NCBI Taxonomy: 8397
Ranidae (ncbi_taxid: 8397)
found 54 associated metabolites at family taxonomy rank level.
Ancestor: Ranoidea
Child Taxonomies: Rana, Huia, Babina, Rugosa, Amolops, Staurois, Amnirana, Nidirana, Odorrana, Humerana, Papurana, Hylarana, Pulchrana, Sylvirana, Abavorana, Pterorana, Pelophylax, Chalcorana, Pseudorana, Sanguirana, Wijayarana, Sumaterana, Lithobates, Glandirana, Clinotarsus, Hydrophylax, Meristogenys, Indosylvirana, unclassified Ranidae
linolenate(18:3)
alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
Retinal
A carotenoid constituent of visual pigments. It is the oxidized form of retinol which functions as the active component of the visual cycle. It is bound to the protein opsin forming the complex rhodopsin. When stimulated by visible light, the retinal component of the rhodopsin complex undergoes isomerization at the 11-position of the double bond to the cis-form; this is reversed in "dark" reactions to return to the native trans-configuration. [HMDB]. Retinal is found in many foods, some of which are flaxseed, pepper (c. baccatum), climbing bean, and other soy product. Retinal is a carotenoid constituent of visual pigments. It is the oxidized form of retinol which functions as the active component of the visual cycle. It is bound to the protein opsin forming the complex rhodopsin. When stimulated by visible light, the retinal component of the rhodopsin complex undergoes isomerization at the 11-position of the double bond to the cis-form; this is reversed in "dark" reactions to return to the native trans-configuration. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids CONFIDENCE standard compound; INTERNAL_ID 142
Cholesterol
Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
7-Ketocholesterol
7-Ketocholesterol is a major oxidation product of cholesterol (oxysterol) found in human atherosclerotic plaque and is more atherogenic than cholesterol in some animal studies. Oxysterols (oxygenated forms of cholesterol) are present at low levels in the circulation and accumulate is plasma and tissues in some pathologies. In atherosclerotic lesions, 7-oxygenated oxysterols, predominantly 7-ketocholesterol, accumulate and have been implicated in the pathology of the disease. There is some in vivo and in vitro evidence that sterol 27-hydroxylase acts on 7-ketocholesterol to initiate its degradation to more polar, water-soluble products. Recent studies indicate an alternative mechanism, in which 7-ketocholesterol is reduced to 7 beta-hydroxycholesterol by 11 beta-hydroxysteroid dehydrogenase type 1. 7-Ketocholesterol can inhibit cholesterol 7 alpha-hydroxylase, the rate-limiting step in bile acid biosynthesis, as well as strongly inhibiting HMG-CoA reductase, the rate-limiting enzyme in cholesterol biosynthesis. It has even been suggested that 7-ketocholesterol is formed enzymically as an endogenous regulator of cholesterol biosynthesis. However, when tested as a pharmacological cholesterol-lowering agent, inhibition of HMG-CoA reductase was rapidly overcome and the 7-ketocholesterol metabolised. In vitro, 7-ketocholesterol has wide-ranging and potent effects, most of which have the potential to contribute to atherosclerosis. For example, 7-ketocholesterol can be cytotoxic and can induce apoptosis in vascular cells. These effects, either individually or more likely, in combination, all implicate 7-ketocholesterol in the initiation and development of atherosclerosis, but further work is needed to establish whether or not its role is a direct causal one. 7-Ketocholesterol is the second most abundant oxysterol found in human atherosclerotic plaque, after the enzymically formed 27-hydroxycholesterol (cholest-5-ene-3beta,27-diol). 