Guanosine monophosphate (BioDeep_00000003009)
Secondary id: BioDeep_00000398718, BioDeep_00002052733, BioDeep_00002053054
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C10H14N5O8P (363.05799740000003)
中文名称: 鸟苷-磷酸, 一磷酸鸟苷, 鸟苷-5'-单磷酸 二钠盐 水合物, 单磷酸鸟苷, 鸟苷酸
谱图信息:
最多检出来源 Viridiplantae(plant) 0.03%
Last reviewed on 2024-06-29.
Cite this Page
Guanosine monophosphate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/guanosine_monophosphate (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000003009). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C([C@@H]1[C@H]([C@H]([C@H](n2cnc3c2nc(N)[nH]c3=O)O1)O)O)OP(=O)(O)O
InChI: InChI=1S/C10H14N5O8P/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(23-9)1-22-24(19,20)21/h2-3,5-6,9,16-17H,1H2,(H2,19,20,21)(H3,11,13,14,18)/t3-,5-,6-,9-/m1/s1
描述信息
Guanosine monophosphate (GMP), also known as 5′-guanidylic acid or guanylic acid (conjugate base guanylate), is a nucleotide that is used as a monomer in RNA. It is an ester of phosphoric acid with the nucleoside guanosine. GMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase guanine; hence it is a ribonucleoside monophosphate. Guanosine monophosphate is commercially produced by microbial fermentation. Guanosine monophosphate, also known as guanylic acid or 5-GMP, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. A guanine nucleotide containing one phosphate group esterified to the sugar moiety and found widely in nature. Guanosine monophosphate exists in all living species, ranging from bacteria to humans. Within humans, guanosine monophosphate participates in a number of enzymatic reactions. In particular, guanosine triphosphate and guanosine monophosphate can be biosynthesized from diguanosine tetraphosphate through its interaction with the enzyme bis(5-nucleosyl)-tetraphosphatase [asymmetrical]. In addition, guanosine monophosphate can be biosynthesized from guanosine diphosphate; which is mediated by the enzyme ectonucleoside triphosphate diphosphohydrolase 5. In humans, guanosine monophosphate is involved in the metabolic disorder called the lesch-nyhan syndrome (lns) pathway. Outside of the human body, guanosine monophosphate has been detected, but not quantified in several different foods, such as common cabbages, tea, winter squash, spearmints, and sugar apples.
Guanosine-5-monophosphate, also known as 5-gmp or guanylic acid, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Guanosine-5-monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine-5-monophosphate can be found in a number of food items such as mustard spinach, swiss chard, watercress, and colorado pinyon, which makes guanosine-5-monophosphate a potential biomarker for the consumption of these food products. Guanosine-5-monophosphate can be found primarily in blood and saliva, as well as throughout most human tissues. Guanosine-5-monophosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine-5-monophosphate is involved in several metabolic pathways, some of which include clarithromycin action pathway, erythromycin action pathway, minocycline action pathway, and tetracycline action pathway. Guanosine-5-monophosphate is also involved in several metabolic disorders, some of which include gout or kelley-seegmiller syndrome, xanthine dehydrogenase deficiency (xanthinuria), aICA-Ribosiduria, and molybdenum cofactor deficiency.
Guanosine monophosphate is known as E number reference E626.[7] In the form of its salts, such as disodium guanylate (E627), dipotassium guanylate (E628) and calcium guanylate (E629), are food additives used as flavor enhancers to provide the umami taste.[7] It is often used in synergy with disodium inosinate; the combination is known as disodium 5′-ribonucleotides. Disodium guanylate is often found in instant noodles, potato chips and snacks, savoury rice, tinned vegetables, cured meats, and packet soup.
As it is a fairly expensive additive, it is usually not used independently of glutamic acid or monosodium glutamate (MSG), which also contribute umami. If inosinate and guanylate salts are present in a list of ingredients but MSG does not appear to be, the glutamic acid is likely provided as part of another ingredient, such as a processed soy protein complex (hydrolyzed soy protein), autolyzed yeast, or soy sauce.
5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway.
5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway.
同义名列表
33 个代谢物同义名
{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid; Guanosine-5-monophosphate disodium salt hydrate from Yeast; Guanidylic acid (guanosine monophosphate); Guanosine 5-monophosphoric acid; Guanosine-5-monophosphoric acid; Guanosine monophosphoric acid; Guanosine 5-phosphoric acid; 5-monoPhosphate, guanosine; Guanosine 5-monophosphate; Guanosine 5 monophosphate; Guanosine-5-monophosphate; monoPhosphate, guanosine; Guanidine monophosphate; Guanosine monophosphate; Guanosine 5-phosphorate; Guanosine-5-phosphate; Guanosine 5-phosphate; Guanosine-phosphate; Acid, 5-guanylic; 5-Guanylic acid; 5 Guanylic acid; Acid, guanylic; Guanylic acid; Guanylate; 5-GMP; e 626; GMP; PG; Guanosine monophosphate (GMP); 5'-GMP; 5'-guanosine monophosphate; 5'-Guanylic acid; GMP
数据库引用编号
54 个数据库交叉引用编号
- ChEBI: CHEBI:17345
- KEGG: C00144
- PubChem: 135398631
- PubChem: 135400774
- HMDB: HMDB0001397
- Metlin: METLIN98
- DrugBank: DB01972
- ChEMBL: CHEMBL283807
- Wikipedia: Guanosine_monophosphate
- MeSH: Guanosine Monophosphate
- MetaCyc: GMP
- KNApSAcK: C00019635
- foodb: FDB030896
- chemspider: 6545
- CAS: 85-32-5
- MoNA: PS024603
- MoNA: PS024607
- MoNA: PS071401
- MoNA: PR100145
- MoNA: PR100567
- MoNA: PS071406
- MoNA: PS024612
- MoNA: PS024601
- MoNA: PS024605
- MoNA: PS071405
- MoNA: PS071410
- MoNA: PS071411
- MoNA: PS071407
- MoNA: PS071409
- MoNA: PS024608
- MoNA: PS071403
- MoNA: PR100144
- MoNA: PR100319
- MoNA: PS071408
- MoNA: PR100754
- MoNA: PS071404
- MoNA: PS024602
- MoNA: PS024611
- MoNA: PS071402
- MoNA: PS024610
- MoNA: PS024606
- MoNA: PS024604
- MoNA: PS071412
- PMhub: MS000007703
- PDB-CCD: 5GP
- PDB-CCD: G
- 3DMET: B01172
- NIKKAJI: J10.615A
- RefMet: GMP
- medchemexpress: HY-N5134
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-271
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-899
- PubChem: 3444
- KNApSAcK: 17345
分类词条
相关代谢途径
Reactome(0)
BioCyc(9)
- purine and pyrimidine metabolism
- salvage pathways of purine nucleosides
- purine nucleotide metabolism (phosphotransfer and nucleotide modification)
- purine nucleotides de novo biosynthesis I
- superpathway of histidine, purine, and pyrimidine biosynthesis
- purine nucleotides de novo biosynthesis II
- salvage pathways of purine nucleosides I
- lipophosphoglycan (LPG) biosynthesis
- salvage pathways of guanine, xanthine, and their nucleosides
PlantCyc(6)
代谢反应
1126 个相关的代谢反应过程信息。
Reactome(37)
