetin 3-O-[beta-D-xylosyl-(1->2)-beta-D-glucoside] is a quercetin O-glucoside that is quercetin attached to a beta-D-sambubiosyl residue at position 3 via a glycosidc linkage. It has a role as an antioxidant and a plant metabolite. It is a quercetin O-glucoside, a disaccharide derivative and a tetrahydroxyflavone. Quercetin 3-sambubioside is a natural product found in Lathyrus chloranthus, Euphorbia prostrata, and other organisms with data available. A quercetin O-glucoside that is quercetin attached to a beta-D-sambubiosyl residue at position 3 via a glycosidc linkage.

   

beta-Glucogallin

1-Galloyl-beta-glucose

C13H16O10 (332.0743436)


   

Vitamin P

Quercetin 3-O-rutinoside

C27H30O16 (610.153378)