NCBI Taxonomy: 85854

Magnolia coco (ncbi_taxid: 85854)

found 59 associated metabolites at species taxonomy rank level.

Ancestor: Magnolia

Child Taxonomies: none taxonomy data.

Scoparone

6,7-dimethoxychromen-2-one

C11H10O4 (206.0579)


Scoparone is a member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. It has a role as a plant metabolite, an anti-inflammatory agent, an antilipemic drug, an immunosuppressive agent, an antihypertensive agent and an anti-allergic agent. It is a member of coumarins and an aromatic ether. It is functionally related to an esculetin. Scoparone is a natural product found in Haplophyllum ramosissimum, Haplophyllum thesioides, and other organisms with data available. A member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Scoparone is found in anise. Scoparone is found in several citrus oil D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Found in several citrus oils Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Pinoresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-

C20H22O6 (358.1416)


Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

(-)-Pinoresinol

4-[(3R,3aS,6R,6aS)-6-(3-methoxy-4-oxidanyl-phenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxy-phenol

C20H22O6 (358.1416)


(-)-pinoresinol is an enantiomer of pinoresinol having (-)-1R,3aS,4R,6aS-configuration. It has a role as a plant metabolite. (-)-Pinoresinol is a natural product found in Dendrobium loddigesii, Forsythia suspensa, and other organisms with data available. An enantiomer of pinoresinol having (-)-1R,3aS,4R,6aS-configuration.

   

(+)-Fargesin

1,3-Benzodioxole, 5-(4-(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo(3,4-c)furan-1-yl)-, (1S-(1alpha,3aalpha,4beta,6aalpha))-

C21H22O6 (370.1416)


Fargesin is a lignan. Planinin is a natural product found in Piper mullesua and Magnolia coco with data available. Constituent of Artemisia absinthium (wormwood). (+)-Fargesin is found in alcoholic beverages and herbs and spices. (+)-Spinescin is found in herbs and spices. (+)-Spinescin is a constituent of sassafras root. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3]. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3].

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. Liriodenine, also known as oxoushinsunine or micheline b, is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Liriodenine is practically insoluble (in water) and a strong basic compound (based on its pKa). Liriodenine can be found in cherimoya and custard apple, which makes liriodenine a potential biomarker for the consumption of these food products. Liriodenine is a bio-active isolate of the Chinese medicinal herb Zanthoxylum nitidum .

   

Magnolol

2-[2-hydroxy-5-(prop-2-en-1-yl)phenyl]-4-(prop-2-en-1-yl)phenol

C18H18O2 (266.1307)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively.

   

Sesamin

5-[(3S,3aR,6S,6aR)-3-(1,3-benzodioxol-5-yl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-6-yl]-1,3-benzodioxole

C20H18O6 (354.1103)


(+)-Sesamin, also known as fagarol or sezamin, belongs to the class of organic compounds known as furanoid lignans. These are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units. (+)-Sesamin is an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-Sesamin is found, on average, in the highest concentration within sesames. (+)-Sesamin has also been detected, but not quantified in, several different foods, such as fats and oils, flaxseeds, ginkgo nuts, and ucuhuba. This could make (+)-sesamin a potential biomarker for the consumption of these foods. (+)-sesamin is a lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. It has a role as an antineoplastic agent, a neuroprotective agent and a plant metabolite. It is a lignan, a member of benzodioxoles and a furofuran. Sesamin is a natural product found in Pandanus boninensis, Podolepis rugata, and other organisms with data available. See also: Sesame Oil (part of). A lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

(+)-Syringaresinol

4-[(1S,3aR,4S,6aR)-4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1628)


(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.

   

Epiaschantin

(+)-Aschantin

C22H24O7 (400.1522)


   

Eudesmin

eudesmin;(1R,3aα,6aα)-1,4α-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(1R,3aα,6aα)-1α,4α-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(3aβ,6aβ)-3β,6β-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(+)-Pinoresinol dimethyl ether;(1S)-3aβ,4,6,6aβ-Tetrahydro-1β,4β-bis(3,4-dimethoxyphenyl)-1H,3H-furo[3,4-c]furan;Pinoresinol dimethyl ether;NSC 35476

C22H26O6 (386.1729)


(+)-Eudesmin is a lignan. (+)-Eudesmin is a natural product found in Pandanus utilis, Zanthoxylum fagara, and other organisms with data available. Origin: Plant Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1]. Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1]. Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2]. Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2].