- Cellular responses to external stimuli:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular responses to stress:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Purine ribonucleoside monophosphate biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Purine ribonucleoside monophosphate biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Purine ribonucleoside monophosphate biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Metabolism of RNA:
H2O ⟶ AMP + CMP + GMP + UMP
- Deadenylation-dependent mRNA decay:
H2O ⟶ AMP + CMP + GMP + UMP
- mRNA decay by 3' to 5' exoribonuclease:
H2O ⟶ AMP + CMP + GMP + UMP
- Metabolism of RNA:
H2O ⟶ AMP + CMP + GMP + UMP
- Deadenylation-dependent mRNA decay:
H2O ⟶ AMP + CMP + GMP + UMP
- mRNA decay by 3' to 5' exoribonuclease:
H2O ⟶ AMP + CMP + GMP + UMP
- Metabolism of RNA:
H2O + Translatable mRNA Complex ⟶ AMP + Partially Deadenylated mRNA Complex
- Deadenylation-dependent mRNA decay:
H2O + Translatable mRNA Complex ⟶ AMP + Partially Deadenylated mRNA Complex
- mRNA decay by 3' to 5' exoribonuclease:
H2O ⟶ AMP + CMP + GMP + UMP
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by WNT:
ATP + AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complex ⟶ ADP + p-AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complex
- Beta-catenin independent WNT signaling:
ATP + CAMK2:CaM ⟶ ADP + p-T286 CAMK2:CaM
- Ca2+ pathway:
ATP + CAMK2:CaM ⟶ ADP + p-T286 CAMK2:CaM
- Hemostasis:
AMP + GTP ⟶ ADP + GDP
- Platelet homeostasis:
H0ZG60 + LDL ⟶ LDL:LRP8
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- mRNA Capping:
Capping complex (hydrolyzed) + GTP ⟶ Capping complex (intermediate) + GDP
- mRNA Capping:
Capping complex (hydrolyzed) + GTP ⟶ Capping complex (intermediate) + GDP
- mRNA Capping:
Capping complex (hydrolyzed) + GTP ⟶ Capping complex (intermediate) + GDP
BioCyc(10)
- purine nucleotide metabolism (phosphotransfer and nucleotide modification):
AMP + ATP ⟶ ADP + H+
- purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of histidine, purine, and pyrimidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- guanosine nucleotides de novo biosynthesis:
ATP + ammonia + xanthosine-5-phosphate ⟶ AMP + GMP + H+ + diphosphate
- purine nucleotides de novo biosynthesis II:
adenylo-succinate ⟶ AMP + fumarate
- lipophosphoglycan (LPG) biosynthesis:
H2O + a 6-(N-acetyl-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol ⟶ 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H+ + acetate
- salvage pathways of purine nucleosides:
H2O + adenine ⟶ ammonia + hypoxanthine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- salvage pathways of purine nucleosides I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
WikiPathways(2)
- Purine metabolism:
P1,P4-Bis(5'-xanthosyl) tetraphosphate ⟶ XTP
- Phosphodiesterases in neuronal function:
AMP ⟶ Cyclic AMP
Plant Reactome(0)
INOH(4)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- GMP + Pyrophosphate = Guanine + D-5-Phospho-ribosyl 1-diphosphate ( Purine nucleotides and Nucleosides metabolism ):
GMP + Pyrophosphate ⟶ D-5-Phospho-ribosyl 1-diphosphate + Guanine
- GMP + Pyrophosphate = Guanine + D-5-Phospho-ribosyl 1-diphosphate ( Purine nucleotides and Nucleosides metabolism ):
GMP + Pyrophosphate ⟶ D-5-Phospho-ribosyl 1-diphosphate + Guanine
- ATP + GMP = ADP + GDP ( Purine nucleotides and Nucleosides metabolism ):
ADP + GDP ⟶ ATP + GMP
PlantCyc(998)
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
ATP + H2O + XMP + gln ⟶ AMP + GMP + H+ + diphosphate + glu
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + H2O + XMP + gln ⟶ AMP + GMP + H+ + diphosphate + glu
- purine nucleosides salvage II (plant):
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
SAICAR ⟶ AICAR + fumarate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
CAIR + H+ ⟶ AIR + CO2
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleosides salvage II (plant):
GMP + diphosphate ⟶ PRPP + guanine
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine ribonucleotides de novo biosynthesis:
ATP + GMP ⟶ ADP + GDP
- superpathway of purines degradation in plants:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleosides salvage II (plant):
H2O + adenosine ⟶ D-ribofuranose + adenine
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- superpathway of purine nucleotides de novo biosynthesis I:
GTP + IMP + asp ⟶ GDP + H+ + adenylo-succinate + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + GMP ⟶ ADP + GDP
- superpathway of guanosine nucleotides de novo biosynthesis I:
ATP + GMP ⟶ ADP + GDP
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine ribonucleotides de novo biosynthesis:
ATP + GMP ⟶ ADP + GDP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purines degradation in plants:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides de novo biosynthesis I:
ATP + H2O + XMP + gln ⟶ AMP + GMP + H+ + diphosphate + glu
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanine and guanosine salvage III:
ATP + guanosine ⟶ ADP + GMP + H+
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleotides de novo biosynthesis I:
ATP + CAIR + asp ⟶ ADP + H+ + SAICAR + phosphate
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine ribonucleotides de novo biosynthesis:
H2O + IMP + NAD+ ⟶ H+ + NADH + XMP
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
COVID-19 Disease Map(2)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(73)
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis 2:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis 2:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Guanine and Guanosine Salvage:
Adenosine triphosphate + Guanosine ⟶ Adenosine diphosphate + Guanosine monophosphate + Hydrogen Ion
PharmGKB(0)
16 个相关的物种来源信息
- 3702 - Arabidopsis thaliana:
- 13345 - Ardisia crenata: 10.3389/FMOLB.2021.683671
- 3078 - Auxenochlorella pyrenoidosa: 10.1135/CCCC19653361
- 7091 - Bombyx mori: 10.1371/JOURNAL.PGEN.1008980
- 3077 - Chlorella vulgaris: 10.1135/CCCC19653361
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 4233 - Helianthus tuberosus: 10.1080/00021369.1967.10858790
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 587669 - Isodon rubescens: 10.1016/J.JCHROMB.2011.07.046
- 6398 - Lumbricus terrestris: 10.3891/ACTA.CHEM.SCAND.11-1003
- 72228 - Ophiocordyceps sinensis: 10.1016/J.CHROMA.2010.06.062
- 180039 - Psychotria punctata: 10.3389/FMOLB.2021.683671
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 36659 - Volvariella volvacea: 10.1021/JF9703314
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xia Li, Wenfang Yin, Junjie Desmond Lin, Yong Zhang, Quan Guo, Gerun Wang, Xiayu Chen, Binbin Cui, Mingfang Wang, Min Chen, Peng Li, Ya-Wen He, Wei Qian, Haibin Luo, Lian-Hui Zhang, Xue-Wei Liu, Shihao Song, Yinyue Deng. Regulation of the physiology and virulence of Ralstonia solanacearum by the second messenger 2',3'-cyclic guanosine monophosphate.
Nature communications.
2023 Nov; 14(1):7654. doi:
10.1038/s41467-023-43461-2
. [PMID: 37996405] - Gulnaz Bibi, Iqra Shafique, Sartaj Ali, Raza Ahmad, Mohammad Maroof Shah, Tatheer Alam Naqvi, Iftikhar Zeb, Frans J M Maathuis, Jamshaid Hussain. Cyclic guanosine monophosphate improves salt tolerance in Solanum lycopersicum.
Journal of plant research.
