Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

linolenate(18:3)

(9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid

C18H30O2 (278.224568)


alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Caldopentamine

Caldopentamine

C12H31N5 (245.2579326)


A polyazaalkane that is the 1,5,9,13,17-pentaaza derivative of heptodecane.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Agmatine

Agmatine sulfate salt

C5H14N4 (130.1218404)


   

α-Linolenic acid

alpha-Linolenic acid

C18H30O2 (278.224568)


α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   
   

n-(5-{[3-({4-[(3-aminopropyl)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

n-(5-{[3-({4-[(3-aminopropyl)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C27H47N7O6 (565.3587642)


   

(4as,7r,7ar)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carbaldehyde

(4as,7r,7ar)-7-methyl-1h,2h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyridine-4-carbaldehyde

C10H15NO (165.115358)


   

(2's,4ar,5'r,6'r,7r)-9'-hydroxy-5',7-dimethyl-4a,5,6,7-tetrahydro-11'-azaspiro[cyclopenta[c]pyridine-4,8'-tricyclo[5.2.2.0²,⁶]undecan]-10'-ene-1'-carbaldehyde

(2's,4ar,5'r,6'r,7r)-9'-hydroxy-5',7-dimethyl-4a,5,6,7-tetrahydro-11'-azaspiro[cyclopenta[c]pyridine-4,8'-tricyclo[5.2.2.0²,⁶]undecan]-10'-ene-1'-carbaldehyde

C20H26N2O2 (326.1994176)


   

(2s)-n-(5-{[3-({4-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}butanediimidic acid

(2s)-n-(5-{[3-({4-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}butanediimidic acid

C40H69N11O7 (815.5381164)


   

n-{3-[(1r)-6-hydroxy-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl]propyl}guanidine

n-{3-[(1r)-6-hydroxy-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl]propyl}guanidine

C15H21N5O (287.1746016)


   

(2s)-n-[5-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(1h-indol-3-yl)ethylidene]amino}butanediimidic acid

(2s)-n-[5-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(1h-indol-3-yl)ethylidene]amino}butanediimidic acid

C26H41N7O4 (515.3219866000001)


   

(2s)-n-(5-{[(2s)-2,5-diamino-1-hydroxypentylidene]amino}pentyl)-2-{[1-hydroxy-2-(1h-indol-3-yl)ethylidene]amino}butanediimidic acid

(2s)-n-(5-{[(2s)-2,5-diamino-1-hydroxypentylidene]amino}pentyl)-2-{[1-hydroxy-2-(1h-indol-3-yl)ethylidene]amino}butanediimidic acid

C24H37N7O4 (487.29068820000003)


   
   

(2s)-n-[5-({3-[(4-{[(2r)-2-[(2-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxypropylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2s)-n-[5-({3-[(4-{[(2r)-2-[(2-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxypropylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C35H60N12O9 (792.460599)


   

(2s)-2-amino-5-(c-hydroxycarbonimidoylamino)pentanimidic acid

(2s)-2-amino-5-(c-hydroxycarbonimidoylamino)pentanimidic acid

C6H14N4O2 (174.1116704)


   

n-(3-{6-hydroxy-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl}propyl)guanidine

n-(3-{6-hydroxy-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl}propyl)guanidine

C15H21N5O (287.1746016)


   

1-(5-aminopentyl)-1-propylhydrazine

1-(5-aminopentyl)-1-propylhydrazine

C8H21N3 (159.1735386)


   

2-amino-5-(c-hydroxycarbonimidoylamino)pentanimidic acid

2-amino-5-(c-hydroxycarbonimidoylamino)pentanimidic acid

C6H14N4O2 (174.1116704)


   

n-[5-({3-[(3-aminopropyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(4-hydroxyphenyl)ethylidene]amino}butanediimidic acid

n-[5-({3-[(3-aminopropyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(4-hydroxyphenyl)ethylidene]amino}butanediimidic acid

C23H38N6O5 (478.2903538)


   

(2s)-2-{[(2s)-5-amino-1-hydroxy-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}pentylidene]amino}-n-{5-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]pentyl}butanediimidic acid

(2s)-2-{[(2s)-5-amino-1-hydroxy-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}pentylidene]amino}-n-{5-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]pentyl}butanediimidic acid

C38H65N11O7 (787.5068180000001)


   

(2s)-n-[5-({3-[(4-{[(2r)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(1h-indol-3-yl)ethylidene]amino}butanediimidic acid

(2s)-n-[5-({3-[(4-{[(2r)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(1h-indol-3-yl)ethylidene]amino}butanediimidic acid

C32H53N11O5 (671.4230928)


   

n-(5-{[3-({4-[(2-amino-5-carbamimidamido-1-hydroxypentylidene)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

n-(5-{[3-({4-[(2-amino-5-carbamimidamido-1-hydroxypentylidene)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C30H52N10O7 (664.4020241999999)


   

(2s)-n-(5-{[(2s)-5-amino-2-{[(2r)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxypentylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2s)-n-(5-{[(2s)-5-amino-2-{[(2r)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxypentylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C28H48N10O7 (636.3707258)


   

(9r,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-2,4-dien-6-one

(9r,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-2,4-dien-6-one

C15H20N2O (244.157555)


   

(2s)-n-(5-{[3-({4-[(3-aminopropyl)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}butanediimidic acid

(2s)-n-(5-{[3-({4-[(3-aminopropyl)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}butanediimidic acid

C29H48N8O5 (588.3747477999999)


   

