Gene Association: SMAD7

UniProt Search: SMAD7 (PROTEIN_CODING)
Function Description: SMAD family member 7

found 76 associated metabolites with current gene based on the text mining result from the pubmed database.

Ginsenoside A2

(2R,3R,4S,5S,6R)-2-(((3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-((S)-6-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hept-5-en-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-6-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C42H72O14 (800.4922)


Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside A2 is found in tea. Ginsenoside A2 is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside A2 is found in tea. D002491 - Central Nervous System Agents Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.

   

Stevioside

(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1R,4S,5R,9S,10R,13S)-13-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carboxylate

C38H60O18 (804.3779)


Stevioside is a diterpene glycoside that is rubusoside in which the hydroxy group at position 2 of the allylic beta-D-glucoside has been converted to the corresponding beta-D-glucoside. It is a natural herbal sweetener that is 250-300 times sweeter than sucrose (though with a bitter aftertaste), extracted from the Stevia rebaudiana plant native to South America. It has a role as a sweetening agent, an antioxidant, an antineoplastic agent, a hypoglycemic agent, an anti-inflammatory agent and a plant metabolite. It is a diterpene glycoside, an ent-kaurane diterpenoid, a beta-D-glucoside, a tetracyclic diterpenoid and a bridged compound. It is functionally related to a steviol and a rubusoside. Stevioside is a natural product found in Asteraceae, Stevia rebaudiana, and Bos taurus with data available. See also: Stevia rebaudiuna Leaf (part of). Stevioside is a constituent of Stevia rebaudiana (stevia). Sweetening agent which is 300 times sweeter than sucrose. Stevia rebaudiana is extensively cultivated in Japan, and Stevioside is a permitted sweetener in that country Rebaudioside B, D, and E may also be present in minute quantities; however, it is suspected that rebaudioside B is a byproduct of the isolation technique. The two majority compounds stevioside and rebaudioside, primarily responsible for the sweet taste of stevia leaves, were first isolated by two French chemists in 1931 A diterpene glycoside that is rubusoside in which the hydroxy group at position 2 of the allylic beta-D-glucoside has been converted to the corresponding beta-D-glucoside. It is a natural herbal sweetener that is 250-300 times sweeter than sucrose (though with a bitter aftertaste), extracted from the Stevia rebaudiana plant native to South America. Constituent of Stevia rebaudiana (stevia). Sweetening agent which is 300 times sweeter than sucrose. Stevia rebaudiana is extensively cultivated in Japan, and Stevioside is a permitted sweetener in that country D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana, with anticancer activity[1]. Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana, with anticancer activity[1]. Stevioside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57817-89-7 (retrieved 2024-08-26) (CAS RN: 57817-89-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Protopine

15-methyl-7,9,19,21-tetraoxa-15-azapentacyclo[15.7.0.0^{4,12}.0^{6,10}.0^{18,22}]tetracosa-1(24),4(12),5,10,17,22-hexaen-3-one

C20H19NO5 (353.1263)


Protopine is a dibenzazecine alkaloid isolated from Fumaria vaillantii. It has a role as a plant metabolite. Protopine is a natural product found in Corydalis heterocarpa var. japonica, Fumaria capreolata, and other organisms with data available. Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic [HMDB] Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. Protopine is an alkaloid occurring in opium poppy,[2] Corydalis tubers[3] and other plants of the family papaveraceae, like Fumaria officinalis.[4] Protopine is metabolically derived from the benzylisoquinoline alkaloid (S)-Reticuline through a progressive series of five enzymatic transformations: 1) berberine bridge enzyme to (S)-Scoulerine; 2) (S)-cheilanthifoline synthase/CYP719A25 to (S)-Cheilanthifoline; 3) (S)-stylopine synthase/CYP719A20 to (S)-Stylopine; 4) (S)-tetrahydroprotoberberine N-methyltransferase to (S)-cis-N-Methylstylopine; and ultimately, 5) N-methylstylopine hydroxylase to protopine.[5] It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an analgesic.[6][7] Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

Aristolochic acid

6-methoxy-9-nitro-14,16-dioxatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-1,3,5,7,9,11,13(17)-heptaene-11-carboxylic acid

C17H11NO7 (341.0535)


Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].

   

Astragaloside IV

(2R,3R,4S,5S,6R)-2-(((2aR,3R,4S,5aS,5bS,7S,7aR,9S,11aR,12aS)-4-hydroxy-3-((2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-2a,5a,8,8-tetramethyl-9-(((2S,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)tetradecahydro-1H,12H-cyclopenta[a]cyclopropa[e]phenanthren-7-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C41H68O14 (784.4609)


Astragaloside IV is a pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. It has a role as an EC 4.2.1.1 (carbonic anhydrase) inhibitor, an anti-inflammatory agent, a neuroprotective agent, an antioxidant, a pro-angiogenic agent and a plant metabolite. It is a triterpenoid saponin and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astragaloside IV is a natural product found in Euphorbia glareosa, Astragalus ernestii, and other organisms with data available. A pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Osthol

InChI=1/C15H16O3/c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12/h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099)