2023 Aug; ?(?):. doi:
10.1007/s10265-023-01487-z
. [PMID: 37610631] - Maria Godoy-Gallardo, Maria Merino-Gómez, Miguel A Mateos-Timoneda, Ulrich Eckhard, F Javier Gil, Roman A Perez. Advanced Binary Guanosine and Guanosine 5'-Monophosphate Cell-Laden Hydrogels for Soft Tissue Reconstruction by 3D Bioprinting.
ACS applied materials & interfaces.
2023 Jun; ?(?):. doi:
10.1021/acsami.2c23277
. [PMID: 37319328] - Liqian Chen, Xinghong Zhou, Yijian Deng, Ying Yang, Xiaohu Chen, Qinghong Chen, Yanyan Liu, Xiuqiong Fu, Hiu Yee Kwan, Yanting You, Wen Jin, Xiaoshan Zhao. Zhenwu decoction ameliorates cardiac hypertrophy through activating sGC (soluble guanylate cyclase) - cGMP (cyclic guanosine monophosphate) - PKG (protein kinase G) pathway.
Journal of ethnopharmacology.
2023 Jan; 300(?):115705. doi:
10.1016/j.jep.2022.115705
. [PMID: 36099983] - Othman K Qadir, Chris J Seal, Ammar W Ashor, Michele Tassotti, Pedro Mena, Daniele Del Rio, Mario Siervo, Kirsten Brandt. Double-blind controlled dietary cross-over intervention with differentially fertilised intact lettuce leaves shows acute reduction in blood pressure in young adults, associated with faster uptake of nitrate than of phenolics.
European journal of nutrition.
2022 Dec; 61(8):4191-4203. doi:
10.1007/s00394-022-02961-5
. [PMID: 35871120] - Lu Wang, Yuwei Zhang, Yafeng Ren, Xue Yang, Haijing Ben, Fulan Zhao, Sijin Yang, Li Wang, Jie Qing. Pharmacological targeting of cGAS/STING-YAP axis suppresses pathological angiogenesis and ameliorates organ fibrosis.
European journal of pharmacology.
2022 Oct; 932(?):175241. doi:
10.1016/j.ejphar.2022.175241
. [PMID: 36058291] - Quan Guo, Binbin Cui, Mingfang Wang, Xia Li, Huihui Tan, Shihao Song, Jianuan Zhou, Lian-Hui Zhang, Yinyue Deng. Elongation factor P modulates Acinetobacter baumannii physiology and virulence as a cyclic dimeric guanosine monophosphate effector.
Proceedings of the National Academy of Sciences of the United States of America.
2022 10; 119(41):e2209838119. doi:
10.1073/pnas.2209838119
. [PMID: 36191190] - Patrícia Regina Terço Leite, Bethânia Rosa Lorençone, Karyne Garcia Tafarelo Moreno, Katiana Simões Lopes, Aline Aparecida Macedo Marques, Clara Soligo Fortini, Rhanany Alan Calloi Palozi, Mariana Dalmagro, Cândida Aparecida Leite Kassuya, Ariany Carvalho Dos Santos, Marcos José Salvador, Arquimedes Gasparotto Junior. The NO-cGMP-K+ Channel Pathway Participates in Diuretic and Cardioprotective Effects of Blutaparon portulacoides in Spontaneously Hypertensive Rats.
Planta medica.
2022 Oct; 88(13):1152-1162. doi:
10.1055/a-1690-3566
. [PMID: 35299274] - Zhang Jiaying, Wei Xiangxiang, L I Xuefeng, Yuan Yang, Dou Yinghuan, Shi Yanbin, Xie Ping, Zhou Mengru, Zhao Junnan, L I Miao, Zhang Shuwen, Zhu Rui, Tian Ying, Tan Hao, Tian Feifei. Shunxin decoction improves diastolic function in rats with heart failure with preserved ejection fraction induced by abdominal aorta constriction through cyclic guanosine monophosphate-dependent protein kinase Signaling Pathway.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2022 10; 42(5):764-772. doi:
10.19852/j.cnki.jtcm.20220519.003
. [PMID: 36083484] - Taiwo G Olubodun-Obadun, Ismail O Ishola, Benneth Ben-Azu, Olasunmbo Afolayan, Ekene Nwose, Ayorinde B James, Abayomi M Ajayi, Solomon Umukoro, Olufunmilayo O Adeyemi. Probable mechanisms involved in the antiepileptic activity of Clerodendrum polycephalum Baker (Labiatae) leaf extract in mice exposed to chemical-induced seizures.
Journal of food biochemistry.
2022 10; 46(10):e14342. doi:
10.1111/jfbc.14342
. [PMID: 35851712] - Ana S Živanović, Andriana M Bukonjić, Snežana Jovanović-Stević, Jovana Bogojeski, Dušan Ćoćić, Ana Popović Bijelić, Zoran R Ratković, Vladislav Volarević, Dragana Miloradović, Dušan Lj Tomović, Gordana P Radić. Complexes of copper(II) with tetradentate S,O-ligands: Synthesis, characterization, DNA/albumin interactions, molecular docking simulations and antitumor activity.
Journal of inorganic biochemistry.
2022 08; 233(?):111861. doi:
10.1016/j.jinorgbio.2022.111861
. [PMID: 35599165] - Sandra S Jovičić Milić, Verica V Jevtić, Snežana R Radisavljević, Biljana V Petrović, Ivana D Radojević, Ivana R Raković, Đorđe S Petrović, Danijela Lj Stojković, Milena Jurišević, Nevena Gajović, Anđela Petrović, Nebojša Arsenijević, Ivan Jovanović, Olivera R Klisurić, Nenad L Vuković, Milena Vukić, Miroslava Kačániová. Synthesis, characterization, DNA interactions and biological activity of new palladium(II) complexes with some derivatives of 2-aminothiazoles.
Journal of inorganic biochemistry.
2022 08; 233(?):111857. doi:
10.1016/j.jinorgbio.2022.111857
. [PMID: 35597043] - Feiyan Huang, Farhat Abbas, Sajid Fiaz, Muhammad Imran, Ke Yanguo, Waseem Hassan, Umair Ashraf, Yuansheng He, Xuanjie Cai, Zhijiang Wang, Lei Yu, Xianwen Ye, Xiaolong Chen. Comprehensive characterization of Guanosine monophosphate synthetase in Nicotiana tabacum.
Molecular biology reports.
2022 Jun; 49(6):5265-5272. doi:
10.1007/s11033-021-06718-x
. [PMID: 34689282] - Nina A Dzhoyashvili, Seethalakshmi R Iyer, Horng H Chen, John C Burnett. MANP (M-Atrial Natriuretic Peptide) Reduces Blood Pressure and Furosemide-Induced Increase in Aldosterone in Hypertension.
Hypertension (Dallas, Tex. : 1979).
2022 04; 79(4):750-760. doi:
10.1161/hypertensionaha.121.18837
. [PMID: 35045724] - William K Chu, Charles K Rono, Banothile C E Makhubela. New Triazolyl N^N Bidentate Rh(III), Ir(III), Ru(II) and Os(II) Complexes: Synthesis and Characterization, Probing Possible Relations between Cytotoxicity with Transfer Hydrogenation Efficacy and Interaction with Model Biomolecules.
Molecules (Basel, Switzerland).
2022 Mar; 27(7):. doi:
10.3390/molecules27072058
. [PMID: 35408457] - Shun Cao, Xianghui Li, Ting Feng, Yaqing Li, Hongwei Ding, Lin Xie, Quanhong Yang. Hirudin promotes proliferation and osteogenic differentiation of HBMSCs via activation of cyclic guanosine monophosphate (cGMP)/protein kinase-G (PKG) signaling pathway.