7-Ketocholesterol differs from cholesterol by a ketone functional group present at the 7-position. It is produced from cholesterol via the epimeric cholesterol 7-hydroperoxides (cholest-5-ene-3beta-ol-7-hydroperoxide) which decompose to the epimeric 7-hydroxycholesterols (cholest-5-ene-3beta,7-diol) and 7-ketocholesterol. 7-Ketocholesterol is a major dietary oxysterol. It has also been widely suggested that 7-ketocholesterol present in atherosclerotic tissue may be derived from the diet. Certainly, 7-ketocholesterol is a major oxysterol found in cholesterol-rich processed foodstuffs. Dietary 7-ketocholesterol is rapidly metabolised by the liver to 7beta-hydroxycholesterol (cholest-5-ene-3beta,7beta-diol), unusual bile acids and perhaps even cholesterol itself. Its conversion to 7beta-hydroxycholesterol is well documented. (PMID: 15798369, 10224662). 7-Ketocholesterol is a major oxidation product of cholesterol (oxysterol) found in human atherosclerotic plaque and is more atherogenic than cholesterol in some animal studies. Oxysterols (oxygenated forms of cholesterol) are present at low levels in the circulation and accumulate is plasma and tissues in some pathologies. In atherosclerotic lesions, 7-oxygenated oxysterols, predominantly 7-ketocholesterol, accumulate and have been implicated in the pathology of the disease. There is some in vivo and in vitro evidence that sterol 27-hydroxylase acts on 7-ketocholesterol to initiate its degradation to more polar, water-soluble products. Recent studies indicate an alternative mechanism, in which 7-ketocholesterol is reduced to 7 beta-hydroxycholesterol by 11 beta-hydroxysteroid dehydrogenase type 1. 7-Ketocholesterol, toxic oxysterol, inhibits the rate-limiting step in bile acid biosynthesis cholesterol 7 alpha-hydroxylase, as well as strongly inhibiting HMG-CoA reductase (the rate-limiting enzyme in cholesterol biosynthesis). 7-Ketocholesterol induces cell apoptosis[1].
Cholesterol
A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
7-KETOCHOLESTEROL
A cholestanoid that consists of cholesterol bearing an oxo substituent at position 7. D004791 - Enzyme Inhibitors 7-Ketocholesterol, toxic oxysterol, inhibits the rate-limiting step in bile acid biosynthesis cholesterol 7 alpha-hydroxylase, as well as strongly inhibiting HMG-CoA reductase (the rate-limiting enzyme in cholesterol biosynthesis). 7-Ketocholesterol induces cell apoptosis[1].
α-Linolenic acid
α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
linoleic
Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].
(1r)-4-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol
3,4,5-trihydroxy-2-{[(1r,2s,18r,19s,21r)-7,8,9,12,13,14,28,29,32,33,34-undecahydroxy-4,24,37-trioxo-19-(3,4,5-trihydroxybenzoyloxy)-3,17,20,23,38-pentaoxaheptacyclo[19.17.0.0²,¹⁸.0⁵,¹⁰.0¹¹,¹⁶.0²⁵,³⁰.0³¹,³⁶]octatriaconta-5,7,9,11(16),12,14,25,27,29,31(36),32,34-dodecaen-27-yl]oxy}benzoic acid
(2s)-2-{[(2s)-2-({[(2r)-1-[(2s)-2-{[(2s)-2-{[2-({[(2s)-1-[(2s)-1-[(2s)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxyethylidene]amino}-1-hydroxy-3-phenylpropylidene]amino}-3-hydroxypropanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-5-carbamimidamidopentanoic acid
C50H73N15O11 (1059.5613707999998)
(2s)-2-{[(2s)-2-({[(2s)-1-[(2s)-2-{[(2s)-2-amino-1-hydroxy-3-phenylpropylidene]amino}-4-methylpentanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-n-[(1s)-1-[({[(1s)-1-(isopropyl-c-hydroxycarbonimidoyl)-3-methylbutyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]ethyl]-4-methylpentanimidic acid
