Classification Term: 168720
类黄酮 (ontology term: 6a1b43c51711d8d47592700c70d12403)
found 47 associated metabolites at sub_class
metabolite taxonomy ontology rank level.
Ancestor: 黄酮类
Child Taxonomies: There is no child term of current ontology term.
Liquiritin
Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). Liquiritin is found in herbs and spices. Liquiritin is isolated from Glycyrrhiza glabra (licorice) and Glycyrrhiza uralensis (Chinese licorice Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].
Pollenin A
Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). Isolated from pollen of Camellia sinensis (tea). Pollenin A is found in tea. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].
Astilbin
C21H22O11 (450.11620619999997)
Astilbin is a flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as a radical scavenger, an anti-inflammatory agent and a plant metabolite. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a flavanone glycoside, a monosaccharide derivative and a member of 4-hydroxyflavanones. It is functionally related to a (+)-taxifolin. It is an enantiomer of a neoastilbin. Astilbin is a natural product found in Smilax corbularia, Rhododendron simsii, and other organisms with data available. Astilbin is a metabolite found in or produced by Saccharomyces cerevisiae. Astilbin is found in alcoholic beverages. Astilbin is a constituent of Vitis vinifera (wine grape).Astilbin is a flavanonol, a type of flavonoid. It can be found in St Johns wort (Hypericum perforatum, Clusiaceae, subfamily Hypericoideae, formerly often considered a full family Hypericaceae), in Dimorphandra mollis (Fava danta, Fabaceae), in the the leaves of Harungana madagascariensis (Hypericaceae), in the rhizome of Astilbe thunbergii, in the root of Astilbe odontophylla(Saxifragaceae) and in the rhizone of Smilax glabra (Chinaroot, Smilacaceae). A flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Constituent of Vitis vinifera (wine grape) Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3].
Narcissin
Isorhamnetin-3-O-rutinoside is a disaccharide derivative, a glycosyloxyflavone, a monomethoxyflavone and a trihydroxyflavone. Narcissoside is a natural product found in Phoenix canariensis, Scolymus hispanicus, and other organisms with data available. See also: Ginkgo (part of); Calendula Officinalis Flower (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1]. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1].
Isoquercitrin
C21H20O12 (464.09547200000003)
Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-). Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others. Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available. Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation. Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells [Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.
Eriocitrin
Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. Eriocitrin is a flavonoid glycoside that can be found in plants like Citrus grandis, Citrus limon, Mentha longifolia, Mentha piperita, Thymus vulgaris. It shows important antioxidant activities. Isolated from Mentha piperita (peppermint) leaves and from Citrus subspecies Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].
Diosmin
Isolated from parsley. Diosmetin 7-rutinoside is found in many foods, some of which are sweet orange, spearmint, rosemary, and peppermint. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids Diosmin is found in green vegetables. Diosmin is isolated from parsle C26170 - Protective Agent > C275 - Antioxidant > C306 - Bioflavonoid Diosmin is a disaccharide derivative that consists of diosmetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and an anti-inflammatory agent. It is a glycosyloxyflavone, a rutinoside, a disaccharide derivative, a monomethoxyflavone and a dihydroxyflavanone. It is functionally related to a diosmetin. Chronic venous insufficiency is a common condition the western population. Compression and pharmacotherapy are frequently used to manage chronic venous insufficiency, improving circulation and symptoms of venous disease. Diosmin is a bioflavonoid isolated from various plants or synthesized from [hesperidin]. It is used for the improvement of capillary fragility or venous insufficiency, including chronic venous insufficiency (CVI) and hemorrhoids. Diosmin is widely available over-the-counter and demonstrates a favourable a favorable safety profile. Diosmin is a natural product found in Asyneuma argutum, Citrus hystrix, and other organisms with data available. A bioflavonoid that strengthens vascular walls. See also: Agathosma betulina leaf (part of). [Raw Data] CBA89_Diosmin_neg_50eV.txt [Raw Data] CBA89_Diosmin_pos_10eV.txt [Raw Data] CBA89_Diosmin_neg_20eV.txt [Raw Data] CBA89_Diosmin_pos_50eV.txt [Raw Data] CBA89_Diosmin_neg_30eV.txt [Raw Data] CBA89_Diosmin_neg_40eV.txt [Raw Data] CBA89_Diosmin_pos_30eV.txt [Raw Data] CBA89_Diosmin_neg_10eV.txt [Raw Data] CBA89_Diosmin_pos_20eV.txt [Raw Data] CBA89_Diosmin_pos_40eV.txt Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR). Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR).