Bioengineered.
2022 03; 13(3):6061-6069. doi:
10.1080/21655979.2021.2008697
. [PMID: 34898364] - Haifeng Sha, Bing Yan. One step functional assembly of guanosine monophosphate and terbium ion on metal organic frameworks for determination of alkaline phosphatase activity.
Analytica chimica acta.
2022 Feb; 1194(?):339434. doi:
10.1016/j.aca.2022.339434
. [PMID: 35063155] - Ashleigh Shannon, Véronique Fattorini, Bhawna Sama, Barbara Selisko, Mikael Feracci, Camille Falcou, Pierre Gauffre, Priscila El Kazzi, Adrien Delpal, Etienne Decroly, Karine Alvarez, Cécilia Eydoux, Jean-Claude Guillemot, Adel Moussa, Steven S Good, Paolo La Colla, Kai Lin, Jean-Pierre Sommadossi, Yingxiao Zhu, Xiaodong Yan, Hui Shi, François Ferron, Bruno Canard. A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase.
Nature communications.
2022 02; 13(1):621. doi:
10.1038/s41467-022-28113-1
. [PMID: 35110538] - Chidinma Promise Anyachor, Francis David Sikoki. Assessing the nutritional and biochemical composition of the African catfish (Clarias Gariepinus) exposed to the antifoam polydimethylsiloxane.
Environmental science and pollution research international.
2022 Jan; 29(4):5923-5930. doi:
10.1007/s11356-021-15871-6
. [PMID: 34435288] - Senthil Selvaraj, Brian L Claggett, Milton Packer, Faiez Zannad, Inder S Anand, Burkert Pieske, Ziqiang Zhao, Victor C Shi, Martin P Lefkowitz, John J V McMurray, Scott D Solomon. Effects of Sacubitril/Valsartan on Serum Lipids in Heart Failure With Preserved Ejection Fraction.
Journal of the American Heart Association.
2021 09; 10(17):e022069. doi:
10.1161/jaha.121.022069
. [PMID: 33998278] - Mateusz Kwiatkowski, Aloysius Wong, Anna Kozakiewicz-Piekarz, Christoph Gehring, Krzysztof Jaworski. In Search of Monocot Phosphodiesterases: Identification of a Calmodulin Stimulated Phosphodiesterase from Brachypodium distachyon.
International journal of molecular sciences.
2021 Sep; 22(17):. doi:
10.3390/ijms22179654
. [PMID: 34502563] - Dejan Lazić, Andreas Scheurer, Dušan Ćoćić, Jelena Milovanović, Aleksandar Arsenijević, Bojana Stojanović, Nebojša Arsenijević, Marija Milovanović, Ana Rilak Simović. A new bis-pyrazolylpyridine ruthenium(III) complex as a potential anticancer drug: in vitro and in vivo activity in murine colon cancer.
Dalton transactions (Cambridge, England : 2003).
2021 Jun; 50(22):7686-7704. doi:
10.1039/d1dt00185j
. [PMID: 33982702] - Steven S Good, Jonna Westover, Kie Hoon Jung, Xiao-Jian Zhou, Adel Moussa, Paolo La Colla, Gabriella Collu, Bruno Canard, Jean-Pierre Sommadossi. AT-527, a Double Prodrug of a Guanosine Nucleotide Analog, Is a Potent Inhibitor of SARS-CoV-2 In Vitro and a Promising Oral Antiviral for Treatment of COVID-19.
Antimicrobial agents and chemotherapy.
2021 03; 65(4):. doi:
10.1128/aac.02479-20
. [PMID: 33558299] - Scott A Hubers, John A Schirger, S Jeson Sangaralingham, Yang Chen, John C Burnett, David Hodge, Horng H Chen. B-type natriuretic peptide and cardiac remodelling after myocardial infarction: a randomised trial.
Heart (British Cardiac Society).
2021 03; 107(5):396-402. doi:
10.1136/heartjnl-2020-317182
. [PMID: 32747497] - Lisa Rancan, Angela Puig, José M Balibrea, Sergio D Paredes, Cruz García, Luis Jiménez, Jesús A Fernández-Tresguerres, Elena Vara. Protective effects of 17-β-oestradiol and phytoestrogen on age-induced oxidative stress and inhibition of surfactant synthesis in rat type II pneumocytes.
International journal of food sciences and nutrition.
2021 Feb; 72(1):26-36. doi:
10.1080/09637486.2020.1757044
. [PMID: 32314935] - Shuo Wang, Jiang Chen, Hongyu Li, Xingshun Qi, Xu Liu, Xiaozhong Guo. Metabolomic Detection Between Pancreatic Cancer and Liver Metastasis Nude Mouse Models Constructed by Using the PANC1-KAI1/CD82 Cell Line.
Technology in cancer research & treatment.
2021 Jan; 20(?):15330338211045204. doi:
10.1177/15330338211045204
. [PMID: 34605330] - Abdo A Elfiky. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19.
Life sciences.
2020 May; 248(?):117477. doi:
10.1016/j.lfs.2020.117477
. [PMID: 32119961] - Zhimei Wang, Lei Fang, Jian Zhao, Shaohua Gou. Insight into the antitumor actions of sterically hindered platinum(ii) complexes by a combination of STD NMR and LCMS techniques.
Metallomics : integrated biometal science.
2020 03; 12(3):427-434. doi:
10.1039/c9mt00258h
. [PMID: 32022072] - Wenya Huang, Xianjun Meng, Yang Huang, Siyu Liu, Anning Zhu, Peng Li, Yu Wang, Bangyi Tang, Jiahua Shi, Yiqing Cai. Nitric Oxide and Cyclic Guanosine Monophosphate Signaling Mediates the Antidepressant Effects of Acupuncture in the Rat Model of Chronic Unpredictable Mild Stress.
Medical science monitor : international medical journal of experimental and clinical research.
2019 Nov; 25(?):9112-9122. doi:
10.12659/msm.917593
. [PMID: 31785199] - Joanne L Parker, Robin A Corey, Phillip J Stansfeld, Simon Newstead. Structural basis for substrate specificity and regulation of nucleotide sugar transporters in the lipid bilayer.
Nature communications.
2019 10; 10(1):4657. doi:
10.1038/s41467-019-12673-w
. [PMID: 31604945] - Jean Paul Cerna-Vargas, Saray Santamaría-Hernando, Miguel A Matilla, José Juan Rodríguez-Herva, Abdelali Daddaoua, Pablo Rodríguez-Palenzuela, Tino Krell, Emilia López-Solanilla. Chemoperception of Specific Amino Acids Controls Phytopathogenicity in Pseudomonas syringae pv. tomato.
mBio.
2019 10; 10(5):. doi:
10.1128/mbio.01868-19
. [PMID: 31575767] - Baixing Wu, Dong Zhang, Hongbo Nie, Senlin Shen, Yan Li, Sisi Li. Structure of Arabidopsis thaliana N6-methyl-AMP deaminase ADAL with bound GMP and IMP and implications for N6-methyl-AMP recognition and processing.
RNA biology.
2019 10; 16(10):1504-1512. doi:
10.1080/15476286.2019.1642712
. [PMID: 31318636] - Nicola J A Scott, Miriam T Rademaker, Christopher J Charles, Eric A Espiner, A Mark Richards. Hemodynamic, Hormonal, and Renal Actions of Phosphodiesterase-9 Inhibition in Experimental Heart Failure.
Journal of the American College of Cardiology.