(3s)-3-{[(2s)-5-amino-1-hydroxy-2-{[1-hydroxy-2-(1h-indol-3-yl)ethylidene]amino}pentylidene]amino}-3-({5-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]pentyl}-c-hydroxycarbonimidoyl)propanoic acid

(3s)-3-{[(2s)-5-amino-1-hydroxy-2-{[1-hydroxy-2-(1h-indol-3-yl)ethylidene]amino}pentylidene]amino}-3-({5-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]pentyl}-c-hydroxycarbonimidoyl)propanoic acid

C38H64N10O7 (772.4959194)


   

(2s)-n-[5-({3-[(4-{[(2s)-1-[(2-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxyethylidene)amino]-1-oxopropan-2-yl]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2s)-n-[5-({3-[(4-{[(2s)-1-[(2-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxyethylidene)amino]-1-oxopropan-2-yl]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C35H60N12O9 (792.460599)


   

(2r)-n-[3-({4-[(3-aminopropyl)amino]butyl}amino)propyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2r)-n-[3-({4-[(3-aminopropyl)amino]butyl}amino)propyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C22H38N6O5 (466.2903538)


   

(5-aminopentyl)bis(3-aminopropyl)amine

(5-aminopentyl)bis(3-aminopropyl)amine

C11H28N4 (216.2313848)


   

n-(5-{[3-({3-[(2-amino-5-carbamimidamido-1-hydroxypentylidene)amino]propyl}amino)propyl]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

n-(5-{[3-({3-[(2-amino-5-carbamimidamido-1-hydroxypentylidene)amino]propyl}amino)propyl]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C29H52N10O6 (636.4071091999999)


   

(2s)-n-[5-({3-[(3-aminopropyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2s)-n-[5-({3-[(3-aminopropyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C23H38N6O6 (494.2852688)


   

n-[5-({3-[(4-{[2-({2-[(2-amino-5-carbamimidamido-1-hydroxypentylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxypropylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

n-[5-({3-[(4-{[2-({2-[(2-amino-5-carbamimidamido-1-hydroxypentylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxypropylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C35H60N12O9 (792.460599)


   

(2s)-n-(5-{[(2s)-5-amino-2-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxypentylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2s)-n-(5-{[(2s)-5-amino-2-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxypentylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C28H48N10O7 (636.3707258)


   

(2s)-n-[5-({3-[(3-aminopropyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(4-hydroxyphenyl)ethylidene]amino}butanediimidic acid

(2s)-n-[5-({3-[(3-aminopropyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(4-hydroxyphenyl)ethylidene]amino}butanediimidic acid

C23H38N6O5 (478.2903538)


   

(2s)-n-(5-{[3-({4-[(3-aminopropyl)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2s)-n-(5-{[3-({4-[(3-aminopropyl)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C27H47N7O6 (565.3587642)


   

(2s)-n-(5-{[3-({3-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]propyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}butanediimidic acid

(2s)-n-(5-{[3-({3-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]propyl}amino)-1-hydroxypropylidene]amino}pentyl)-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}butanediimidic acid

C39H67N11O7 (801.5224671999999)


   

(2s)-n-[3-({4-[(3-aminopropyl)amino]butyl}amino)propyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2s)-n-[3-({4-[(3-aminopropyl)amino]butyl}amino)propyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C22H38N6O5 (466.2903538)


   

n-[3-({4-[(3-aminopropyl)amino]butyl}amino)propyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

n-[3-({4-[(3-aminopropyl)amino]butyl}amino)propyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C22H38N6O5 (466.2903538)


   

(2s)-n-[5-({3-[(3-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}propyl)amino]propyl}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2s)-n-[5-({3-[(3-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}propyl)amino]propyl}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C29H52N10O6 (636.4071091999999)


   

n-[5-({3-[(3-aminopropyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

n-[5-({3-[(3-aminopropyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C23H38N6O6 (494.2852688)


   

(2s)-n-(5-{[(2r)-5-amino-2-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxypentylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2s)-n-(5-{[(2r)-5-amino-2-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxypentylidene]amino}pentyl)-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C28H48N10O7 (636.3707258)


   

(2s)-2-{[(2s)-5-amino-1-hydroxy-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}pentylidene]amino}-n-(5-{[3-({4-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)butanediimidic acid

(2s)-2-{[(2s)-5-amino-1-hydroxy-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}pentylidene]amino}-n-(5-{[3-({4-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]butyl}amino)-1-hydroxypropylidene]amino}pentyl)butanediimidic acid

C45H79N13O8 (929.6174254000001)


   

(2s)-n-[5-({3-[(4-{[3-({4-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]butyl}amino)-1-hydroxypropylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}butanediimidic acid

(2s)-n-[5-({3-[(4-{[3-({4-[(3-{[4-({3-[(4-aminobutyl)amino]-1-hydroxypropylidene}amino)butyl]amino}-1-hydroxypropylidene)amino]butyl}amino)-1-hydroxypropylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(4-hydroxy-1h-indol-3-yl)ethylidene]amino}butanediimidic acid

C47H83N13O8 (957.6487238000001)


   

(2s)-n-[5-({3-[(4-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

(2s)-n-[5-({3-[(4-{[(2s)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C30H52N10O7 (664.4020241999999)


   

n-[5-({5-amino-2-[(2-amino-5-carbamimidamido-1-hydroxypentylidene)amino]-1-hydroxypentylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

n-[5-({5-amino-2-[(2-amino-5-carbamimidamido-1-hydroxypentylidene)amino]-1-hydroxypentylidene}amino)pentyl]-2-{[2-(2,4-dihydroxyphenyl)-1-hydroxyethylidene]amino}butanediimidic acid

C28H48N10O7 (636.3707258)