   

Liriodendrin

(2S,3R,4S,5S,6R)-2-[2-[6-[2,4-dimethoxy-3,6-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]phenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


Liriodendrin is a natural product found in Kalopanax septemlobus, Eleutherococcus gracilistylus, and other organisms with data available. Eleutheroside D is found in tea. Eleutheroside D is a constituent of Siberian ginseng (Eleutherococcus (Acanthopanax) senticosus). Isolated from Eleutherococcus senticosus (Siberian ginseng). Liriodendrin is found in tea. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].

   

(+)-7-epi-Syringaresinol 4'-glucoside

2-{4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C28H36O13 (580.2156)


(+)-7-epi-Syringaresinol 4-glucoside is found in tea. (+)-7-epi-Syringaresinol 4-glucoside is a constituent of the roots of Eleutherococcus senticosus (Siberian ginseng). Constituent of the roots of Eleutherococcus senticosus (Siberian ginseng). (+)-7-epi-Syringaresinol 4-glucoside is found in tea. Acanthoside B is a potential bioactive lignan with anti-inflammatory and anti-amnesic activities. Acanthoside B can be used for alzheimer's disease and lung inflammation research[1] Acanthoside B is a potential bioactive lignan with anti-inflammatory and anti-amnesic activities. Acanthoside B can be used for alzheimer's disease and lung inflammation research[1]

   

Magnolol

5,5 inverted exclamation mark -Diallyl-2,2 inverted exclamation mark -biphenyldiol

C18H18O2 (266.1307)


Magnolol is a member of biphenyls. Magnolol is a natural product found in Magnolia garrettii, Illicium simonsii, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively.

   

Pinoresinol

Phenol,4-(tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl)bis[2-methoxy-, [1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.)]-

C20H22O6 (358.1416)


4-[6-(4-Hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenol is a natural product found in Zanthoxylum riedelianum, Forsythia suspensa, and other organisms with data available. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

8'-Episesaminone

[2-(2H-1,3-benzodioxol-5-yl)-4-(2H-1,3-benzodioxole-5-carbonyl)oxolan-3-yl]methanol

C20H18O7 (370.1052)


8-Episesaminone is found in fats and oils. 8-Episesaminone is a constituent of the seeds of Sesamum indicum (sesame)

   

(1R,3As,4S,6aS)-1,4-di(benzo[d][1,3]dioxol-5-yl)hexahydrofuro[3,4-c]furan

5-[4-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2H-1,3-benzodioxole

C20H18O6 (354.1103)


Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Epipinoresinol

4-[4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H22O6 (358.1416)


(+)-pinoresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-pinoresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-pinoresinol can be found in a number of food items such as chanterelle, pecan nut, pine nut, and common hazelnut, which makes (+)-pinoresinol a potential biomarker for the consumption of these food products. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Sylvatesmin

4-[4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C21H24O6 (372.1573)


   

Sylvatesmin

Phenol, 4-(4-(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo(3,4-c)furan-1-yl)-2-methoxy-, (1S-(1alpha,3aalpha,4beta,6aalpha))-

C21H24O6 (372.1573)


Sylvatesmin is a natural product found in Forsythia suspensa, Lindera praecox, and other organisms with data available. Phillygenin (Phillygenol) is an active ingredient from Forsythia with many medicinal properties, such as antioxidant, reducing blood lipid, inhibition of low density lipoprotein oxidation. Phillygenin (Phillygenol) is an active ingredient from Forsythia with many medicinal properties, such as antioxidant, reducing blood lipid, inhibition of low density lipoprotein oxidation.

   

sesamin

1,3-Benzodioxole, 5,5-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.))-

C20H18O6 (354.1103)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Fargesin

1H,3H-FURO(3,4-C)FURAN, 1.ALPHA.-(3,4-DIMETHOXYPHENYL)-3A.BETA.,4,6,6A.BETA.-TETRAHYDRO-4.BETA.-((3,4-METHYLENEDIOXY)PHENYL)-

C21H22O6 (370.1416)


Fargesin is a lignan. Planinin is a natural product found in Piper mullesua and Magnolia coco with data available. (+/-)-Fargesin is a natural product found in Piper mullesua, Aristolochia cymbifera, and other organisms with data available. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3]. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3].

   

Liriodendrin

(2S,3R,4S,5S,6R)-2-[4-[(3R,3aS,6R,6aS)-6-[3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2,6-dimethoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


(-)-syringaresinol O,O-bis(beta-D-glucoside) is a beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. It has a role as a plant metabolite, an antioxidant and an anti-inflammatory agent. It is functionally related to a (-)-syringaresinol. Acanthoside D is a natural product found in Crescentia cujete, Daphne giraldii, and other organisms with data available. A beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].

   

asarinin

5-[(3R,3aR,6S,6aR)-3-(1,3-benzodioxol-5-yl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-6-yl]-1,3-benzodioxole

C20H18O6 (354.1103)


Episesamin is a natural product found in Zanthoxylum acanthopodium, Zanthoxylum beecheyanum, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1].