2019 08; 74(7):889-901. doi:
10.1016/j.jacc.2019.05.067
. [PMID: 31416533] - M Cicuéndez, V S Silva, J Santos, A Coimbra, H Oliveira, M Ayán-Varela, J I Paredes, S Villar-Rodil, M Vila. MoS2 flakes stabilized with DNA/RNA nucleotides: In vitro cell response.
Materials science & engineering. C, Materials for biological applications.
2019 Jul; 100(?):11-22. doi:
10.1016/j.msec.2019.02.002
. [PMID: 30948045] - Chiara Baccolini, Claus-Peter Witte. AMP and GMP Catabolism in Arabidopsis Converge on Xanthosine, Which Is Degraded by a Nucleoside Hydrolase Heterocomplex.
The Plant cell.
2019 03; 31(3):734-751. doi:
10.1105/tpc.18.00899
. [PMID: 30787180] - Denise Schaffner, Adhara Lazaro, Peter Deibert, Peter Hasselblatt, Patrick Stoll, Lisa Fauth, Manfred W Baumstark, Irmgard Merfort, Annette Schmitt-Graeff, Wolfgang Kreisel. Analysis of the nitric oxide-cyclic guanosine monophosphate pathway in experimental liver cirrhosis suggests phosphodiesterase-5 as potential target to treat portal hypertension.
World journal of gastroenterology.
2018 Oct; 24(38):4356-4368. doi:
10.3748/wjg.v24.i38.4356
. [PMID: 30344420] - Nan Liu, Juan Hao, Keying Cai, Mulan Zeng, Zhenzhong Huang, Lili Chen, Bingxian Peng, Ping Li, Li Wang, Yonghai Song. Ratiometric fluorescence detection of superoxide anion based on AuNPs-BSA@Tb/GMP nanoscale coordination polymers.
Luminescence : the journal of biological and chemical luminescence.
2018 Feb; 33(1):119-124. doi:
10.1002/bio.3380
. [PMID: 28776941] - N Yamada, C Saito, Y Murayama-Chiba, H Kano, Y Asami, H Itoh. Lactobacillus gasseri PA-3 utilizes the purines GMP and guanosine and decreases their absorption in rats.
Nucleosides, nucleotides & nucleic acids.
2018; 37(5):307-315. doi:
10.1080/15257770.2018.1454949
. [PMID: 29723107] - Md Sakhawat Hossain, Shunsuke Koshio. Dietary substitution of fishmeal by alternative protein with guanosine monophosphate supplementation influences growth, digestibility, blood chemistry profile, immunity, and stress resistance of red sea bream, Pagrus major.
Fish physiology and biochemistry.
2017 Dec; 43(6):1629-1644. doi:
10.1007/s10695-017-0398-4
. [PMID: 28681205] - Masako Uemura, Seiji Komeda. Kinetic analysis of and platinum(II) migration in the reactions of tetrazolato-bridged dinuclear platinum(II) complexes with nucleotides.
Journal of inorganic biochemistry.
2017 12; 177(?):359-367. doi:
10.1016/j.jinorgbio.2017.08.010
. [PMID: 28893417] - Yankai Huang, Baoxia Liu, Qi Shen, Xu Zhu, Yuanqiang Hao, Zhu Chang, Fang Xu, Peng Qu, Maotian Xu. Lanthanide coordination polymer probe for time-gated luminescence sensing of pH in undiluted human serum.
Talanta.
2017 Mar; 164(?):427-431. doi:
10.1016/j.talanta.2016.07.028
. [PMID: 28107952] - Michael Gill, Kristen Horn, James Hennan, Randy White, Denise Bounous, Shawn Clark, John R Megill, Evan Janovitz, Marc Davies, Thomas Sanderson, Michael Graziano. From the Cover: Investigative Nonclinical Cardiovascular Safety and Toxicology Studies with BMS-986094, an NS5b RNA-Dependent RNA Polymerase Inhibitor.
Toxicological sciences : an official journal of the Society of Toxicology.
2017 02; 155(2):348-362. doi:
10.1093/toxsci/kfw211
. [PMID: 27864544] - Bee Lynn Chew, Ian D Fisk, Rupert Fray, Gregory A Tucker, Zsuzsanna Bodi, Alison Ferguson, Wei Xia, Graham B Seymour. The effect of adenosine monophosphate deaminase overexpression on the accumulation of umami-related metabolites in tomatoes.
Plant cell reports.
2017 Jan; 36(1):81-87. doi:
10.1007/s00299-016-2058-z
. [PMID: 27662835] - Małgorzata Zbrojkiewicz, Leszek Śliwiński. Cyclic guanosine monophosphate in the regulation of the cell function.
Postepy higieny i medycyny doswiadczalnej (Online).
2016 Dec; 70(0):1276-1285. doi:
. [PMID: 28026830]
- Milan M Milutinović, Jovana V Bogojeski, Olivera Klisurić, Andreas Scheurer, Sofi K C Elmroth, Živadin D Bugarčić. Synthesis and structures of a pincer-type rhodium(iii) complex: reactivity toward biomolecules.
Dalton transactions (Cambridge, England : 2003).
2016 Oct; 45(39):15481-15491. doi:
10.1039/c6dt02772e
. [PMID: 27722449] - Bethany R Baumgart, Faye Wang, Jae Kwagh, Chris Storck, Catherine Euler, Megan Fuller, Damir Simic, Suresh Sharma, Jamie J Arnold, Craig E Cameron, Terry R Van Vleet, Oliver Flint, Roderick T Bunch, Marc H Davies, Michael J Graziano, Thomas P Sanderson. Effects of BMS-986094, a Guanosine Nucleotide Analogue, on Mitochondrial DNA Synthesis and Function.
Toxicological sciences : an official journal of the Society of Toxicology.
2016 10; 153(2):396-408. doi:
10.1093/toxsci/kfw135
. [PMID: 27466212] - Md Sakhawat Hossain, Shunsuke Koshio, Manabu Ishikawa, Saichiro Yokoyama, Nadia Mahjabin Sony. Effects of dietary administration of guanosine monophosphate on the growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major.
Fish & shellfish immunology.
2016 Oct; 57(?):96-106. doi:
10.1016/j.fsi.2016.08.026
. [PMID: 27539709] - Legna Colina-Vegas, Jocely Lucena Dutra, Wilmer Villarreal, João Honorato de A Neto, Marcia Regina Cominetti, Fernando Pavan, Maribel Navarro, Alzir A Batista. Ru(II)/clotrimazole/diphenylphosphine/bipyridine complexes: Interaction with DNA, BSA and biological potential against tumor cell lines and Mycobacterium tuberculosis.
Journal of inorganic biochemistry.
2016 09; 162(?):135-145. doi:
10.1016/j.jinorgbio.2016.06.023
. [PMID: 27383651] - Shi-Fan Xue, Ling-Fei Lu, Qi-Xian Wang, Shengqiang Zhang, Min Zhang, Guoyue Shi. An integrated logic system for time-resolved fluorescent 'turn-on' detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble.
Talanta.
2016 Sep; 158(?):208-213. doi:
10.1016/j.talanta.2016.05.066
. [PMID: 27343597] - Orrapun Selamassakul, Natta Laohakunjit, Orapin Kerdchoechuen, Khanok Ratanakhanokchai. A novel multi-biofunctional protein from brown rice hydrolysed by endo/endo-exoproteases.
Food & function.
2016 Jun; 7(6):2635-44. doi:
10.1039/c5fo01344e
. [PMID: 27186602] - S Luo, R Rush, D Standring. Single- and repeat-dose toxicity of IDX14184, a nucleotide prodrug with antiviral activity for hepatitis C viral infection, in mice, rats, and monkeys.
