6'-O-p-Coumaroyltrifolin (BioDeep_00000000577)

 

Secondary id: BioDeep_00000266617, BioDeep_00000270403, BioDeep_00001867524

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


((2R,3S,4S,5R,6S)-6-((5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl (E)-3-(4-hydroxyphenyl)acrylate

化学式: C30H26O13 (594.1373346)
中文名称: 刺蒺藜皂甙, 密蒙花苷, 蒺藜皂甙, 蒺藜皂苷, 银椴甙, 银锻苷
谱图信息: 最多检出来源 Viridiplantae(plant) 2.79%

分子结构信息

SMILES: C1(O)=CC2OC(C3C=CC(O)=CC=3)=C(O[C@H]3[C@H](O)[C@@H](O)[C@H](O)[C@@H](COC(/C=C/C4C=CC(O)=CC=4)=O)O3)C(=O)C=2C(O)=C1
InChI: InChI=1S/C30H26O13/c31-16-6-1-14(2-7-16)3-10-22(35)40-13-21-24(36)26(38)27(39)30(42-21)43-29-25(37)23-19(34)11-18(33)12-20(23)41-28(29)15-4-8-17(32)9-5-15/h1-12,21,24,26-27,30-34,36,38-39H,13H2/b10-3+/t21-,24-,26+,27-,30+/m1/s1

描述信息

Kaempferol 3-(6-p-coumaroylgalactoside) is a member of the class of compounds known as flavonoid 3-o-p-coumaroyl glycosides. Flavonoid 3-o-p-coumaroyl glycosides are flavonoid 3-O-glycosides where the carbohydrate moiety is esterified with a p-coumaric acid. P-coumaric acid is an organic derivative of cinnamic acid, that carries a hydroxyl group at the 4-position of the benzene ring. Kaempferol 3-(6-p-coumaroylgalactoside) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Within the cell, kaempferol 3-(6-p-coumaroylgalactoside) is primarily located in the membrane (predicted from logP).
Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid.
Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available.
6-O-p-Coumaroyltrifolin is a constituent of Pinus sylvestris (Scotch pine).
Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1].
Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1].
Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].

同义名列表

41 个代谢物同义名

((2R,3S,4S,5R,6S)-6-((5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl (E)-3-(4-hydroxyphenyl)acrylate; (E)-((2R,3S,4S,5R,6S)-6-(5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yloxy)-3,4,5-trihydroxy-tetrahydro-2H-pyran-2-yl)methyl 3-(4-hydroxyphenyl)acrylate; (E)-((2R,3S,4S,5R,6S)-6-(5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yloxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl 3-(4-hydroxyphenyl)acrylate; [(2R,3S,4S,5R,6S)-6-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-chromen-3-yl]oxy-3,4,5-trihydroxy-tetrahydropyran-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate; ((2R,3S,4S,5R,6S)-6-((5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl 3-(4-hydroxyphenyl)acrylate; [(2R,3S,4S,5R,6S)-6-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate; 2-PROPENOIC ACID, 3-(4-HYDROXYPHENYL)-, 6-ESTER WITH 3-(.BETA.-D-GLUCOPYRANOSYLOXY)-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-4H-1-BENZOPYRAN-4-ONE, (E)-; 4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-3-((6-O-((2E)-3-(4-HYDROXYPHENYL)-1-OXO-2-PROPEN-1-YL)-.BETA.-D-GLUCOPYRANOSYL)OXY)-; (6-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl (2E)-3-(4-hydroxyphenyl)prop-2-enoic acid; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[6-O-[(2E)-3-(4-hydroxyphenyl)-1-oxo-2-propenyl]-.beta.-D-glucopyranosyl]oxy]-; 2-Propenoic acid, 3-(4-hydroxyphenyl)-, 6-ester with 3-(beta-D-glucopyranosyloxy)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; (6-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate; (6-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate; 5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4E-1-benzopyran-3-yl 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranoside; KAEMPFEROL 3-O-(6-O-(TRANS-P-COUMAROYL))-.BETA.-D-GLUCOPYRANOSIDE; 3-O-KAEMPFEROL 6-O-(TRANS-P-COUMAROYL)-.BETA.-D-GLUCOPYRANOSIDE; KAEMPFEROL 3-O-.BETA.-D-(6-O-TRANS-P-COUMAROYL)GLUCOPYRANOSIDE; KAEMPFEROL 3-O-(6-O-(E)-P-COUMAROYL)-.BETA.-D-GLUCOPYRANOSIDE; Kaempferol-3-O-(6-O-trans-p-coumaroyl)-.beta.-glucopyranoside; KAEMPFEROL-3-O(-6-O-TRANS-P-COUMAROYL-.BETA.-GLUCOPYRANOSIDE; kaempferol 3-O-(6 -O-E-p-coumaroyl)-beta-D-glucopyranoside; kaempferol-3-beta-D-(6-O-trans-p-coumaroyl)glucopyranoside; kaempferol-3-O-beta-D-(6-(E)-p-coumaroyl)-glucopyranoside; kaempferol 3-O-(6"-O-p-coumaroyl)-glucoside; KAEMPFEROL 3-O-(6-O-P-COUMAROYL)GLUCOSIDE; Kaempferol 3-(6-P-coumaroylgalactoside); Kaempferol-3-(p-coumaryl)glucoside; 6-(4-Hydroxycinnamoyl)astragalin; 6-O-trans-p-Coumaroylastragalin; Tiliroside, analytical standard; ASTRAGALIN-6-TRANS-P-COUMARATE; 6-O-p-Coumaroyltrifolin; RONACARE TILIROSIDE; Potengriffioside A; TILIROSIDE [INCI]; Trans-Tiliroside; UNII-15M04TXR9M; MEGxp0_000169; Tribuloside; 15M04TXR9M; Tiliroside