Osthol, also known as 7-methoxy-8-(3-methylpent-2-enyl)coumarin, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Osthol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Osthol can be found in a number of food items such as wild celery, lemon, parsley, and wild carrot, which makes osthol a potential biomarker for the consumption of these food products. Osthol is an O-methylated coumarin. It is a calcium channel blocker, found in plants such as Cnidium monnieri, Angelica archangelica and Angelica pubescens . Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

3-(Dimethylaminomethyl)indole

InChI=1/C11H14N2/c1-13(2)8-9-7-12-11-6-4-3-5-10(9)11/h3-7,12H,8H2,1-2H

C11H14N2 (174.1157)


3-(Dimethylaminomethyl)indole, also known as donaxin or (1H-indol-3-ylmethyl)dimethylamine, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. An aminoalkylindole that is indole carrying a dimethylaminomethyl substituent at postion 3. 3-(Dimethylaminomethyl)indole has been detected, but not quantified, in several different foods, such as barley, brassicas, cereals and cereal products, common wheats, and lupines. This could make 3-(dimethylaminomethyl)indole a potential biomarker for the consumption of these foods. Gramine is an aminoalkylindole that is indole carrying a dimethylaminomethyl substituent at postion 3. It has a role as a plant metabolite, a serotonergic antagonist, an antiviral agent and an antibacterial agent. It is an aminoalkylindole, an indole alkaloid and a tertiary amino compound. It is a conjugate base of a gramine(1+). Gramine is a natural product found in Desmanthus illinoensis, Lupinus arbustus, and other organisms with data available. Isolated from cabbage and barley shoots. 3-(Dimethylaminomethyl)indole is found in many foods, some of which are cereals and cereal products, brassicas, common wheat, and barley. An aminoalkylindole that is indole carrying a dimethylaminomethyl substituent at postion 3. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 14 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 37 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 44 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 22 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 58 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 29 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 7 KEIO_ID G041 Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1].

   

L-2-Amino-3-(oxalylamino)propanoic acid

N-Oxalyl-L-alpha-beta-diaminopropionic acid (BOAA,ODAP)

C5H8N2O5 (176.0433)


L-2-Amino-3-(oxalylamino)propanoic acid is found in grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is isolated from Panax notoginseng (sanchi Isolated from Panax notoginseng (sanchi). L-2-Amino-3-(oxalylamino)propanoic acid is found in tea and grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is an alpha-amino acid. N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.

   

Trans-4-hydroxyproline

(2S,4R)-4-hydroxypyrrolidine-2-carboxylic acid

C5H9NO3 (131.0582)


Trans-4-hydroxy-L-proline is an optically active form of 4-hydroxyproline having L-trans-configuration. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is a tautomer of a trans-4-hydroxy-L-proline zwitterion. Hydroxyproline is a neutral heterocyclic protein amino acid. It is found in collagen and as such it is common in many gelatin products. Hydroxyproline is mostly used as a diagnostic marker of bone turnover and liver fibrosis. Therapeutically, hydroxyproline is being studied as an an experimental medicine but is approved in France as a combination topical gel product called Cicactive for small, superficial wounds. Hydroxyproline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Hydroxyproline is a nonessential amino acid derivative formed during post-translational protein modification through hydroxylation of the amino acid proline by the enzyme prolyl hydroxylase which requires vitamin C as a co-factor. Hydroxyproline is a major component of the protein collagen and plays a key role in the stability of the collagen triple helix. It can be used as an indicator to determine the amount of collagen. Increased hydroxyproline levels in the urine and/or serum are normally associated with degradation of connective tissue. Vitamin C deficiency decreases the conversion of proline to hydroxyproline, which leads to reduced collagen stability. 4-Hydroxyproline (or hydroxyproline or Hyp) is a major component of the protein collagen. Hydroxyproline is produced by hydroxylation of the amino acid proline and is, therefore, a post-translationally modified amino acid. Hydroxyproline and proline play key roles for collagen stability. In particular, they permit the sharp twisting of the collagen helix. Hydroxyproline is found in few proteins other than collagen. The only other mammalian protein which includes hydroxyproline is elastin. For this reason, hydroxyproline content has been used as an indicator to determine collagen and/or gelatin amount in tissue or biological samples. Increased serum and urine levels of hydroxyproline have been found in Pagets disease Hydroxyproline (Hyp) content in biological fluids is used as a parameter of collagen catabolism, especially bone resorption or tissue degradation. Bedridden and elderly individuals show significantly elevated serum levels of hydroxyproline in comparison to normal, active individuals Elevated levels of urinary hydroxyproline are also indicative of muscle damage Increased reactive oxygen species (ROS) are also known to accelerate collagen degradation. Hydroxyproline levels increase in cases of depression and stress (A3486, A3487, A3488, A3489). See also: Hydroxyproline; niacinamide (component of); Hydroxyproline; octinoxate (component of) ... View More ... 4-Hydroxyproline (hydroxyproline or Hyp) is a major component of the protein collagen. Hydroxyproline is produced by hydroxylation of the amino acid proline and is, therefore, a post-translationally modified, non-essential amino acid. Hydroxyproline and proline play key roles in collagen stability. In particular, they permit the sharp twisting of the collagen helix. Hydroxyproline is found in few proteins other than collagen. The only other mammalian protein which includes hydroxyproline is elastin. For this reason, hydroxyproline content has been used as an indicator to determine collagen and/or gelatin amount in tissue or biological samples. Increased serum and urine levels of hydroxyproline have been found in Pagets disease (PMID: 436278). Hydroxyproline (Hyp) content in biological fluids is used as a parameter of collagen catabolism, especially bone resorption or tissue degradation. Bedridden and elderly individuals show significantly elevated serum levels of hydroxyproline in comparison to normal, active individuals (PMID: 10706420). Elevated levels of urinary hydroxyproline are also indicative of muscle damage (PMID: 21988268). Increased reactive oxygen species (ROS) are also known to accelerate collagen degradation. Hydroxyproline levels increase in cases of depression and stress (PMID: 21483218). 4-Hydroxyproline is found to be associated with Alzheimers disease, and also hydroxyprolinemia and iminoglycinuria which are both inborn errors of metabolism. 4-Hydroxyproline is also involved in metabolic disorders such as hyperprolinemia type I, hyperornithinemia with gyrate atrophy (HOGA), L-arginine:glycine amidinotransferase deficiency, creatine deficiency, and guanidinoacetate methyltransferase deficiency. A deficiency in ascorbic acid can result in impaired hydroxyproline formation (PubChem). trans-4-Hydroxy-L-proline is a biomarker for the consumption of processed meat. Constituent of proteins [DFC]. 4-hydroxyproline is a biomarker for the consumption of processed meat An optically active form of 4-hydroxyproline having L-trans-configuration. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.