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. An oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities.

   

Syringaresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2,6-DIMETHOXY-, (1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.)-(+/-)-

C22H26O8 (418.1628)


(+)-syringaresinol is the (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol. It has a role as an antineoplastic agent. It is an enantiomer of a (-)-syringaresinol. (+)-Syringaresinol is a natural product found in Dracaena draco, Diospyros eriantha, and other organisms with data available. See also: Acai fruit pulp (part of). The (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol.

   

Lirioresinol b

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2,6-DIMETHOXY-, (1R-(1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.))-

C22H26O8 (418.1628)


(-)-syringaresinol is the (7beta,7beta,8beta,8beta)-stereoisomer of syringaresinol. It is an enantiomer of a (+)-syringaresinol. (-)-Syringaresinol is a natural product found in Pittosporum illicioides, Cinnamomum kotoense, and other organisms with data available. The (7beta,7beta,8beta,8beta)-stereoisomer of syringaresinol. (-)-Syringaresinol, found in stems of Annona Montana, possesses anti-cancer activity[1]. (-)-Syringaresinol, found in stems of Annona Montana, possesses anti-cancer activity[1].

   

Magnolol

2-(2-hydroxy-5-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol

C18H18O2 (266.1307)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Annotation level-1 Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively.

   

Scoparone

6,7-dimethoxycoumarin

C11H10O4 (206.0579)


Annotation level-1 D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

syringaresinol

4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1628)


   

Planinin

5-[4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2H-1,3-benzodioxole

C21H22O6 (370.1416)


   

(+)-7-epi-Syringaresinol 4'-glucoside

2-{4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C28H36O13 (580.2156)


   

Scoparon

5-18-03-00204 (Beilstein Handbook Reference)

C11H10O4 (206.0579)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   
   

16-hydroxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1,6,8,10,12(20),14,16,18-octaen-13-one

16-hydroxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1,6,8,10,12(20),14,16,18-octaen-13-one

C17H9NO4 (291.0532)


   

(1r,3as,4s,6as)-1,4-bis(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan

(1r,3as,4s,6as)-1,4-bis(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan

C22H26O6 (386.1729)


   

5-[(1r,3as,4r,6as)-4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(1r,3as,4r,6as)-4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C21H22O6 (370.1416)


   

2-methoxy-4-[4-(3,4,5-trimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]phenol

2-methoxy-4-[4-(3,4,5-trimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]phenol

C22H26O7 (402.1678)


   

asarinin

BG01067667; SCHEMBL6704290; 333JW641ML; CCRIS 8100; 11000-37-6; 1,3-Benzodioxole, 5,5'-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1R-(1alpha,3aalpha,4beta,6aalpha))-; (-)-Asarinin; ASARININ (-); NCGC00017230-02; Xanthoxyln S; CHEMBL1572261; 5-[(1S,3AS,4R,6AS)-4-(2H-1,3-BENZODIOXOL-5-YL)-HEXAHYDROFURO[3,4-C]FURAN-1-YL]-2H-1,3-BENZODIOXOLE; AK608252; ZINC12375085; Y0033; 133-04-0; AKOS000278098; MolPort-000-882-076; NCGC00142464-01; Asarinin; UNII-F6PWY73ZGT component PEYUIKBAABKQKQ-FQZPYLGXSA-N; 133A040; UNII-333JW641ML

C20H18O6 (354.1103)


{"Ingredient_id": "HBIN017025","Ingredient_name": "asarinin","Alias": "BG01067667; SCHEMBL6704290; 333JW641ML; CCRIS 8100; 11000-37-6; 1,3-Benzodioxole, 5,5'-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1R-(1alpha,3aalpha,4beta,6aalpha))-; (-)-Asarinin; ASARININ (-); NCGC00017230-02; Xanthoxyln S; CHEMBL1572261; 5-[(1S,3AS,4R,6AS)-4-(2H-1,3-BENZODIOXOL-5-YL)-HEXAHYDROFURO[3,4-C]FURAN-1-YL]-2H-1,3-BENZODIOXOLE; AK608252; ZINC12375085; Y0033; 133-04-0; AKOS000278098; MolPort-000-882-076; NCGC00142464-01; Asarinin; UNII-F6PWY73ZGT component PEYUIKBAABKQKQ-FQZPYLGXSA-N; 133A040; UNII-333JW641ML","Ingredient_formula": "C20H18O6","Ingredient_Smile": "C1C2C(COC2C3=CC4=C(C=C3)OCO4)C(O1)C5=CC6=C(C=C5)OCO6","Ingredient_weight": "354.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14388","TCMID_id": "1833","TCMSP_id": "NA","TCM_ID_id": "6595;16525","PubChem_id": "102004873","DrugBank_id": "NA"}