数据库引用编号

27 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

163 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Maolei Xu, Weilan Zhong, Chen Yang, Ming Liu, Xiaoqing Yuan, Tao Lu, Desheng Li, Guanqing Zhang, Huan Liu, Yuying Zeng, Xiaoping Yang, Yufu Zhou, Ling Zhou. Tiliroside disrupted iron homeostasis and induced ferroptosis via directly targeting calpain-2 in pancreatic cancer cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 May; 127(?):155392. doi: 10.1016/j.phymed.2024.155392. [PMID: 38412575]
  • Fangfang Cai, Dangran Li, Kaiqian Zhou, Wen Zhang, Yunwen Yang. Tiliroside attenuates acute kidney injury by inhibiting ferroptosis through the disruption of NRF2-KEAP1 interaction. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Apr; 126(?):155407. doi: 10.1016/j.phymed.2024.155407. [PMID: 38340577]
  • Chao Zhong, Jing Yang, Keke Deng, Xiaoya Lang, Jiangtao Zhang, Min Li, Liang Qiu, Guoyue Zhong, Jun Yu. Tiliroside Attenuates NLRP3 Inflammasome Activation in Macrophages and Protects against Acute Lung Injury in Mice. Molecules (Basel, Switzerland). 2023 Nov; 28(22):. doi: 10.3390/molecules28227527. [PMID: 38005247]
  • Chen Yang, Tao Lu, Ming Liu, Xiaoqing Yuan, Desheng Li, Jiayu Zhang, Ling Zhou, Maolei Xu. Tiliroside targets TBK1 to induce ferroptosis and sensitize hepatocellular carcinoma to sorafenib. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Mar; 111(?):154668. doi: 10.1016/j.phymed.2023.154668. [PMID: 36657316]
  • Mengjie Xiao, Tianbo Zhang, Fei Cao, Weihong Liang, Yinhua Yang, Tao Huang, Yun-Sang Tang, Bo Liu, Xin Zhao, Pang-Chui Shaw. Anti-influenza properties of tiliroside isolated from Hibiscus mutabilis L. Journal of ethnopharmacology. 2023 Mar; 303(?):115918. doi: 10.1016/j.jep.2022.115918. [PMID: 36436715]
  • Soni Ranjana, Amit Srivastava, Alok Goyal, Inder Pal Singh, Sanjay M Jachak. Quantitative analysis of tiliroside and other flavonoid glycosides in Hippophae salicifolia D. Don leaves by HPLC-PDA. Natural product research. 2022 Nov; ?(?):1-6. doi: 10.1080/14786419.2022.2148244. [PMID: 36445311]
  • Iwona Radziejewska, Katarzyna Supruniuk, Michał Tomczyk, Wiktoria Izdebska, Małgorzata Borzym-Kluczyk, Anna Bielawska, Krzysztof Bielawski, Anna Galicka. p-Coumaric acid, Kaempferol, Astragalin and Tiliroside Influence the Expression of Glycoforms in AGS Gastric Cancer Cells. International journal of molecular sciences. 2022 Aug; 23(15):. doi: 10.3390/ijms23158602. [PMID: 35955735]
  • Hafize Yuca, Hilal Özbek, Lütfiye Ömür Demirezer, Handan Gökben Kasil, Zühal Güvenalp. trans-Tiliroside: A potent α-glucosidase inhibitor from the leaves of Elaeagnus angustifolia L. Phytochemistry. 2021 Aug; 188(?):112795. doi: 10.1016/j.phytochem.2021.112795. [PMID: 34044297]
  • Michael Termer, Christophe Carola, Andrew Salazar, Cornelia M Keck, Juergen Hemberger, Joerg von Hagen. Identification of plant metabolite classes from Waltheria Indica L. extracts regulating inflammatory immune responses via COX-2 inhibition. Journal of ethnopharmacology. 2021 Apr; 270(?):113741. doi: 10.1016/j.jep.2020.113741. [PMID: 33359867]