Human & experimental toxicology.
2016 May; 35(5):472-90. doi:
10.1177/0960327115592939
. [PMID: 26138064] - M T Ortega, B Jeffery, J E Riviere, N A Monteiro-Riviere. Toxicological effects of pet food ingredients on canine bone marrow-derived mesenchymal stem cells and enterocyte-like cells.
Journal of applied toxicology : JAT.
2016 Feb; 36(2):189-98. doi:
10.1002/jat.3158
. [PMID: 25976427] - David E Lanfear, Jia Li, Raza Abbas, Ricoung She, Badri Padhukasahasram, Ramesh C Gupta, David Langholz, W H Wilson Tang, L Keoki Williams, Hani N Sabbah, Sheryl L Chow. Genetic Factors Influencing B-type Natriuretic Peptide-Mediated Production of Cyclic Guanosine Monophosphate and Blood Pressure Effects in Heart Failure Patients.
Journal of cardiovascular translational research.
2015 Dec; 8(9):545-53. doi:
10.1007/s12265-015-9660-2
. [PMID: 26589601] - Qiong Li, Christopher Leija, Filipa Rijo-Ferreira, Jun Chen, Igor Cestari, Kenneth Stuart, Benjamin P Tu, Margaret A Phillips. GMP synthase is essential for viability and infectivity of Trypanosoma brucei despite a redundant purine salvage pathway.
Molecular microbiology.
2015 Sep; 97(5):1006-20. doi:
10.1111/mmi.13083
. [PMID: 26043892] - Ang Liu, John Lute, Huidong Gu, Bonnie Wang, Kevin J Trouba, Mark E Arnold, Anne-Françoise Aubry, Jian Wang. Challenges and solutions in the bioanalysis of BMS-986094 and its metabolites including a highly polar, active nucleoside triphosphate in plasma and tissues using LC-MS/MS.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2015 Sep; 1000(?):29-40. doi:
10.1016/j.jchromb.2015.07.006
. [PMID: 26209768] - Chitra Bhatia, Stephanie Oerum, James Bray, Kathryn L Kavanagh, Naeem Shafqat, Wyatt Yue, Udo Oppermann. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.
Chemico-biological interactions.
2015 Jun; 234(?):114-25. doi:
10.1016/j.cbi.2014.12.013
. [PMID: 25526675] - J Koči, B Jeffery, J E Riviere, N A Monteiro-Riviere. In vitro safety assessment of food ingredients in canine renal proximal tubule cells.
Toxicology in vitro : an international journal published in association with BIBRA.
2015 Mar; 29(2):289-98. doi:
10.1016/j.tiv.2014.11.002
. [PMID: 25458622] - J P Bilello, L B Lallos, J F McCarville, M La Colla, I Serra, C Chapron, J M Gillum, C Pierra, D N Standring, M Seifer. In vitro activity and resistance profile of samatasvir, a novel NS5A replication inhibitor of hepatitis C virus.
Antimicrobial agents and chemotherapy.
2014 Aug; 58(8):4431-42. doi:
10.1128/aac.02777-13
. [PMID: 24867983] - Jerzy Bełtowski, Andrzej Guranowski, Anna Jamroz-Wiśniewska, Agnieszka Korolczuk, Andrzej Wojtak. Nucleoside monophosphorothioates as the new hydrogen sulfide precursors with unique properties.
Pharmacological research.
2014 Mar; 81(?):34-43. doi:
10.1016/j.phrs.2014.01.003
. [PMID: 24508566] - Andiara E Freitas, Morgana Moretti, Josiane Budni, Grasiela O Balen, Sinara C Fernandes, Patricia O Veronezi, Melina Heller, Gustavo A Micke, Moacir G Pizzolatti, Ana Lúcia S Rodrigues. NMDA receptors and the L-arginine-nitric oxide-cyclic guanosine monophosphate pathway are implicated in the antidepressant-like action of the ethanolic extract from Tabebuia avellanedae in mice.
Journal of medicinal food.
2013 Nov; 16(11):1030-8. doi:
10.1089/jmf.2012.0276
. [PMID: 24236576] - Jacob Lalezari, Terry Box, William O'Riordan, Purvi Mehra, Tuan Nguyen, Fred Poordad, Edwin Dejesus, Paul Kwo, Eliot Godofsky, Shannon Lawrence, Gloria Dubuc-Patrick, Jie Chen, Joseph McCarville, Keith Pietropaolo, Xiao-Jian Zhou, John Sullivan-Bólyai, Douglas Mayers. IDX184 in combination with pegylated interferon-α2a and ribavirin for 2 weeks in treatment-naive patients with chronic hepatitis C.
Antiviral therapy.
2013; 18(6):755-64. doi:
10.3851/imp2552
. [PMID: 23439365] - Masaki Nishikiori, Tetsuo Meshi, Masayuki Ishikawa. Guanylylation-competent replication proteins of Tomato mosaic virus are disulfide-linked.
Virology.
2012 Dec; 434(1):118-28. doi:
10.1016/j.virol.2012.09.011
. [PMID: 23062762] - Jacob Lalezari, David Asmuth, Arnaldo Casiró, Hugo Vargas, Shannon Lawrence, Gloria Dubuc-Patrick, Jie Chen, Joseph McCarville, Keith Pietropaolo, Xiao-Jian Zhou, John Sullivan-Bólyai, Douglas Mayers. Short-term monotherapy with IDX184, a liver-targeted nucleotide polymerase inhibitor, in patients with chronic hepatitis C virus infection.
Antimicrobial agents and chemotherapy.
2012 Dec; 56(12):6372-8. doi:
10.1128/aac.01521-12
. [PMID: 23070151] - Alberto Contreras-Sanz, Toby S Scott-Ward, Hardyal S Gill, Jennifer C Jacoby, Rebecca E Birch, James Malone-Lee, Kevin M G Taylor, Claire M Peppiatt-Wildman, Scott S P Wildman. Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC.
Purinergic signalling.
2012 Dec; 8(4):741-51. doi:
10.1007/s11302-012-9321-8
. [PMID: 22707011] - Michal Aharoni-Simon, Sarit Anavi, Uwe Beifuss, Zecharia Madar, Oren Tirosh. Nitric oxide, can it be only good? Increasing the antioxidant properties of nitric oxide in hepatocytes by YC-1 compound.
Nitric oxide : biology and chemistry.
2012 Dec; 27(4):248-56. doi:
10.1016/j.niox.2012.08.076
. [PMID: 22955014] - Hazim Rahbi, Hafid Narayan, Donald J L Jones, Leong L Ng. The uroguanylin system and human disease.
Clinical science (London, England : 1979).
2012 Dec; 123(12):659-68. doi:
10.1042/cs20120021
. [PMID: 22877138] - Reiner Frey, Christian Scheerans, Martin Blunck, Wolfgang Mück, Mark Jean Gnoth, Sigrun Unger, Anja Schmidt, Georg Wensing. Pharmacokinetics of the soluble guanylate cyclase activator cinaciguat in individuals with hepatic impairment.
Journal of clinical pharmacology.
2012 Nov; 52(11):1714-24. doi:
10.1177/0091270011426143
. [PMID: 22162535] - Yoshihiko Kito, Noriyoshi Teramoto. Effects of Hange-shashin-to (TJ-14) and Keishi-ka-shakuyaku-to (TJ-60) on contractile activity of circular smooth muscle of the rat distal colon.