   

Morroniside

Methyl (1S,3R,4aS,8S,8aS)-3-hydroxy-1-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4,4a,8,8a-tetrahydro-1H,3H-pyrano[3,4-c]pyran-5-carboxylate

C17H26O11 (406.1475)


Morroniside is a glycoside. Morroniside is a natural product found in Lonicera japonica, Tripterospermum japonicum, and other organisms with data available. Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression. Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression.

   

Rhynchophylline

Spiro[3H-indole-3,1(5H)-indolizine]-7-acetic acid,6-ethyl-1,2,2,3,6,7,8,8a-octahydro-a-(methoxymethylene)-2-oxo-,methyl ester, (aE,1R,6R,7S,8aS)-

C22H28N2O4 (384.2049)


Rhynchophylline is a member of indolizines. It has a role as a metabolite. Rhynchophylline is a natural product found in Uncaria tomentosa, Mitragyna inermis, and other organisms with data available. See also: Cats Claw (part of). A natural product found in Uncaria macrophylla. Annotation level-1 Rhyncholphylline is an alkaloid compound isolated from Uncaria rhynchophyllum. It has high biological activity and is widely used in anti-inflammatory, neuroprotective and other research. Rhyncholphylline is an alkaloid compound isolated from Uncaria rhynchophyllum. It has high biological activity and is widely used in anti-inflammatory, neuroprotective and other research.

   

Isotetrandrine

(1S,14S)-9,20,21,25-tetramethoxy-15,30-dimethyl-7,23-dioxa-15,30-diazaheptacyc lo[22.6.2.2<3,6>.1<8,12>.1<14,18>.0<22,36>.0<27,31>]hexatriaconta-3(33),4,6(34 ),8(35),9,11,18(36),19,21,24,26,31-dodecaene

C38H42N2O6 (622.3043)


(+)-Tetrandrine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Tetrandrine is a natural product found in Pachygone dasycarpa, Cyclea barbata, and other organisms with data available. Tetrandrine is a natural, bis-benzylisoquinoline alkaloid isolated from the root of the plant Radix stephania tetrandrae. Tetrandrine non-selectively inhibits calcium channel activity and induces G1 blockade of the G1 phase of the cell cycle and apoptosis in various cell types, resulting in immunosuppressive, anti-proliferative and free radical scavenging effects. This agent also increases glucose utilization by enhancing hepatocyte glycogen synthesis, resulting in the lowering of plasma glucose. (NCI04) C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current. Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current.

   

Esculentic acid (Diplazium)

(1S,2R,4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). Esculentic acid (Diplazium) is found in green vegetables. Esculentic acid (Diplazium) is a constituent of the edible fern Diplazium esculentum C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Zingerone

InChI=1/C11H14O3/c1-8(12)3-4-9-5-6-10(13)11(7-9)14-2/h5-7,13H,3-4H2,1-2H

C11H14O3 (194.0943)


Zingerone is a methyl ketone that is 4-phenylbutan-2-one in which the phenyl ring is substituted at positions 3 and 4 by methoxy and hydroxy groups respectively. The major pungent component in ginger. It has a role as an antioxidant, an anti-inflammatory agent, a radiation protective agent, an antiemetic, a flavouring agent, a fragrance and a plant metabolite. It is a member of phenols, a monomethoxybenzene and a methyl ketone. Zingerone is a pungent component of ginger. Zingerone is a natural product found in Alpinia officinarum, Vitis vinifera, and other organisms with data available. Zingerone is a metabolite found in or produced by Saccharomyces cerevisiae. Reputed pungent principle of ginger (Zingiber officinale). Flavour material used in imitation fruit flavours, ginger beer, ginger ale etcand is also present in cranberry, raspberry and mango. Zingerone is found in many foods, some of which are pot marjoram, fruits, ginger, and herbs and spices. Zingerone is found in fruits. Reputed pungent principle of ginger (Zingiber officinale). Flavour material used in imitation fruit flavours, ginger beer, ginger ale etc. Also present in cranberry, raspberry and mang A methyl ketone that is 4-phenylbutan-2-one in which the phenyl ring is substituted at positions 3 and 4 by methoxy and hydroxy groups respectively. The major pungent component in ginger. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3]. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3].