  • Rui Han, Hongxing Yang, Lingeng Lu, Lizhu Lin. Tiliroside as a CAXII inhibitor suppresses liver cancer development and modulates E2Fs/Caspase-3 axis. Scientific reports. 2021 04; 11(1):8626. doi: 10.1038/s41598-021-88133-7. [PMID: 33883691]
  • A P Sousa, D A Fernandes, M D L Ferreira, L V Cordeiro, M F V Souza, H L F Pessoa, A A Oliveira Filho, R C S Sá. Analysis of the toxicological and pharmacokinetic profile of Kaempferol-3-O-β-D-(6"-E-p-coumaryl) glucopyranoside - Tiliroside: in silico, in vitro and ex vivo assay. Brazilian journal of biology = Revista brasleira de biologia. 2021; 83(?):e244127. doi: 10.1590/1519-6984.244127. [PMID: 34161458]
  • Hongda Zhuang, Qi Lv, Chao Zhong, Yaru Cui, Luling He, Cheng Zhang, Jun Yu. Tiliroside Ameliorates Ulcerative Colitis by Restoring the M1/M2 Macrophage Balance via the HIF-1α/glycolysis Pathway. Frontiers in immunology. 2021; 12(?):649463. doi: 10.3389/fimmu.2021.649463. [PMID: 33868286]
  • Claudio Frezza, Daniela De Vita, Giulia Spinaci, Marco Sarandrea, Alessandro Venditti, Armandodoriano Bianco. Secondary metabolites of Tilia tomentosa Moench inflorescences collected in Central Italy: chemotaxonomy relevance and phytochemical rationale of traditional use. Natural product research. 2020 Apr; 34(8):1167-1174. doi: 10.1080/14786419.2018.1550487. [PMID: 30638062]
  • Alvaro José Hernández Tasco, Román Yesid Ramírez Rueda, Carlos José Alvarez, Fabiana Terezinha Sartori, Ana Claudia B C Sacilotto, Izabel Yoko Ito, Walter Vichnewski, Marcos José Salvador. Antibacterial and antifungal properties of crude extracts and isolated compounds from Lychnophora markgravii. Natural product research. 2020 Mar; 34(6):863-867. doi: 10.1080/14786419.2018.1503263. [PMID: 30445853]
  • Naohiro Oshima, Honoka Kume, Takayoshi Umeda, Haruki Takito, Mitsutoshi Tsukimoto, Noriyasu Hada. Structures and Inhibitory Activities for Interleukin-2 Production of Seasonally Variable Constituents in Flower Parts of Magnolia kobus at Different Growth Stages. Chemical & pharmaceutical bulletin. 2020; 68(1):91-95. doi: 10.1248/cpb.c19-00611. [PMID: 31902904]
  • Li Jia, Lu Zhang, Yun-Hua Ye, Jin-Lin Li, Mingyang Cong, Tao Yuan. Effect and Mechanism of Elaeagnus angustifolia Flower and Its Major Flavonoid Tiliroside on Inhibiting Non-enzymatic Glycosylation. Journal of agricultural and food chemistry. 2019 Dec; 67(50):13960-13968. doi: 10.1021/acs.jafc.9b06712. [PMID: 31751508]
  • Toshio Morikawa, Akifumi Nagatomo, Takahiro Oka, Yoshinobu Miki, Norihisa Taira, Megumi Shibano-Kitahara, Yuichiro Hori, Osamu Muraoka, Kiyofumi Ninomiya. Glucose Tolerance-Improving Activity of Helichrysoside in Mice and Its Structural Requirements for Promoting Glucose and Lipid Metabolism. International journal of molecular sciences. 2019 Dec; 20(24):. doi: 10.3390/ijms20246322. [PMID: 31847420]
  • Hipólita Lagunas-Herrera, Jaime Tortoriello, Maribel Herrera-Ruiz, Gabriela Belen Martínez-Henández, Alejandro Zamilpa, Lucía Aguilar Santamaría, Mario García Lorenzana, Galia Lombardo-Earl, Enrique Jiménez-Ferrer. Acute and Chronic Antihypertensive Effect of Fractions, Tiliroside and Scopoletin from Malva parviflora. Biological & pharmaceutical bulletin. 2019; 42(1):18-25. doi: 10.1248/bpb.b18-00355. [PMID: 30606987]