Astilbin
C21H22O11 (450.11620619999997)
Neoastilbin is a flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a monosaccharide derivative, a flavanone glycoside and a member of 4-hydroxyflavanones. It is functionally related to a (-)-taxifolin. It is an enantiomer of an astilbin. Neoastilbin is a natural product found in Neolitsea sericea, Dimorphandra mollis, and other organisms with data available. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neosmitilbin is?isolated from?Garcinia?mangostana. Neosmitilbin is?isolated from?Garcinia?mangostana.
Chalcone
Chalcone is a member of the class of chalcones that is acetophenone in which one of the methyl hydrogens has been replaced by a benzylidene group. It has a role as a plant metabolite. It is a member of styrenes and a member of chalcones. Chalcone is a natural product found in Tilia tomentosa, Alpinia hainanensis, and other organisms with data available. An aromatic KETONE that forms the core molecule of CHALCONES. A member of the class of chalcones that is acetophenone in which one of the methyl hydrogens has been replaced by a benzylidene group. Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1]. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1]. trans-Chalcone, isolated from Aronia melanocarpa skin, is a biphenolic core structure of flavonoids precursor. trans-Chalcone is a potent fatty acid synthase (FAS) and α-amylase inhibitor. trans-Chalcone causes cellcycle arrest and induces apoptosis in the breastcancer cell line MCF-7. trans-Chalcone has antifungal and anticancer activity[1][2][3]. trans-Chalcone, isolated from Aronia melanocarpa skin, is a biphenolic core structure of flavonoids precursor. trans-Chalcone is a potent fatty acid synthase (FAS) and α-amylase inhibitor. trans-Chalcone causes cellcycle arrest and induces apoptosis in the breastcancer cell line MCF-7. trans-Chalcone has antifungal and anticancer activity[1][2][3]. Chalcone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=94-41-7 (retrieved 2024-09-27) (CAS RN: 94-41-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Puerarin
Puerarin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 7 and 4 and a beta-D-glucopyranosyl residue at position 8 via a C-glycosidic linkage. It has a role as a plant metabolite. It is a C-glycosyl compound and a hydroxyisoflavone. It is functionally related to an isoflavone. Puerarin has been investigated for the treatment of Alcohol Abuse. Puerarin is a natural product found in Neustanthus phaseoloides, Clematis hexapetala, and other organisms with data available. Puerarin, also known as Kakonein, is a member of the class of compounds known as isoflavonoid C-glycosides. These compounds are C-glycosylated derivatives of isoflavonoids, which are natural products derived from 3-phenylchromen-4-one. Puerarin is considered a slightly soluble (in water), acidic compound. Puerarin can be synthesized into puerarin xyloside. Puerarin is found in a number of plants and herbs, such as the root of the kudzu plant. A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 7 and 4 and a beta-D-glucopyranosyl residue at position 8 via a C-glycosidic linkage. A polyphenol metabolite detected in biological fluids [PhenolExplorer] D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist.
Tectochrysin
7-methylchrysin, also known as 5-hydroxy-7-methoxyflavone or techtochrysin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 7-methylchrysin is considered to be a flavonoid lipid molecule. 7-methylchrysin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 7-methylchrysin can be found in pine nut, prunus (cherry, plum), sour cherry, and sweet cherry, which makes 7-methylchrysin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.330 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.324 Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB.
2-(3,4-Dihydroxyphenyl)-5,6-dihydroxy-7-methoxy-4H-1-benzopyran-4-one
Pedalitin is a tetrahydroxy-monohydroxy-flavone, with the four hydroxy groups at C-3,-4,-5 and 6, and the methoxy group at C-7. It has been isolated from a number of plant species, including Eremosparton songoricum, Rabdosia japonica and Ruellia tuberosa. It has a role as an EC 1.17.3.2 (xanthine oxidase) inhibitor and a metabolite. It is a tetrahydroxyflavone and a monomethoxyflavone. Pedalitin is a natural product found in Teucrium hircanicum, Tanacetum vulgare, and other organisms with data available. A tetrahydroxy-monohydroxy-flavone, with the four hydroxy groups at C-3,-4,-5 and 6, and the methoxy group at C-7. It has been isolated from a number of plant species, including Eremosparton songoricum, Rabdosia japonica and Ruellia tuberosa. 2-(3,4-Dihydroxyphenyl)-5,6-dihydroxy-7-methoxy-4H-1-benzopyran-4-one is found in fats and oils. 2-(3,4-Dihydroxyphenyl)-5,6-dihydroxy-7-methoxy-4H-1-benzopyran-4-one is isolated from Sesamum indicum (sesame Isolated from Sesamum indicum (sesame). 2-(3,4-Dihydroxyphenyl)-5,6-dihydroxy-7-methoxy-4H-1-benzopyran-4-one is found in fats and oils and sesame.