   

(2e)-n-{4-[2-formyl-5-(hydroxymethyl)pyrrol-1-yl]butyl}-3-(4-hydroxy-3-methoxyphenyl)prop-2-enimidic acid

(2e)-n-{4-[2-formyl-5-(hydroxymethyl)pyrrol-1-yl]butyl}-3-(4-hydroxy-3-methoxyphenyl)prop-2-enimidic acid

C20H24N2O5 (372.1685)


   

5-[(4r)-4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(4r)-4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C21H22O6 (370.1416)


   

[(2s,3r,4s)-2-(2h-1,3-benzodioxol-5-yl)-4-(2h-1,3-benzodioxole-5-carbonyl)oxolan-3-yl]methanol

[(2s,3r,4s)-2-(2h-1,3-benzodioxol-5-yl)-4-(2h-1,3-benzodioxole-5-carbonyl)oxolan-3-yl]methanol

C20H18O7 (370.1052)


   

[(2s,3r,4s)-2-(2h-1,3-benzodioxol-5-yl)-4-(3,4-dimethoxybenzoyl)oxolan-3-yl]methanol

[(2s,3r,4s)-2-(2h-1,3-benzodioxol-5-yl)-4-(3,4-dimethoxybenzoyl)oxolan-3-yl]methanol

C21H22O7 (386.1365)


   

1-[(12r)-16-hydroxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl]ethanone

1-[(12r)-16-hydroxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl]ethanone

C19H17NO4 (323.1158)


   

1-{16-hydroxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl}ethanone

1-{16-hydroxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1(20),2(6),7,14,16,18-hexaen-11-yl}ethanone

C19H17NO4 (323.1158)


   

5-[4-(3,4,5-trimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[4-(3,4,5-trimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C22H24O7 (400.1522)


   

[2-(2h-1,3-benzodioxol-5-yl)-4-(3,4-dimethoxybenzoyl)oxolan-3-yl]methanol

[2-(2h-1,3-benzodioxol-5-yl)-4-(3,4-dimethoxybenzoyl)oxolan-3-yl]methanol

C21H22O7 (386.1365)


   

4-[3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol

4-[3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol

C20H24O6 (360.1573)


   

5-[(1s,3ar,4s,6ar)-4-(3,4,5-trimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(1s,3ar,4s,6ar)-4-(3,4,5-trimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C22H24O7 (400.1522)


   

4-[(1r,3as,4r,6as)-4-(3,4,5-trimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

4-[(1r,3as,4r,6as)-4-(3,4,5-trimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C22H26O7 (402.1678)


   

5-[(1r,3ar,4r,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(1r,3ar,4r,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C20H18O6 (354.1103)


   

n-{4-[2-formyl-5-(hydroxymethyl)pyrrol-1-yl]butyl}-3-(4-hydroxy-3-methoxyphenyl)prop-2-enimidic acid

n-{4-[2-formyl-5-(hydroxymethyl)pyrrol-1-yl]butyl}-3-(4-hydroxy-3-methoxyphenyl)prop-2-enimidic acid

C20H24N2O5 (372.1685)


   

16,17-dimethoxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1,6,8,10,12(20),14(19),15,17-octaen-13-one

16,17-dimethoxy-3,5-dioxa-11-azapentacyclo[10.7.1.0²,⁶.0⁸,²⁰.0¹⁴,¹⁹]icosa-1,6,8,10,12(20),14(19),15,17-octaen-13-one

C19H13NO5 (335.0794)


   

4-[(2s,3r)-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol

4-[(2s,3r)-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol

C20H24O6 (360.1573)


   

(1r,3as,4r,6as)-1,4-bis(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan

(1r,3as,4r,6as)-1,4-bis(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan

C22H26O6 (386.1729)


   

(3as,6as)-1,4-bis(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan

(3as,6as)-1,4-bis(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan

C22H26O6 (386.1729)


   

4-[(3ar,6as)-4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

4-[(3ar,6as)-4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H22O6 (358.1416)


   

5-[(3ar,6ar)-4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(3ar,6ar)-4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C21H22O6 (370.1416)


   

5-[(1s,3ar,4r,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

5-[(1s,3ar,4r,6ar)-4-(2h-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2h-1,3-benzodioxole

C20H18O6 (354.1103)


   

4-[(1r,3as,4s,6as)-4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

4-[(1r,3as,4s,6as)-4-(3,4-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C21H24O6 (372.1573)