   

febrifugine

3-[[(3aS,7aS)-2-hydroxy-3a,4,5,6,7,7a-hexahydro-3H-furo[3,2-b]pyridin-2-yl]methyl]quinazolin-4-one

C16H19N3O3 (301.1426)


Isofebrifugine is a member of quinazolines. Isofebrifugine is a natural product found in Hydrangea febrifuga and Hydrangea macrophylla with data available. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].

   

Acetylshikonin

InChI=1/C18H18O6/c1-9(2)4-7-15(24-10(3)19)11-8-14(22)16-12(20)5-6-13(21)17(16)18(11)23/h4-6,8,15,20-21H,7H2,1-3H3

C18H18O6 (330.1103)


Acetylshikonin is an acetate ester and a hydroxy-1,4-naphthoquinone. Acetylshikonin is a natural product found in Echium plantagineum, Lithospermum erythrorhizon, and other organisms with data available. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3]. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3].

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Rhamnocitrin

4H-1-Benzopyran-4-one, 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O6 (300.0634)


Rhamnocitrin, also known as 3,4,5-trihydroxy-7-methoxyflavone or 7-methylkaempferol, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, rhamnocitrin is considered to be a flavonoid lipid molecule. Rhamnocitrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Rhamnocitrin can be found in cloves and lemon balm, which makes rhamnocitrin a potential biomarker for the consumption of these food products. Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol. Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2].

   

Mesalazine

Procter and gamble brand OF mesalamine

C7H7NO3 (153.0426)


Mesalazine is only found in individuals that have used or taken this drug. It is an anti-inflammatory agent, structurally related to the salicylates, which is active in inflammatory bowel disease. It is considered to be the active moiety of sulphasalazine. (From Martindale, The Extra Pharmacopoeia, 30th ed)Although the mechanism of action of mesalazine is not fully understood, it appears to be topical rather than systemic. Mucosal production of arachidonic acid metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes and hydroxyeicosatetraenoic acids, is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalazine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin production in the colon. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents

   

Perindopril

(2S,3aS,7aS)-1-[(2S)-2-{[(2S)-1-ethoxy-1-oxopentan-2-yl]amino}propanoyl]-octahydro-1H-indole-2-carboxylic acid

C19H32N2O5 (368.2311)


Perindopril is a nonsulfhydryl prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is rapidly metabolized in the liver to perindoprilat, its active metabolite, following oral administration. Perindoprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Perindopril may be used to treat mild to moderate essential hypertension, mild to moderate congestive heart failure, and to reduce the cardiovascular risk of individuals with hypertension or post-myocardial infarction and stable coronary disease. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Perindopril (S-9490) is an orally available, long-acting angiotensin-converting enzyme (ACE) inhibitor. Perindopril inhibits inflammatory cell influx and intimal thickening, preserving elastin on the inside of the aorta. Perindopril effectively inhibits experimental abdominal aortic aneurysm (AAA) formation in a rat model and reduces pulmonary vasoconstriction in rats with pulmonary hypertension[1][2][3][4].

   

Praziquantel

2-cyclohexanecarbonyl-1H,2H,3H,4H,6H,7H,11bH-piperazino[2,1-a]isoquinolin-4-one

C19H24N2O2 (312.1838)


Praziquantel is only found in individuals that have used or taken this drug. It is an anthelmintic used in most schistosome and many cestode infestations. [PubChem]Praziquantel works by causing severe spasms and paralysis of the worms muscles. This paralysis is accompanied - and probably caused - by a rapid Ca 2+ influx inside the schistosome. Morphological alterations are another early effect of praziquantel. These morphological alterations are accompanied by an increased exposure of schistosome antigens at the parasite surface. The worms are then either completely destroyed in the intestine or passed in the stool. An interesting quirk of praziquantel is that it is relatively ineffective against juvenile schistosomes. While initially effective, effectiveness against schistosomes decreases until it reaches a minimum at 3-4 weeks. Effectiveness then increases again until it is once again fully effective at 6-7 weeks. Glutathione S-transferase (GST), an essential detoxification enzyme in parasitic helminths, is a major vaccine target and a drug target against schistosomiasis. Schistosome calcium ion channels are currently the only known target of praziquantel. P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent

   

Morin

2-(2,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, 9CI

C15H10O7 (302.0427)


Morin is a pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. It has a role as an antioxidant, a metabolite, an antihypertensive agent, a hepatoprotective agent, a neuroprotective agent, an anti-inflammatory agent, an antineoplastic agent, an antibacterial agent, an EC 5.99.1.2 (DNA topoisomerase) inhibitor and an angiogenesis modulating agent. It is a pentahydroxyflavone and a 7-hydroxyflavonol. Morin is a natural product found in Lotus ucrainicus, Psidium guajava, and other organisms with data available. Constituent of various woods, e.g. Morus alba (white mulberry). First isol. in 1830. Morin is found in many foods, some of which are blackcurrant, european cranberry, bilberry, and fruits. Morin is found in bilberry. Morin is a constituent of various woods, e.g. Morus alba (white mulberry). First isolated in 1830 A pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].