Anhydroglycinol
Anhydroglycinol, also known as 3,9-dihydroxypterocarpen, is a member of the class of compounds known as pterocarpans. Pterocarpans are benzo-pyrano-furano-benzene compounds, containing the 6H-[1]benzofuro[3,2-c]chromene skeleton. They are derivatives of isoflavonoids. Thus, anhydroglycinol is considered to be a flavonoid lipid molecule. Anhydroglycinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Anhydroglycinol can be found in common beet, which makes anhydroglycinol a potential biomarker for the consumption of this food product.
Chalcone
Chalcone is an aromatic ketone that forms the central core for a variety of important biological compounds, which are known collectively as chalcones. They show antibacterial, antifungal, antitumor and anti-inflammatory properties. They are also intermediates in the biosynthesis of flavonoids, which are substances widespread in plants and with an array of biological activities. Chalcones are also intermediates in the Auwers synthesis of flavones.Chalcones can be prepared by an aldol condensation between a benzaldehyde and an acetophenone in the presence of sodium hydroxide as a catalyst. This reaction has been found to work in without any solvent at all - a solid-state reaction. The reaction between substituted benzaldehydes and acetophenones has been used to demonstrate green chemistry in undergraduate chemistry education. In a study investigating green chemistry synthesis, chalcones were also synthesized from the same starting materials in high temperature water (200 to 350 degree centigrade). Chalcone is an aromatic ketone that forms the central core for a variety of important biological compounds, which are known collectively as chalcones. They show antibacterial, antifungal, antitumor and anti-inflammatory properties. They are also intermediates in the biosynthesis of flavonoids, which are substances widespread in plants and with an array of biological activities. Chalcones are also intermediates in the Auwers synthesis of flavones.Chalcones can be prepared by an aldol condensation between a benzaldehyde and an acetophenone in the presence of sodium hydroxide as a catalyst. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1]. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1].
Quercetin 3-galactoside
C21H20O12 (464.09547200000003)
Quercetin 3-O-beta-D-galactopyranoside is a quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. It has a role as a hepatoprotective agent and a plant metabolite. It is a tetrahydroxyflavone, a monosaccharide derivative, a beta-D-galactoside and a quercetin O-glycoside. Hyperoside is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. See also: Bilberry (part of); Menyanthes trifoliata leaf (part of); Crataegus monogyna flowering top (part of). Quercetin 3-galactoside is found in alcoholic beverages. Quercetin 3-galactoside occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort).Hyperoside is the 3-O-galactoside of quercetin. It is a medicinally active compound that can be isolated from Drosera rotundifolia, from the Stachys plant, from Prunella vulgaris, from Rumex acetosella and from St Johns wort. (Wikipedia A quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. Occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort) Acquisition and generation of the data is financially supported in part by CREST/JST. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
Neoliquiritin
Neoliquiritin is found in herbs and spices. Neoliquiritin is isolated from Glycyrrhiza uralensis (Chinese licorice). Isolated from Glycyrrhiza uralensis (Chinese licorice). Neoliquiritin is found in herbs and spices. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1].
Persiconin
C23H26O11 (478.14750460000005)
Isolated from Persica vulgaris (peach) and Prunus species Persicogenin 5-glucoside is found in fruits and peach. Persiconin is found in fruits. Persiconin is isolated from Persica vulgaris (peach) and Prunus sp.
Neoisoastilbin
C21H22O11 (450.11620619999997)
Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].
7-Glucosyl-luteolin
C21H20O12 (464.09547200000003)
Isoquercitroside
C21H20O12 (464.09547200000003)
Phlorizine
C21H24O10 (436.13694039999996)
Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor. Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.