American journal of physiology. Gastrointestinal and liver physiology.
2012 Nov; 303(9):G1059-66. doi:
10.1152/ajpgi.00219.2012
. [PMID: 22917628] - A Joshi, O L Woodman. Increased nitric oxide activity compensates for increased oxidative stress to maintain endothelial function in rat aorta in early type 1 diabetes.
Naunyn-Schmiedeberg's archives of pharmacology.
2012 Nov; 385(11):1083-94. doi:
10.1007/s00210-012-0794-3
. [PMID: 22965470] - Sarah D Brown, Katherine D Trotter, Oliver B Sutcliffe, Jane A Plumb, Bruce Waddell, Naomi E B Briggs, Nial J Wheate. Combining aspects of the platinum anticancer drugs picoplatin and BBR3464 to synthesize a new family of sterically hindered dinuclear complexes; their synthesis, binding kinetics and cytotoxicity.
Dalton transactions (Cambridge, England : 2003).
2012 Oct; 41(37):11330-9. doi:
10.1039/c2dt31313h
. [PMID: 22886151] - Manu Banadakoppa, Pawel Goluszko, Daniel Liebenthal, Chandra Yallampalli. Nitric oxide induces segregation of decay accelerating factor (DAF or CD55) from the membrane lipid-rafts and its internalization in human endometrial cells.
Cell biology international.
2012 Oct; 36(10):901-7. doi:
10.1042/cbi20110586
. [PMID: 22574734] - Vivian Liane Mattos Pinto, Paula Fontoura Coelho de Souza, Tatiana Marlowe Cunha Brunini, Monique Bezerra Oliveira, Monique Bandeira Moss, Mariana Alves de Sá Siqueira, Marcos Rochedo Ferraz, Antônio Cláudio Mendes-Ribeiro. Low plasma levels of L-arginine, impaired intraplatelet nitric oxide and platelet hyperaggregability: implications for cardiovascular disease in depressive patients.
Journal of affective disorders.
2012 Oct; 140(2):187-92. doi:
10.1016/j.jad.2012.02.008
. [PMID: 22424639] - Jeng-Shane Lin, Chih-Ching Lin, Hsin-Hung Lin, Yu-Chi Chen, Shih-Tong Jeng. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding.
The New phytologist.
2012 Oct; 196(2):427-440. doi:
10.1111/j.1469-8137.2012.04277.x
. [PMID: 22931461] - Marija M Janjic, Natasa J Stojkov, Maja M Bjelic, Aleksandar I Mihajlovic, Silvana A Andric, Tatjana S Kostic. Transient rise of serum testosterone level after single sildenafil treatment of adult male rats.
The journal of sexual medicine.
2012 Oct; 9(10):2534-43. doi:
10.1111/j.1743-6109.2012.02674.x
. [PMID: 22429315] - Paula C Fontoura, Vivian Liane Mattos Pinto, Cristiane Matsuura, Angela de C Resende, Graziele F de Bem, Marcos R Ferraz, Elie Cheniaux, Tatiana Marlowe C Brunini, Antônio Cláudio Mendes-Ribeiro. Defective nitric oxide-cyclic guanosine monophosphate signaling in patients with bipolar disorder: a potential role for platelet dysfunction.
Psychosomatic medicine.
2012 Oct; 74(8):873-7. doi:
10.1097/psy.0b013e3182689460
. [PMID: 23023680] - Erick Miranda-Laferte, Silke Schmidt, Antonella C Jara, Alan Neely, Patricia Hidalgo. A short polybasic segment between the two conserved domains of the β2a-subunit modulates the rate of inactivation of R-type calcium channel.
The Journal of biological chemistry.
2012 Sep; 287(39):32588-97. doi:
10.1074/jbc.m112.362509
. [PMID: 22851179] - Behzad Shakeri, Benoîte Bourdin, Pierre-Olivier Demers-Giroux, Rémy Sauvé, Lucie Parent. A quartet of leucine residues in the guanylate kinase domain of CaVβ determines the plasma membrane density of the CaV2.3 channel.
The Journal of biological chemistry.
2012 Sep; 287(39):32835-47. doi:
10.1074/jbc.m112.387233
. [PMID: 22846999] - Dinesh Kumar Sharma, Apra Manral, Vikas Saini, Avninder Singh, B P Srinivasan, Manisha Tiwari. Novel diallyldisulfide analogs ameliorate cardiovascular remodeling in rats with L-NAME-induced hypertension.
European journal of pharmacology.
2012 Sep; 691(1-3):198-208. doi:
10.1016/j.ejphar.2012.07.022
. [PMID: 22819707] - Scott R Willoughby, Sharmalar Rajendran, Wai P Chan, Nathan Procter, Sue Leslie, Elizabeth A Liberts, Tamila Heresztyn, Yuliy Y Chirkov, John D Horowitz. Ramipril sensitizes platelets to nitric oxide: implications for therapy in high-risk patients.
Journal of the American College of Cardiology.
2012 Sep; 60(10):887-94. doi:
10.1016/j.jacc.2012.01.066
. [PMID: 22682555] - Olga V Fedorova, Vladimir A Kashkin, Irina O Zakharova, Edward G Lakatta, Alexei Y Bagrov. Age-associated increase in salt sensitivity is accompanied by a shift in the atrial natriuretic peptide modulation of the effect of marinobufagenin on renal and vascular sodium pump.
Journal of hypertension.
2012 Sep; 30(9):1817-26. doi:
10.1097/hjh.0b013e328356399b
. [PMID: 22796708] - Mei Liu, Lanlan Zhou, Zhiwu Chen, Caibiao Hu. Analgesic effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on spared nerve injury rat model of neuropathic pain.
Pharmacology, biochemistry, and behavior.
2012 Sep; 102(3):465-70. doi:
10.1016/j.pbb.2012.06.007
. [PMID: 22698486] - Punate Weerateerangkul, Siripong Palee, Kroekkiat Chinda, Siriporn C Chattipakorn, Nipon Chattipakorn. Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.
Journal of cardiovascular pharmacology.
2012 Sep; 60(3):299-309. doi:
10.1097/fjc.0b013e3182609a52
. [PMID: 22691878] - Lipin Loo, Andrew J Shepherd, Aaron D Mickle, Ramón A Lorca, Leonid P Shutov, Yuriy M Usachev, Durga P Mohapatra. The C-type natriuretic peptide induces thermal hyperalgesia through a noncanonical Gβγ-dependent modulation of TRPV1 channel.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
2012 Aug; 32(35):11942-55. doi:
10.1523/jneurosci.1330-12.2012
. [PMID: 22933780] - I Brivio, C Buccellati, F Fumagalli, J Hodge, C Casagrande, G C Folco, A Sala. The pulmonary pharmacology of [4-methoxy-N1-(4-trans-nitrooxycyclohexyl)-N3-(3-pyridinylmethyl)-1,3-benzenedicarboxamide] (2NTX-99), an anti-atherotrombotic compound with therapeutic potential in pathological conditions that target lung vasculature.
Prostaglandins & other lipid mediators.
2012 Aug; 98(3-4):116-21. doi:
10.1016/j.prostaglandins.2012.01.007
. [PMID: 22342851] - Rolands G Aravindan, Victor P Fomin, Ulhas P Naik, Mark J Modelski, Meghna U Naik, Deni S Galileo, Randall L Duncan, Patricia A Martin-Deleon. CASK interacts with PMCA4b and JAM-A on the mouse sperm flagellum to regulate Ca2+ homeostasis and motility.
Journal of cellular physiology.