(3s)-3-{[(2s)-2-{[(2s)-6-amino-2-{[(2s)-2-amino-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxyhexylidene]amino}-1,3-dihydroxypropylidene]amino}-3-{[(1s)-2-hydroxy-1-{[(1s)-1-{[(1s)-1-[({[(1s)-1-{[(1s)-1-(c-hydroxycarbonimidoyl)-3-(methylsulfanyl)propyl]-c-hydroxycarbonimidoyl}-3-methylbutyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]-2-(4-hydroxyphenyl)ethyl]-c-hydroxycarbonimidoyl}-2-phenylethyl]-c-hydroxycarbonimidoyl}ethyl]-c-hydroxycarbonimidoyl}propanoic acid
(2s,3s)-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-({[(2s)-1-[(2s)-2-{[(2s)-2-amino-1-hydroxy-3-(3h-imidazol-4-yl)propylidene]amino}-3-(c-hydroxycarbonimidoyl)propanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxypropylidene]amino}-1,3-dihydroxypropylidene]amino}-1-hydroxy-3-phenylpropylidene]amino}-n-({[(1s)-1-{[(1s)-1-(c-hydroxycarbonimidoyl)-3-(methylsulfanyl)propyl]-c-hydroxycarbonimidoyl}-3-methylbutyl]-c-hydroxycarbonimidoyl}methyl)-3-methylpentanimidic acid
9a,11a-dimethyl-1-(6-methylheptan-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-4,7-diol
(3s)-3-{[(1s)-4-carbamimidamido-1-{[(1s)-1-{[(1s)-1-[({[(1s)-1-{[(1s)-1-(c-hydroxycarbonimidoyl)-3-(methylsulfanyl)propyl]-c-hydroxycarbonimidoyl}-3-methylbutyl]-c-hydroxycarbonimidoyl}methyl)-c-hydroxycarbonimidoyl]-2-(4-hydroxyphenyl)ethyl]-c-hydroxycarbonimidoyl}-2-phenylethyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}-3-({[(2s)-1-[(2s)-2-({[(2s)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-hydroxypropanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)propanoic acid
7-hydroxy-9a,11a-dimethyl-1-(6-methylheptan-2-yl)-1h,2h,3h,3ah,3bh,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-one
(2s)-2-{[(2s)-2-({[(2s)-1-[(2s)-2-{[(2s)-2-{[2-({[(2s)-1-[(2s)-1-[(2s)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxyethylidene]amino}-1-hydroxy-3-phenylpropylidene]amino}-3-hydroxypropanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-5-carbamimidamidopentanoic acid
C50H73N15O11 (1059.5613707999998)
3,4,5-trihydroxy-2-{[(10r,11s,12r,13s,15r)-3,4,5,22,23-pentahydroxy-8,18-dioxo-11,12,13-tris(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-21-yl]oxy}benzoic acid
2-{[2-({[1-(2-{[2-({2-[({1-[1-(2-amino-5-carbamimidamidopentanoyl)pyrrolidine-2-carbonyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-3-hydroxypropanoyl)pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-5-carbamimidamidopentanoic acid
C50H73N15O11 (1059.5613707999998)
(2s)-2-{[(2s)-2-{[(2s)-6-amino-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s,3r)-2-{[(2s,3s)-2-{[(2s)-2-({[(2s)-1-[(2s)-2-{[(2s)-2-{[(2s)-2-amino-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-3-phenylpropanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-methylpentylidene]amino}-1,3-dihydroxybutylidene]amino}-1,3-dihydroxypropylidene]amino}-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1,3-dihydroxypropylidene]amino}-1-hydroxyhexylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-4-methylpentanoic acid
(4r,7s,10s,13s,16s,19s,22r)-22-{[(2s,3s)-2-{[(2s)-2-{[(2s)-2-({[(2s)-1-[(2s)-2-{[(2s,3s)-2-{[(2s)-6-amino-2-{[(2s,3s)-2-{[(2s)-2-({2-[(2-{[(2s)-2-{[(2s)-2-amino-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-methylpentylidene]amino}-1-hydroxyhexylidene]amino}-1-hydroxy-3-methylpentylidene]amino}-3-methylbutanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxypropylidene]amino}-1-hydroxy-4-(methylsulfanyl)butylidene]amino}-1-hydroxy-3-methylpentylidene]amino}-7,10-bis(4-aminobutyl)-6,9,12,15,18,21-hexahydroxy-13-[(1r)-1-hydroxyethyl]-16-isopropyl-19-methyl-1,2-dithia-5,8,11,14,17,20-hexaazacyclotricosa-5,8,11,14,17,20-hexaene-4-carboxylic acid
C97H167N23O22S3 (2102.1817562)