  • Shogo Takeda, Hiroshi Shimoda, Toru Takarada, Genji Imokawa. Strawberry seed extract and its major component, tiliroside, promote ceramide synthesis in the stratum corneum of human epidermal equivalents. PloS one. 2018; 13(10):e0205061. doi: 10.1371/journal.pone.0205061. [PMID: 30300355]
  • Rudi Hendra, Paul A Keller. Phytochemical Studies on Two Australian Anigozanthos Plant Species. Journal of natural products. 2017 07; 80(7):2141-2145. doi: 10.1021/acs.jnatprod.7b00063. [PMID: 28682615]
  • Xican Li, Yage Tian, Tingting Wang, Qiaoqi Lin, Xiaoyi Feng, Qian Jiang, Yamei Liu, Dongfeng Chen. Role of the p-Coumaroyl Moiety in the Antioxidant and Cytoprotective Effects of Flavonoid Glycosides: Comparison of Astragalin and Tiliroside. Molecules (Basel, Switzerland). 2017 Jul; 22(7):. doi: 10.3390/molecules22071165. [PMID: 28704976]
  • Ik-Soo Lee, Yu Jin Kim, Seung-Hyun Jung, Joo-Hwan Kim, Jin Sook Kim. Flavonoids from Litsea japonica Inhibit AGEs Formation and Rat Lense Aldose Reductase In Vitro and Vessel Dilation in Zebrafish. Planta medica. 2017 Feb; 83(3-04):318-325. doi: 10.1055/s-0042-116324. [PMID: 27690380]
  • Didem Sanver, Brent S Murray, Amin Sadeghpour, Michael Rappolt, Andrew L Nelson. Experimental Modeling of Flavonoid-Biomembrane Interactions. Langmuir : the ACS journal of surfaces and colloids. 2016 12; 32(49):13234-13243. doi: 10.1021/acs.langmuir.6b02219. [PMID: 27951697]
  • Die Gao, Yong-Lan Zhang, Feng-Qing Yang, Fan Li, Qi-Hui Zhang, Zhi-Ning Xia. The flower of Edgeworthia gardneri (wall.) Meisn. suppresses adipogenesis through modulation of the AMPK pathway in 3T3-L1 adipocytes. Journal of ethnopharmacology. 2016 Sep; 191(?):379-386. doi: 10.1016/j.jep.2016.06.059. [PMID: 27350007]
  • Ying Chen, Chang Zhang, Mei-Na Jin, Nan Qin, Wei Qiao, Xiao-Long Yue, Hong-Quan Duan, Wen-Yan Niu. Flavonoid derivative exerts an antidiabetic effect via AMPK activation in diet-induced obesity mice. Natural product research. 2016 Sep; 30(17):1988-92. doi: 10.1080/14786419.2015.1101105. [PMID: 26511291]
  • Shan-shan Ren, Bao-quan Bao. [Study on the Flavonoids and Biological Activity of Rubus sachalinensis]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2016 Sep; 39(9):2019-23. doi: . [PMID: 30209904]
  • Victor Kuete, Louis P Sandjo, Armelle T Mbaveng, Maen Zeino, Thomas Efferth. Cytotoxicity of compounds from Xylopia aethiopica towards multi-factorial drug-resistant cancer cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2015 Dec; 22(14):1247-54. doi: 10.1016/j.phymed.2015.10.008. [PMID: 26655407]
  • Qinghua Zhang, Dan Fan, Bingjian Xiong, Lingbao Kong, Xiangdong Zhu. Isolation of new flavan-3-ol and lignan glucoside from Loropetalum chinense and their antimicrobial activities. Fitoterapia. 2013 Oct; 90(?):228-32. doi: 10.1016/j.fitote.2013.08.003. [PMID: 23954178]
  • Aleksandra Owczarek, Jan Gudej. Investigation into biologically active constituents of Geum rivale L. Acta poloniae pharmaceutica. 2013 Jan; 70(1):111-4. doi: ". [PMID: 23610965]