   

Kaempferol 3-O-beta-robinoside 7-O-alpha-L-rhamnopyranoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4H-chromen-4-one

C33H40O19 (740.2164)


Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside, also known as kaempherol-3-O-robinoside-7-O-rhamnoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside can be found in common bean, which makes kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].

   

Rhamnetin

3 3 4 5-tetrahydroxy-7-methoxyflavone

C16H12O7 (316.0583)


Acquisition and generation of the data is financially supported in part by CREST/JST. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].

   

Enalapril

(2S)-1-[(2S)-2-{[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]amino}propanoyl]pyrrolidine-2-carboxylic acid

C20H28N2O5 (376.1998)


Enalapril is a prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is rapidly metabolized in the liver to enalaprilat following oral administration. Enalaprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Enalapril may be used to treat essential or renovascular hypertension and symptomatic congestive heart failure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Asiaticoside

6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C48H78O19 (958.5137)


Constituent of Centella asiatica (Asiatic pennywort). Asiaticoside is found in herbs and spices and green vegetables. Asiaticoside is found in green vegetables. Asiaticoside is a constituent of Centella asiatica (Asiatic pennywort) D000890 - Anti-Infective Agents Same as: D07576 Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties. Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties.

   

Oxymatrine

1H,5H,10H-Dipyrido(2,1-f:3,2,1-ij)(1,6)naphthyridin-10-one, dodecahydro-, 4-oxide, (4R,7aS,13aR,13bR,13cS)-

C15H24N2O2 (264.1838)


Ammothamnine is an alkaloid and a tertiary amine oxide. Oxymatrine is a natural product found in Sophora pachycarpa, Sophora chrysophylla, and other organisms with data available. D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents Origin: Plant; SubCategory_DNP: Alkaloids derived from lysine, Quinolizidine alkaloids, Sophora alkaloid Oxymatrine is under investigation in clinical trial NCT02202473 (Oxymatrine Plus Lamivudine Combination Therapy Versus Lamivudine Monotherapy for Chronic Hepatitis B Infected Subjects). Matrine oxide is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Oxymatrine, an alkaloid from Sophora flavescens Alt. with anti-inflammatory, antifibrosis, and antitumor effects, inhibits the iNOS expression and TGF-β/Smad pathway. Oxymatrine inhibits bocavirus minute virus of canines (MVC) replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Oxymatrine, an alkaloid from Sophora flavescens Alt. with anti-inflammatory, antifibrosis, and antitumor effects, inhibits the iNOS expression and TGF-β/Smad pathway. Oxymatrine inhibits bocavirus minute virus of canines (MVC) replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Oxysophoridine (Sophoridine N-oxide) is a bioactive alkaloid extracted from the Sophora alopecuroides Linn. Oxysophoridine (Sophoridine N-oxide) shows anti inflammatory, anti oxidative stress and anti apoptosis effects[1][2]. Oxysophoridine (Sophoridine N-oxide) is a bioactive alkaloid extracted from the Sophora alopecuroides Linn. Oxysophoridine (Sophoridine N-oxide) shows anti inflammatory, anti oxidative stress and anti apoptosis effects[1][2].

   

Corilagin

(1S,19R,21S,22R,23R)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0^{4,9}.0^{10,15}]tricosa-4,6,8,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806)


Corilagin is a member of the class of compounds known as ellagitannins, a class of hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models: (1) a structure containing galloyl units (in some cases, shikimic acid units) linked to diverse polyol carbohydrate, catechin, or triterpenoid units, or (2) a structure containing at least two galloyl units C-C coupled to each other and not containing a glycosidically linked catechin unit. Corilagin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Corilagin can be found in pomegranate, which makes corilagin a potential biomarker for the consumption of this food product. Corilagin was first isolated in 1951 from Dividivi extract and from Caesalpinia coriaria, hence the name of the molecule. It can also be found in Alchornea glandulosa and in the leaves of Punica granatum (pomegranate) (Wikipedia). Corilagin has been shown to exhibit thrombolytic function (PMID: 14750026). Corilagin is an ellagitannin with a hexahydroxydiphenoyl group bridging over the 3-O and 6-O of the glucose core. It has a role as an antihypertensive agent, an EC 3.4.15.1 (peptidyl-dipeptidase A) inhibitor, a non-steroidal anti-inflammatory drug and an antioxidant. It is an ellagitannin and a gallate ester. Corilagin is a natural product found in Euphorbia fischeriana, Euphorbia hyssopifolia, and other organisms with data available. Corilagin is a gallotannin. It can be found in Alchornea glandulosa. [Wikipedia] Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3]. Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3].