2012 Aug; 227(8):3138-50. doi:
10.1002/jcp.24000
. [PMID: 22020416] - Bharat Baruah, Alexandr Surin. Interaction of liposome-encapsulated cisplatin with biomolecules.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry.
2012 Aug; 17(6):899-910. doi:
10.1007/s00775-012-0907-y
. [PMID: 22674433] - John T Lettieri, Christian Scheerans, Martin Blunck, Arthur L Mazzu, Reiner Frey, Wolfgang Mück, Pavur R Sundaresan. Assessment of the effects of renal impairment on the pharmacokinetics of the soluble guanylate cyclase activator cinaciguat after a single intravenous dose.
Journal of clinical pharmacology.
2012 Aug; 52(8):1240-7. doi:
10.1177/0091270011410567
. [PMID: 21868716] - Amanda K Fakira, Lawrence D Gaspers, Andrew P Thomas, Hong Li, Mohit R Jain, Stella Elkabes. Purkinje cell dysfunction and delayed death in plasma membrane calcium ATPase 2-heterozygous mice.
Molecular and cellular neurosciences.
2012 Aug; 51(1-2):22-31. doi:
10.1016/j.mcn.2012.07.001
. [PMID: 22789621] - Wei Xuan, Sheng Xu, Meiyue Li, Bin Han, Bo Zhang, Jing Zhang, Yuting Lin, Jingjing Huang, Wenbiao Shen, Jin Cui. Nitric oxide is involved in hemin-induced cucumber adventitious rooting process.
Journal of plant physiology.
2012 Jul; 169(11):1032-9. doi:
10.1016/j.jplph.2012.02.021
. [PMID: 22579358] - Mariela J Nevet, Sharon Vekslin, Alexander M Dizhoor, Elena V Olshevskaya, Rotem Tidhar, Anthony H Futerman, Tamar Ben-Yosef. Ceramide kinase-like (CERKL) interacts with neuronal calcium sensor proteins in the retina in a cation-dependent manner.
Investigative ophthalmology & visual science.
2012 Jul; 53(8):4565-74. doi:
10.1167/iovs.12-9770
. [PMID: 22678504] - Tong-Jin Diao, Xin Chen, Li-Hua Deng, Han-Xiang Chen, Yan Liang, Xiao-Dong Zhao, Qing-Hua Wang, Wei-Sheng Yuan, Bai-Chun Gao, Yong Ye. Protective effect of nitric oxide on hepatopulmonary syndrome from ischemia-reperfusion injury.
World journal of gastroenterology.
2012 Jul; 18(25):3310-6. doi:
10.3748/wjg.v18.i25.3310
. [PMID: 22783057] - Yingrui Wang-Rosenke, Alice Mika, Dymtro Khadzhynov, Tanja Loof, Hans-Hellmut Neumayer, Harm Peters. Impact of biological gender and soluble guanylate cyclase stimulation on renal recovery after relief of unilateral ureteral obstruction.
The Journal of urology.
2012 Jul; 188(1):316-23. doi:
10.1016/j.juro.2012.02.2552
. [PMID: 22608751] - Juan Du, Wei-Yan Wong, Lei Sun, Yu Huang, Xiaoqiang Yao. Protein kinase G inhibits flow-induced Ca2+ entry into collecting duct cells.
Journal of the American Society of Nephrology : JASN.
2012 Jul; 23(7):1172-80. doi:
10.1681/asn.2011100972
. [PMID: 22518003] - D T Ngo, A L Sverdlov, J D Horowitz. Prevention of aortic valve stenosis: a realistic therapeutic target?.
Pharmacology & therapeutics.
2012 Jul; 135(1):78-93. doi:
10.1016/j.pharmthera.2012.04.001
. [PMID: 22516738] - Xiangfeng Lu, Laiyuan Wang, Shufeng Chen, Lin He, Xueli Yang, Yongyong Shi, Jing Cheng, Liang Zhang, C Charles Gu, Jianfeng Huang, Tangchun Wu, Yitong Ma, Jianxin Li, Jie Cao, Jichun Chen, Dongliang Ge, Zhongjie Fan, Ying Li, Liancheng Zhao, Hongfan Li, Xiaoyang Zhou, Lanying Chen, Donghua Liu, Jingping Chen, Xiufang Duan, Yongchen Hao, Ligui Wang, Fanghong Lu, Zhendong Liu, Cailiang Yao, Chong Shen, Xiaodong Pu, Lin Yu, Xianghua Fang, Lihua Xu, Jianjun Mu, Xianping Wu, Runping Zheng, Naqiong Wu, Qi Zhao, Yun Li, Xiaoli Liu, Mengqin Wang, Dahai Yu, Dongsheng Hu, Xu Ji, Dongshuang Guo, Dongling Sun, Qianqian Wang, Ying Yang, Fangchao Liu, Qunxia Mao, Xiaohua Liang, Jingfeng Ji, Panpan Chen, Xingbo Mo, Dianjiang Li, Guoping Chai, Yida Tang, Xiangdong Li, Zhenhan Du, Xuehui Liu, Chenlong Dou, Zili Yang, Qingjie Meng, Dong Wang, Renping Wang, Jun Yang, Heribert Schunkert, Nilesh J Samani, Sekar Kathiresan, Muredach P Reilly, Jeanette Erdmann, Xiaozhong Peng, Xigui Wu, Depei Liu, Yuejin Yang, Runsheng Chen, Boqin Qiang, Dongfeng Gu. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease.
Nature genetics.
2012 Jul; 44(8):890-4. doi:
10.1038/ng.2337
. [PMID: 22751097] - Francine Nsuadi Manga, Charaf El Khattabi, Jeanine Fontaine, Guy Berkenboom, Pierre Duez, José Lami Nzunzu, Stéphanie Pochet. Vascular effects and antioxidant activity of two Combretum species from Democratic Republic of Congo.
Journal of ethnopharmacology.
2012 Jun; 142(1):194-200. doi:
10.1016/j.jep.2012.04.039
. [PMID: 22564815] - Fabio S Monteiro, Ana C L Silva, Italo R R Martins, Ana C C Correia, Ionaldo J L D Basílio, Maria F Agra, Jnanabrata Bhattacharyya, Bagnólia A Silva. Vasorelaxant action of the total alkaloid fraction obtained from Solanum paludosum Moric. (Solanaceae) involves NO/cGMP/PKG pathway and potassium channels.
Journal of ethnopharmacology.
2012 Jun; 141(3):895-900. doi:
10.1016/j.jep.2012.03.032
. [PMID: 22472108] - Rita de C V de A F Da Silva, Sandra Crestani, Priscila de Souza, Aline A Boligon, Margareth L Athayde, Adair R S Santos, Maria Consuelo Andrade Marques, Cândida A L Kassuya, José Eduardo Da Silva-Santos. Endothelium-dependent and independent vasorelaxation induced by an n-butanolic fraction of bark of Scutia buxifolia Reiss (Rhamanaceae).
Journal of ethnopharmacology.
2012 Jun; 141(3):997-1004. doi:
10.1016/j.jep.2012.03.045
. [PMID: 22783552] - Hui-Kyoung Sun, Yun Mi Lee, Kum Hyun Han, Han-Seong Kim, Seon-Ho Ahn, Sang-Youb Han. Phosphodiesterase inhibitor improves renal tubulointerstitial hypoxia of the diabetic rat kidney.
The Korean journal of internal medicine.
2012 Jun; 27(2):163-70. doi:
10.3904/kjim.2012.27.2.163
. [PMID: 22707888]