  • Qing Liu, Jong Hoon Ahn, Seon Beom Kim, Bang Yeon Hwang, Mi Kyeong Lee. New phenolic compounds with anti-adipogenic activity from the aerial parts of Pulsatilla koreana. Planta medica. 2012 Nov; 78(16):1783-6. doi: 10.1055/s-0032-1315368. [PMID: 23007852]
  • Wei-Quan Chen, Zhi-Jun Song, Han-Hong Xu. A new antifungal and cytotoxic C-methylated flavone glycoside from Picea neoveitchii. Bioorganic & medicinal chemistry letters. 2012 Sep; 22(18):5819-22. doi: 10.1016/j.bmcl.2012.07.089. [PMID: 22901896]
  • Tsuyoshi Goto, Aki Teraminami, Joo-Young Lee, Kana Ohyama, Kozue Funakoshi, Young-Il Kim, Shizuka Hirai, Taku Uemura, Rina Yu, Nobuyuki Takahashi, Teruo Kawada. Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice. The Journal of nutritional biochemistry. 2012 Jul; 23(7):768-76. doi: 10.1016/j.jnutbio.2011.04.001. [PMID: 21889885]
  • Michael Timmers, Sylvia Urban. On-line (HPLC-NMR) and off-line phytochemical profiling of the Australian plant, Lasiopetalum macrophyllum. Natural product communications. 2012 May; 7(5):551-60. doi: ". [PMID: 22799073]
  • Seil Jung, Jai-Heon Lee, Young-Choon Lee, Hyung-In Moon. Inhibition effects of isolated compounds from Artemisia rubripes Nakai of the classical pathway on the complement system. Immunopharmacology and immunotoxicology. 2012 Apr; 34(2):244-6. doi: 10.3109/08923973.2011.599034. [PMID: 21854097]
  • Hyung-In Moon, Young-Choon Lee, Jai-Heon Lee. Isolated compounds from Sorghum bicolor L. inhibit the classical pathway of the complement. Immunopharmacology and immunotoxicology. 2012 Apr; 34(2):299-302. doi: 10.3109/08923973.2011.602690. [PMID: 21854169]
  • Tsuyoshi Goto, Mayuka Horita, Hiroyuki Nagai, Akifumi Nagatomo, Norihisa Nishida, Youichi Matsuura, Satoshi Nagaoka. Tiliroside, a glycosidic flavonoid, inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract. Molecular nutrition & food research. 2012 Mar; 56(3):435-45. doi: 10.1002/mnfr.201100458. [PMID: 22173993]
  • Michael Timmers, Sylvia Urban. On-line (HPLC-NMR) and off-line phytochemical profiling of the Australian plant, Lasiopetalum macrophyllum. Natural product communications. 2011 Nov; 6(11):1605-16. doi: ". [PMID: 22224273]
  • Nan Qin, Chun-Bao Li, Mei-Na Jin, Li-Huan Shi, Hong-Quan Duan, Wen-Yan Niu. Synthesis and biological activity of novel tiliroside derivants. European journal of medicinal chemistry. 2011 Oct; 46(10):5189-95. doi: 10.1016/j.ejmech.2011.07.059. [PMID: 21856048]
  • Wei Qiao, Chuan Zhao, Nan Qin, Hui Yuan Zhai, Hong Quan Duan. Identification of trans-tiliroside as active principle with anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects from Potentilla chinesis. Journal of ethnopharmacology. 2011 May; 135(2):515-21. doi: 10.1016/j.jep.2011.03.062. [PMID: 21463674]
  • Ill-Min Chung, Hong-Keun Song, Sun-Jin Kim, Hyung-In Moon. Anticomplement activity of polyacetylenes from leaves of Dendropanax morbifera Leveille. Phytotherapy research : PTR. 2011 May; 25(5):784-6. doi: 10.1002/ptr.3336. [PMID: 21520473]