   

(+)-Sesamin

1,3-BENZODIOXOLE, 5,5-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS-, (1S-(1.ALPHA.,3A .ALPHA.,4.ALPHA.,6A .ALPHA.))-

C20H18O6 (354.1103)


(+)-Sesamin, also known as fagarol or sezamin, belongs to the class of organic compounds known as furanoid lignans. These are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units. (+)-Sesamin is an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-Sesamin is found, on average, in the highest concentration within sesames. (+)-Sesamin has also been detected, but not quantified in, several different foods, such as fats and oils, flaxseeds, ginkgo nuts, and ucuhuba. This could make (+)-sesamin a potential biomarker for the consumption of these foods. (+)-sesamin is a lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. It has a role as an antineoplastic agent, a neuroprotective agent and a plant metabolite. It is a lignan, a member of benzodioxoles and a furofuran. Sesamin is a natural product found in Pandanus boninensis, Podolepis rugata, and other organisms with data available. See also: Sesame Oil (part of). A lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Skullcapflavone II

5-hydroxy-2-(2-hydroxy-6-methoxyphenyl)-6,7,8-trimethoxy-4H-chromen-4-one

C19H18O8 (374.1002)


Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].

   

Tectorigenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


Tectorigenin is a methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 5, 7 and 4 respectively. It has a role as an anti-inflammatory agent and a plant metabolite. It is a member of 7-hydroxyisoflavones and a methoxyisoflavone. It is functionally related to an isoflavone. Tectorigenin is a natural product found in Iris milesii, Dalbergia sissoo, and other organisms with data available. Tectorigenin is an isoflavone from Pueraria thunbergiana, which induces differentiation and apoptosis in cancer cells. (NCI) Tectorigenin is an O-methylated isoflavone, a type of flavonoid. It can be isolated from leopard lily (Belamcanda chinensis) or Pueraria thunbergiana. A methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 5, 7 and 4 respectively. C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor A polyphenol metabolite detected in biological fluids [PhenolExplorer] C471 - Enzyme Inhibitor > C1017 - Glucuronidase Inhibitor Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria lobate Benth. Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria lobate Benth.

   

HETISINE

Hetisan-2,11,13-triol

C20H27NO3 (329.1991)


Annotation level-1

   

Polypodine B

(2beta,3beta,5beta,22R)-2,3,5,14,20,22,25-heptahydroxycholest-7-en-6-one

C27H44O8 (496.3036)


   

Bleomycin

(3-{[2-(2-{2-[(2S,3R)-2-[(2S,3S,4R)-4-[(2S,3R)-2-({6-amino-2-[(1S)-1-{[(2S)-2-amino-2-carbamoylethyl]amino}-2-carbamoylethyl]-5-methylpyrimidin-4-yl}formamido)-3-[(3-{[4-(carbamoyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-3-(1H-imidazol-5-yl)propanamido]-3-hydroxy-2-methylpentanamido]-3-hydroxybutanamido]ethyl}-1,3-thiazol-4-yl)-1,3-thiazol-4-yl]formamido}propyl)dimethylsulfanium

C55H84N17O21S3+ (1414.519)


A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2 (B2 CAS # 9060-10-0). It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors. Bleomycin A2 is used as the representative structure for Bleomycin. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents

   

Carbon tetrachloride

Kohlenstofftetrachlorid

CCl4 (151.8754)


Grain fumigan

   

Usnic acid

2,6-Diacetyl-3,7,9-trihydroxy-8,9b-dimethyldibenzofuran-1-one

C18H16O7 (344.0896)


A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].

   

Dalbergioidin

2,3-Dihydro-5,7-dihydroxy-3-(2,4-dihydroxyphenyl)-4H-1-benzopyran-4-one, 9CI

C15H12O6 (288.0634)


Isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean) and Phaseolus vulgaris (kidney bean). Dalbergioidin is found in many foods, some of which are hyacinth bean, yellow wax bean, adzuki bean, and fruits. Dalbergioidin is found in adzuki bean. Dalbergioidin is isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean) and Phaseolus vulgaris (kidney bean

   

Bromodichloromethane

Bromodichloromethane, 14C-labeled

CHBrCl2 (161.8639)


Bromodichloromethane, also known as dichlorobromomethane or monobromodichloromethane, is classified as a member of the trihalomethanes. Trihalomethanes are organic compounds in which exactly three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Bromodichloromethane is a colorless, nonflammable liquid. Small amounts are formed naturally by algae in the oceans. Some of it will dissolve in water, but it readily evaporates into air. Only small quantities of bromodichloromethane are produced in the United States. The small quantities that are produced are used in laboratories or to make other chemicals. However, most bromodichloromethane is formed as a by-product when chlorine is added to drinking water to kill bacteria. Bromodichloromethane has been formerly used as a flame retardant, and a solvent for fats and waxes and because of its high density for mineral separation. Now it is only used as a reagent or intermediate in organic chemistry. Bromodichloromethane can also occur in municipally-treated drinking water as a by-product of the chlorine disinfection process. D009676 - Noxae > D002273 - Carcinogens

   

Usnic_acid

4,10-diacetyl-11,13-dihydroxy-2,12-dimethyl-8-oxatricyclo[7.4.0.0^{2,7}]trideca-1(9),6,10,12-tetraene-3,5-dione

C18H16O7 (344.0896)


7-Hydroxy-(S)-usnate is a member of benzofurans. Usnic acid is a natural product found in Lecanora muralis, Usnea florida, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].

