NCBI Taxonomy: 55183
Forsythia x intermedia (ncbi_taxid: 55183)
found 33 associated metabolites at species taxonomy rank level.
Ancestor: Forsythia
Child Taxonomies: none taxonomy data.
Quercitrin
Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].
Phillyrin
Forsythin is a lignan and a glycoside. Phillyrin is a natural product found in Forsythia suspensa, Phillyrea latifolia, and other organisms with data available. Annotation level-1 2-[4-[3-(3,4-Dimethoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-6-yl]-2-methoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Pteris semipinnata with data available. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2]. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2].
Caffeic acid
Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Pinoresinol
Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].
(-)-Pinoresinol
(-)-pinoresinol is an enantiomer of pinoresinol having (-)-1R,3aS,4R,6aS-configuration. It has a role as a plant metabolite. (-)-Pinoresinol is a natural product found in Dendrobium loddigesii, Forsythia suspensa, and other organisms with data available. An enantiomer of pinoresinol having (-)-1R,3aS,4R,6aS-configuration.
Secoisolariciresinol
Secoisolariciresinol, also known as knotolan or secoisolariciresinol, (r*,s*)-isomer, is a member of the class of compounds known as dibenzylbutanediol lignans. Dibenzylbutanediol lignans are lignan compounds containing a 2,3-dibenzylbutane-1,4-diol moiety. Secoisolariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Secoisolariciresinol can be found in a number of food items such as grape, saskatoon berry, asparagus, and sweet potato, which makes secoisolariciresinol a potential biomarker for the consumption of these food products. Secoisolariciresinol can be found primarily in urine. Secoisolariciresinol is a lignan, a type of phenylpropanoid. It is present in the water extract of silver fir wood, where its content is more than 5 \\\\% . (-)-secoisolariciresinol is an enantiomer of secoisolariciresinol having (-)-(2R,3R)-configuration. It has a role as an antidepressant, a plant metabolite and a phytoestrogen. It is an enantiomer of a (+)-secoisolariciresinol. Secoisolariciresinol has been used in trials studying the prevention of Breast Cancer. Secoisolariciresinol is a natural product found in Fitzroya cupressoides, Crossosoma bigelovii, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.
Matairesinol
Matairesinol belongs to the class of organic compounds known as dibenzylbutyrolactone lignans. These are lignan compounds containing a 3,4-dibenzyloxolan-2-one moiety. Matairesinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, matairesinol is found, on average, in the highest concentration in a few different foods such as sesame, burdocks, and flaxseeds, and in a lower concentration in oats, asparagus, and poppies. Matairesinol has also been detected, but not quantified in, several different foods, such as silver lindens, tamarinds, cherry tomato, skunk currants, and fireweeds. This could make matairesinol a potential biomarker for the consumption of these foods. Matairesinol is composed of gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). (-)-matairesinol is a lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). It has a role as a phytoestrogen, a plant metabolite, an angiogenesis inhibitor and an anti-asthmatic agent. It is a polyphenol, a lignan and a gamma-lactone. Matairesinol is a natural product found in Crossosoma bigelovii, Brassica oleracea var. sabauda, and other organisms with data available. See also: Arctium lappa fruit (part of); Pumpkin Seed (part of). Matairesinol is a plant lignan. It occurs with secoisolariciresinol in numerous foods such as oil seeds, whole grains, vegetables, and fruits. (-)-Matairesinol is found in many foods, some of which are caraway, pecan nut, cereals and cereal products, and longan. A lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].
(-)-Arctigenin
(-)-Arctigenin is found in burdock. (-)-Arctigenin is isolated from Cnicus benedictus, Forsythia viridissima, Arctium lappa, Ipomoea cairica and others (CCD).Arctigenin is a lignan found in certain plants of the Asteraceae , including the Greater burdock (Arctium lappa) and Saussurea heteromalla. It has shown antiviral and anticancer effects. It is the aglycone of arctiin. (Wikipedia (-)-Arctigenin is a lignan. Arctigenin is a natural product found in Centaurea cineraria, Forsythia suspensa, and other organisms with data available. See also: Arctium lappa Root (part of); Arctium lappa fruit (part of); Pumpkin Seed (part of) ... View More ... Isolated from Cnicus benedictus, Forsythia viridissima, Arctium lappa, Ipomoea cairica and others (CCD) Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].