  • Dong-Xue Sun, Jin-Cai Lu, Zhong-Ze Fang, Yan-Yan Zhang, Yun-Feng Cao, Yu-Xi Mao, Liang-Liang Zhu, Jun Yin, Ling Yang. Reversible inhibition of three important human liver cytochrome p450 enzymes by tiliroside. Phytotherapy research : PTR. 2010 Nov; 24(11):1670-5. doi: 10.1002/ptr.3189. [PMID: 21031626]
  • Xiaoli Hu, Shuya Cui, Jia qin Liu. Fluorescence studies of interaction between flavonol p-coumaroylglucoside tiliroside and bovine serum albumin. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2010 Oct; 77(2):548-53. doi: 10.1016/j.saa.2010.06.016. [PMID: 20615751]
  • Michal Tomczyk, Aleksander Tumanov, Agnieszka Zaniewska, Arkadiusz Surazynski. The potential mechanism of tiliroside-dependent inhibition of t-butylhydroperoxide-induced oxidative stress in endometrial carcinoma cells. Planta medica. 2010 Jul; 76(10):963-8. doi: 10.1055/s-0029-1240900. [PMID: 20186656]
  • Howard A Epstein. A natural approach to soothing atopic skin. Skinmed. 2010 Mar; 8(2):95-7. doi: ". [PMID: 20527141]
  • Vivyanne S Falcão-Silva, Davi A Silva, Maria de Fátima V Souza, José P Siqueira-Junior. Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae). Phytotherapy research : PTR. 2009 Oct; 23(10):1367-70. doi: 10.1002/ptr.2695. [PMID: 19224523]
  • Yan-hua Lu, Juan Chen, Dong-zhi Wei, Zheng-tao Wang, Xin-yi Tao. Tyrosinase inhibitory effect and inhibitory mechanism of tiliroside from raspberry. Journal of enzyme inhibition and medicinal chemistry. 2009 Oct; 24(5):1154-60. doi: 10.1080/14756360802694252. [PMID: 19772488]
  • Lili Song, Juan Lu, Peifang Yan, Lina Tan, Xuwen Li, Yongri Jin. [RP-HPLC determination of tiliroside in Daphne genkwa]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2009 Feb; 34(3):301-3. doi: . [PMID: 19445154]
  • Kiyofumi Ninomiya, Hisashi Matsuda, Mizuho Kubo, Toshio Morikawa, Norihisa Nishida, Masayuki Yoshikawa. Potent anti-obese principle from Rosa canina: structural requirements and mode of action of trans-tiliroside. Bioorganic & medicinal chemistry letters. 2007 Jun; 17(11):3059-64. doi: 10.1016/j.bmcl.2007.03.051. [PMID: 17400451]
  • Anastasia Karioti, Anastasia Protopappa, Nikolaos Megoulas, Helen Skaltsa. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorganic & medicinal chemistry. 2007 Apr; 15(7):2708-14. doi: 10.1016/j.bmc.2007.01.035. [PMID: 17287127]
  • Guillermo R Schinella, Horacio A Tournier, Salvador Máñez, Perla M de Buschiazzo, María Del Carmen Recio, José Luis Ríos. Tiliroside and gnaphaliin inhibit human low density lipoprotein oxidation. Fitoterapia. 2007 Jan; 78(1):1-6. doi: 10.1016/j.fitote.2006.09.018. [PMID: 17084992]
  • Minghua Qiu, Jung-Hee Kim, Hyeong-Kyu Lee, Byung-Sun Min. Anticomplement activity of cycloartane glycosides from the rhizome of Cimicifuga foetida. Phytotherapy research : PTR. 2006 Nov; 20(11):945-8. doi: 10.1002/ptr.1982. [PMID: 16906637]
  • Na Young Yoon, Byung Sun Min, Hyeong Kyu Lee, Jong Cheol Park, Jae Sue Choi. A potent anti-complementary acylated sterol glucoside from Orostachys japonicus. Archives of pharmacal research. 2005 Aug; 28(8):892-6. doi: 10.1007/bf02973873. [PMID: 16178413]