   

Robinin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-3-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxy-chromen-4-one

C33H40O19 (740.2164)


Robinin is a glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone and a dihydroxyflavone. It is functionally related to a kaempferol. Robinin is a natural product found in Aconitum anthora, Astragalus aegobromus, and other organisms with data available. A glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].

   

Neobaicalein

4H-1-Benzopyran-4-one, 5-hydroxy-2-(2-hydroxy-6-methoxyphenyl)-6,7,8-trimethoxy-

C19H18O8 (374.1002)


Scullcapflavone II is a tetramethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7, 8 and 6 and hydroxy groups at positons 5 and 2 respectively. It has a role as a plant metabolite and an anti-asthmatic drug. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Skullcapflavone II is a natural product found in Lagochilus leiacanthus, Scutellaria guatemalensis, and other organisms with data available. A tetramethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7, 8 and 6 and hydroxy groups at positons 5 and 2 respectively. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].

   

Astragaloside A

2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4609)


Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Isorhynchophylline

Methyl 2-{6-ethyl-2-hydroxy-3,5,6,7,8,8a-hexahydro-2H-spiro[indole-3,1-indolizine]-7-yl}-3-methoxyprop-2-enoic acid

C22H28N2O4 (384.2049)


   

Hydroxyproline

trans-4-hydroxy-L-proline

C5H9NO3 (131.0582)


L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.

   

Febrifugine

3-(3-(3-Hydroxypiperidin-2-yl)-2-oxopropyl)quinazolin-4(3H)-one

C16H19N3O3 (301.1426)


Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].

   

sesamin

1,3-Benzodioxole, 5,5-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.))-

C20H18O6 (354.1103)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Asiatic Acid

(1S,2R,4aS,6aR,6aS,6bR,8aR,9R,10R,11R,12aR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O5 (488.3502)


Esculentic acid (diplazium) is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Esculentic acid (diplazium) is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Esculentic acid (diplazium) can be found in green vegetables, which makes esculentic acid (diplazium) a potential biomarker for the consumption of this food product. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product relative retention time with respect to 9-anthracene Carboxylic Acid is 1.377 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.378 Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Rhamnocitrin

4H-1-Benzopyran-4-one, 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O6 (300.0634)


Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol. Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. A monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2].

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Osthol

InChI=1/C15H16O3/c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12/h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099)


Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). A natural product found in Peucedanum ostruthium and Angelica pubescens. D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Origin: Plant, Coumarins Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

Dalbergioidin

2,3-Dihydro-5,7-dihydroxy-3-(2,4-dihydroxyphenyl)-4H-1-benzopyran-4-one, 9CI

C15H12O6 (288.0634)


Isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean) and Phaseolus vulgaris (kidney bean). Dalbergioidin is found in many foods, some of which are hyacinth bean, yellow wax bean, adzuki bean, and fruits. (+-)-dalbergioidin is a hydroxyisoflavanone. Dalbergioidin is a natural product found in Vigna subterranea, Vigna radiata, and other organisms with data available. Dalbergioidin is found in adzuki bean. Dalbergioidin is isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean) and Phaseolus vulgaris (kidney bean

   

Rhamnetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy- (9CI)

C16H12O7 (316.0583)


Rhamnetin is a monomethoxyflavone that is quercetin methylated at position 7. It has a role as a metabolite, an antioxidant and an anti-inflammatory agent. It is a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a rhamnetin-3-olate. Rhamnetin is a natural product found in Ageratina altissima, Ammannia auriculata, and other organisms with data available. A monomethoxyflavone that is quercetin methylated at position 7. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one, also known as 7-methoxyquercetin or quercetin 7-methyl ether, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one can be found in a number of food items such as tea, apple, sweet orange, and parsley, which makes 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one a potential biomarker for the consumption of these food products. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].

   

praziquantel

Praziquantel (Biltricide)

C19H24N2O2 (312.1838)


P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8927; ORIGINAL_PRECURSOR_SCAN_NO 8925 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8934; ORIGINAL_PRECURSOR_SCAN_NO 8932 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8954; ORIGINAL_PRECURSOR_SCAN_NO 8953 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8977; ORIGINAL_PRECURSOR_SCAN_NO 8976 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8993; ORIGINAL_PRECURSOR_SCAN_NO 8991 CONFIDENCE standard compound; INTERNAL_ID 2202 [Raw Data] CB144_Praziquantel_pos_50eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_40eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_30eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_20eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_10eV_CB000054.txt CONFIDENCE standard compound; EAWAG_UCHEM_ID 3272

   

Perindopril

Perindopril

C19H32N2O5 (368.2311)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3026 Perindopril (S-9490) is an orally available, long-acting angiotensin-converting enzyme (ACE) inhibitor. Perindopril inhibits inflammatory cell influx and intimal thickening, preserving elastin on the inside of the aorta. Perindopril effectively inhibits experimental abdominal aortic aneurysm (AAA) formation in a rat model and reduces pulmonary vasoconstriction in rats with pulmonary hypertension[1][2][3][4].