(+)-lariciresinol
(+)-Lariciresinol belongs to the class of organic compounds known as 7,9-epoxylignans. These are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at positons 2, 3 and 4, respectively. (+)-Lariciresinol has been detected in several different foods, such as parsnips, white mustards, narrowleaf cattails, turnips, and common sages. This could make (+)-Lariciresinol a potential biomarker for the consumption of these foods. Lariciresinol is also found in sesame seeds, Brassica vegetables, in the bark and wood of white fir (Abies alba). (+)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (+)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-lariciresinol can be found in a number of food items such as pili nut, lemon balm, root vegetables, and parsley, which makes (+)-lariciresinol a potential biomarker for the consumption of these food products.
Pinoresinol
4-[6-(4-Hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenol is a natural product found in Zanthoxylum riedelianum, Forsythia suspensa, and other organisms with data available. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].
Epipinoresinol
(+)-pinoresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-pinoresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-pinoresinol can be found in a number of food items such as chanterelle, pecan nut, pine nut, and common hazelnut, which makes (+)-pinoresinol a potential biomarker for the consumption of these food products. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].
Lariciresinol
(-)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (-)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-lariciresinol can be found in a number of food items such as cassava, acorn, celeriac, and banana, which makes (-)-lariciresinol a potential biomarker for the consumption of these food products.
Quercetin 3-O-rhamnoside
Matairesinoside
Matairesinoside is a member of the class of compounds known as lignan glycosides. Lignan glycosides are aromatic polycyclic compounds containing a carbohydrate component glycosidically linked to a lignan moiety. They include 1-aryltetralin lactones. Matairesinoside is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Matairesinoside can be found in safflower, which makes matairesinoside a potential biomarker for the consumption of this food product. Matairesinoside is a lignan with antibacterial and antioxidant activities. Matairesinoside also shows virus-cell fusion inhibitory activity[1][2]. Matairesinoside is a lignan with antibacterial and antioxidant activities. Matairesinoside also shows virus-cell fusion inhibitory activity[1][2].
Sylvatesmin
Sylvatesmin is a natural product found in Forsythia suspensa, Lindera praecox, and other organisms with data available. Phillygenin (Phillygenol) is an active ingredient from Forsythia with many medicinal properties, such as antioxidant, reducing blood lipid, inhibition of low density lipoprotein oxidation. Phillygenin (Phillygenol) is an active ingredient from Forsythia with many medicinal properties, such as antioxidant, reducing blood lipid, inhibition of low density lipoprotein oxidation.
Quercitrin
Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].
Lariciresinol
(+)-lariciresinol is a lignan that is tetrahydrofuran substituted at positions 2, 3 and 4 by 4-hydroxy-3-methoxyphenyl, hydroxymethyl and 4-hydroxy-3-methoxybenzyl groups respectively (the 2S,3R,4R-diastereomer). It has a role as an antifungal agent and a plant metabolite. It is a member of oxolanes, a member of phenols, a lignan, a primary alcohol and an aromatic ether. It is an enantiomer of a (-)-lariciresinol. Lariciresinol is a natural product found in Magnolia kachirachirai, Euterpe oleracea, and other organisms with data available. See also: Acai fruit pulp (part of). A lignan that is tetrahydrofuran substituted at positions 2, 3 and 4 by 4-hydroxy-3-methoxyphenyl, hydroxymethyl and 4-hydroxy-3-methoxybenzyl groups respectively (the 2S,3R,4R-diastereomer). (-)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (-)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-lariciresinol can be found in a number of food items such as ostrich fern, pepper (c. frutescens), ohelo berry, and guava, which makes (-)-lariciresinol a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.823 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.820 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.818 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.812
Secoisolariciresinol
Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 0.816 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.813 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.806 Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.
Matairesinol
Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 INTERNAL_ID 17; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.920 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.921 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].
Arctigenin
Annotation level-1 Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].
Arctiin
Annotation level-1 Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity. Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity.
3,4-Bis[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one
Forsythin
Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2]. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2].