Isorhamnetin 3-beta-D-glucoside
Isorhamnetin 3-beta-d-glucoside, also known as isorhamnetin-3-glu, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Isorhamnetin 3-beta-d-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isorhamnetin 3-beta-d-glucoside can be synthesized from beta-D-glucose. Isorhamnetin 3-beta-d-glucoside can also be synthesized into isorhamnetin. Isorhamnetin 3-beta-d-glucoside can be found in sea-buckthornberry, which makes isorhamnetin 3-beta-d-glucoside a potential biomarker for the consumption of this food product. Isorhamnetin 3-beta-d-glucoside may be a unique S.cerevisiae (yeast) metabolite. Isorhamnetin-3-O-glucoside, a natural compound widely contained in many vegetables and rice, could be metabolized in intestinal microbiota after digestion[1]. Isorhamnetin-3-O-glucoside, a natural compound widely contained in many vegetables and rice, could be metabolized in intestinal microbiota after digestion[1].
Aromadendrin 3-rhamnoside
Aromadendrin 3-rhamnoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Aromadendrin 3-rhamnoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Aromadendrin 3-rhamnoside can be found in common grape, which makes aromadendrin 3-rhamnoside a potential biomarker for the consumption of this food product. Engeletin is a flavanonol glycoside isolated from Smilax glabra Roxb. , inhibits NF-κB signaling-pathway activation, and possesses anti-inflammatory, analgesic, diuresis, detumescence, and antibiosis effects. Engeletin is a flavanonol glycoside isolated from Smilax glabra Roxb. , inhibits NF-κB signaling-pathway activation, and possesses anti-inflammatory, analgesic, diuresis, detumescence, and antibiosis effects.
Techtochrysin
Tectochrysin is a monohydroxyflavone that is flavone substituted by a hydroxy group at position 4 and a methoxy group at position 7 respectively. It has a role as a plant metabolite, an antidiarrhoeal drug and an antineoplastic agent. It is a monohydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Tectochrysin is a natural product found in Hedychium spicatum, Populus laurifolia, and other organisms with data available. A monohydroxyflavone that is flavone substituted by a hydroxy group at position 4 and a methoxy group at position 7 respectively. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB.
Liquiritin
Neoliquiritin is a glycoside and a member of flavonoids. Neoliquiritin is a natural product found in Glycyrrhiza glabra and Glycyrrhiza uralensis with data available. See also: Glycyrrhiza Glabra (part of). Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1].
Engeletin
Engeletin is a natural product found in Smilax corbularia, Malpighia emarginata, and other organisms with data available. Engeletin is a metabolite found in or produced by Saccharomyces cerevisiae. Engeletin is a flavanonol glycoside isolated from Smilax glabra Roxb. , inhibits NF-κB signaling-pathway activation, and possesses anti-inflammatory, analgesic, diuresis, detumescence, and antibiosis effects. Engeletin is a flavanonol glycoside isolated from Smilax glabra Roxb. , inhibits NF-κB signaling-pathway activation, and possesses anti-inflammatory, analgesic, diuresis, detumescence, and antibiosis effects.
3-Glucosylisorhamnetin
Isorhamnetin 3-O-beta-D-glucopyranoside is a glycosyloxyflavone that is isorhamnetin substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite. It is a monosaccharide derivative, a glycosyloxyflavone, a monomethoxyflavone, a trihydroxyflavone and a beta-D-glucoside. It is functionally related to an isorhamnetin and a beta-D-glucose. isorhamnetin-3-O-glucoside is a natural product found in Astragalus varius, Phoenix canariensis, and other organisms with data available. Isorhamnetin 3-O-glucoside is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Ginkgo (part of). A glycosyloxyflavone that is isorhamnetin substituted at position 3 by a beta-D-glucosyl residue. Isorhamnetin-3-O-glucoside, a natural compound widely contained in many vegetables and rice, could be metabolized in intestinal microbiota after digestion[1]. Isorhamnetin-3-O-glucoside, a natural compound widely contained in many vegetables and rice, could be metabolized in intestinal microbiota after digestion[1].
Isoshaftoside
Isoschaftoside is a C-glycosyl compound that is apigenin substituted at positions 6 and 8 by alpha-L-arabinopyranosyl and beta-D-glucosyl residues respectively. It has a role as a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. Isoschaftoside is a natural product found in Centaurea virgata, Galipea trifoliata, and other organisms with data available. A C-glycosyl compound that is apigenin substituted at positions 6 and 8 by alpha-L-arabinopyranosyl and beta-D-glucosyl residues respectively. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, can inhibit growth of germinated S. hermonthica radicles[1][2]. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, can inhibit growth of germinated S. hermonthica radicles[1][2].