  • Jian-guang Luo, Ling-yi Kong. [Study on flavonoids from leaf of Ipomoea batatas]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Apr; 30(7):516-8. doi: . [PMID: 16011096]
  • Florian Kaffarnik, Werner Heller, Norbert Hertkorn, Heinrich Sandermann. Flavonol 3-O-glycoside hydroxycinnamoyltransferases from Scots pine (Pinus sylvestris L.). The FEBS journal. 2005 Mar; 272(6):1415-24. doi: 10.1111/j.1742-4658.2005.04574.x. [PMID: 15752358]
  • Yihui Xie, Juru Miao, Wenqin Liu. [Studies on the chemical constituents from Fructus Rubi]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2005 Feb; 28(2):99-100. doi: ". [PMID: 15981877]
  • Yoshiaki Amakura, Tomoaki Tsutsumi, Kumiko Sasaki, Takashi Yoshida, Tamio Maitani. Screening of the inhibitory effect of vegetable constituents on the aryl hydrocarbon receptor-mediated activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biological & pharmaceutical bulletin. 2003 Dec; 26(12):1754-60. doi: 10.1248/bpb.26.1754. [PMID: 14646185]
  • Yan Hua, Li He, Han-qing Wang. [Studies on flavonoids of Anaphalis sinica]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2003 Jun; 28(6):530-3. doi: ". [PMID: 15015333]
  • Araceli Sala, M Carmen Recio, Guillermo R Schinella, Salvador Máñez, Rosa M Giner, Miguel Cerdá-Nicolás, José Luis Rosí. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. European journal of pharmacology. 2003 Feb; 461(1):53-61. doi: 10.1016/s0014-2999(02)02953-9. [PMID: 12568916]
  • N Backhouse, C Delporte, R Negrete, S A San Feliciano, J L López-Pérez. Bioactive phenolic derivatives from Acaena splendens methanol extract. Phytotherapy research : PTR. 2002 Sep; 16(6):562-6. doi: 10.1002/ptr.997. [PMID: 12237815]
  • Hisashi Matsuda, Kiyofumi Ninomiya, Hiroshi Shimoda, Masayuki Yoshikawa. Hepatoprotective principles from the flowers of Tilia argentea (linden): structure requirements of tiliroside and mechanisms of action. Bioorganic & medicinal chemistry. 2002 Mar; 10(3):707-12. doi: 10.1016/s0968-0896(01)00321-2. [PMID: 11814859]
  • F Z Chen, S L Peng, L S Ding, Y H He, M K Wang. [Chemical constituents from the fruit of Rosa bella Rehd. et Wils]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2001 Aug; 26(8):549-51. doi: . [PMID: 12776369]
  • H Liu, J Orjala, O Sticher, T Rali. Acylated flavonol glycosides from leaves of Stenochlaena palustris. Journal of natural products. 1999 Jan; 62(1):70-5. doi: 10.1021/np980179f. [PMID: 9917285]
  • K Y Jung, S R Oh, S H Park, I S Lee, K S Ahn, J J Lee, H K Lee. Anti-complement activity of tiliroside from the flower buds of Magnolia fargesii. Biological & pharmaceutical bulletin. 1998 Oct; 21(10):1077-8. doi: 10.1248/bpb.21.1077. [PMID: 9821813]
  • N Mahmood, S Piacente, C Pizza, A Burke, A I Khan, A J Hay. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena. Biochemical and biophysical research communications. 1996 Dec; 229(1):73-9. doi: 10.1006/bbrc.1996.1759. [PMID: 8954085]
  • G T Tan, J M Pezzuto, A D Kinghorn, S H Hughes. Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. Journal of natural products. 1991 Jan; 54(1):143-54. doi: 10.1021/np50073a012. [PMID: 1710653]