   

Protopine

Protopine

C20H19NO5 (353.1263)


Annotation level-1 D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.601 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.596 IPB_RECORD: 1441; CONFIDENCE confident structure Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

Enalapril

Enalapril

C20H28N2O5 (376.1998)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; INTERNAL_ID 2718 CONFIDENCE standard compound; INTERNAL_ID 8616 INTERNAL_ID 8616; CONFIDENCE standard compound

   

rhyncophylline

Rhynchophylline

C22H28N2O4 (384.2049)


Rhyncholphylline is an alkaloid compound isolated from Uncaria rhynchophyllum. It has high biological activity and is widely used in anti-inflammatory, neuroprotective and other research. Rhyncholphylline is an alkaloid compound isolated from Uncaria rhynchophyllum. It has high biological activity and is widely used in anti-inflammatory, neuroprotective and other research.

   

Morin

4H-1-Benzopyran-4-one, 2-2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.0427)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].

   

Tetrandrine

(1S,14S)-9,20,21,25-tetramethoxy-15,30-dimethyl-7,23-dioxa-15,30-diazaheptacyc lo[22.6.2.2<3,6>.1<8,12>.1<14,18>.0<22,36>.0<27,31>]hexatriaconta-3(33),4,6(34 ),8(35),9,11,18(36),19,21,24,26,31-dodecaene

C38H42N2O6 (622.3043)


(+)-Tetrandrine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Tetrandrine is a natural product found in Pachygone dasycarpa, Cyclea barbata, and other organisms with data available. Tetrandrine is a natural, bis-benzylisoquinoline alkaloid isolated from the root of the plant Radix stephania tetrandrae. Tetrandrine non-selectively inhibits calcium channel activity and induces G1 blockade of the G1 phase of the cell cycle and apoptosis in various cell types, resulting in immunosuppressive, anti-proliferative and free radical scavenging effects. This agent also increases glucose utilization by enhancing hepatocyte glycogen synthesis, resulting in the lowering of plasma glucose. (NCI04) C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.689 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.683 Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current. Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current.

   

Mesalamine

5-Aminosalicylic acid

C7H7NO3 (153.0426)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents CONFIDENCE standard compound; INTERNAL_ID 8621

   

Gramine

Gramine

C11H14N2 (174.1157)


Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 4 Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1].

   

Ostol

InChI=1\C15H16O3\c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12\h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099)


D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid

8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid

C17H11NO7 (341.0535)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].

   

zingerone

InChI=1\C11H14O3\c1-8(12)3-4-9-5-6-10(13)11(7-9)14-2\h5-7,13H,3-4H2,1-2H

C11H14O3 (194.0943)


Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3]. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3].

   

NCI60_040650

4H-1-Benzopyran-4-one, 5-hydroxy-2-(2-hydroxy-6-methoxyphenyl)-6,7,8-trimethoxy-

C19H18O8 (374.1002)


Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].

   

K 251T

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C471 - Enzyme Inhibitor > C1017 - Glucuronidase Inhibitor Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria lobate Benth. Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria lobate Benth.

   

Gramin

InChI=1\C11H14N2\c1-13(2)8-9-7-12-11-6-4-3-5-10(9)11\h3-7,12H,8H2,1-2H

C11H14N2 (174.1157)


Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1].

   

Aristolochic_acid

8-methoxy-6-nitro-naphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid

C17H11NO7 (341.0535)


Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). An aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].

   

L-BOAA

N-Oxalyl-L-alpha-beta-diaminopropionic acid (BOAA,ODAP)

C5H8N2O5 (176.0433)


N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.

   

Asiatic

(1S,2R,4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). A pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

ARNEBIN-3

InChI=1/C18H18O6/c1-9(2)4-7-15(24-10(3)19)11-8-14(22)16-12(20)5-6-13(21)17(16)18(11)23/h4-6,8,15,20-21H,7H2,1-3H3

C18H18O6 (330.1103)


Acetylshikonin is an acetate ester and a hydroxy-1,4-naphthoquinone. Acetylshikonin is a natural product found in Echium plantagineum, Lithospermum erythrorhizon, and other organisms with data available. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3]. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3].

   

tetrachloromethane

CARBON TETRACHLORIDE

CCl4 (151.8754)


   

Bleomycin A2

Bleomycin A2

C55H84N17O21S3+ (1414.519)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances D000970 - Antineoplastic Agents

   

2beta,3beta,5beta,14,20,22R,25-heptahydroxycholest-7-en-6-one

2beta,3beta,5beta,14,20,22R,25-heptahydroxycholest-7-en-6-one

C27H44O8 (496.3036)


   

Delatine (Hetisine)

Delatine (Hetisine)

C20H27NO3 (329.1991)


   

BROMODICHLOROMETHANE

BROMODICHLOROMETHANE

CHBrCl2 (161.8639)


D009676 - Noxae > D002273 - Carcinogens