Astilbin
C21H22O11 (450.11620619999997)
Neoisoastilbin is a natural product found in Smilax corbularia, Neolitsea sericea, and other organisms with data available. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].
Eriocitrin
Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. A disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].
hyperin
C21H20O12 (464.09547200000003)
Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
Isorhamnetin 3-glucoside
Isorhamnetin-3-O-glucoside, a natural compound widely contained in many vegetables and rice, could be metabolized in intestinal microbiota after digestion[1]. Isorhamnetin-3-O-glucoside, a natural compound widely contained in many vegetables and rice, could be metabolized in intestinal microbiota after digestion[1].
Liquiritin
Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). A flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.697 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.694 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.693 Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1].
Diosmin
Diosmin is a disaccharide derivative that consists of diosmetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and an anti-inflammatory agent. It is a glycosyloxyflavone, a rutinoside, a disaccharide derivative, a monomethoxyflavone and a dihydroxyflavanone. It is functionally related to a diosmetin. Chronic venous insufficiency is a common condition the western population. Compression and pharmacotherapy are frequently used to manage chronic venous insufficiency, improving circulation and symptoms of venous disease. Diosmin is a bioflavonoid isolated from various plants or synthesized from [hesperidin]. It is used for the improvement of capillary fragility or venous insufficiency, including chronic venous insufficiency (CVI) and hemorrhoids. Diosmin is widely available over-the-counter and demonstrates a favourable a favorable safety profile. Diosmin is a natural product found in Asyneuma argutum, Citrus hystrix, and other organisms with data available. A bioflavonoid that strengthens vascular walls. See also: Agathosma betulina leaf (part of). C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids C26170 - Protective Agent > C275 - Antioxidant > C306 - Bioflavonoid Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR). Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR).
Hyperoside
C21H20O12 (464.09547200000003)
[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
Isoschaftoside
Corymboside, also known as 6-arabinopyranosyl-8-galactopyranosylapigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Corymboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Corymboside can be found in a number of food items such as red bell pepper, carob, common wheat, and orange bell pepper, which makes corymboside a potential biomarker for the consumption of these food products. [Raw Data] CBA22_Isoschaftoside_neg_50eV_1-4_01_1416.txt [Raw Data] CBA22_Isoschaftoside_neg_40eV_1-4_01_1415.txt [Raw Data] CBA22_Isoschaftoside_neg_30eV_1-4_01_1414.txt [Raw Data] CBA22_Isoschaftoside_neg_20eV_1-4_01_1413.txt [Raw Data] CBA22_Isoschaftoside_neg_10eV_1-4_01_1366.txt [Raw Data] CBA22_Isoschaftoside_pos_50eV_1-4_01_1389.txt [Raw Data] CBA22_Isoschaftoside_pos_40eV_1-4_01_1388.txt [Raw Data] CBA22_Isoschaftoside_pos_30eV_1-4_01_1387.txt [Raw Data] CBA22_Isoschaftoside_pos_20eV_1-4_01_1386.txt [Raw Data] CBA22_Isoschaftoside_pos_10eV_1-4_01_1355.txt Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, can inhibit growth of germinated S. hermonthica radicles[1][2]. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, can inhibit growth of germinated S. hermonthica radicles[1][2].
Phlorizin
C21H24O10 (436.13694039999996)
Origin: Plant; Formula(Parent): C21H24O10; Bottle Name:Phloridzin; PRIME Parent Name:Phloretin-2-O-glucoside; PRIME in-house No.:S0307, Glycosides relative retention time with respect to 9-anthracene Carboxylic Acid is 0.718 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.713 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.714 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2021; CONFIDENCE confident structure Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor. Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.
isorhamnetin 3-O-glucoside
Acquisition and generation of the data is financially supported in part by CREST/JST. Isorhamnetin-3-O-glucoside, a natural compound widely contained in many vegetables and rice, could be metabolized in intestinal microbiota after digestion[1]. Isorhamnetin-3-O-glucoside, a natural compound widely contained in many vegetables and rice, could be metabolized in intestinal microbiota after digestion[1].
Herbacetin
Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). A pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].
Jyperin
C21H20O12 (464.09547200000003)
Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
likviritin
Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].
Isoquercitroside
C21H20O12 (464.09547200000003)
Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.